Skip to main content
Top
Published in: European Journal of Trauma and Emergency Surgery 2/2020

01-04-2020 | Fracture Healing | Review Article

Electrical stimulation-based bone fracture treatment, if it works so well why do not more surgeons use it?

Authors: Mit Balvantray Bhavsar, Zhihua Han, Thomas DeCoster, Liudmila Leppik, Karla Mychellyne Costa Oliveira, John H Barker

Published in: European Journal of Trauma and Emergency Surgery | Issue 2/2020

Login to get access

Abstract

Background

Electrical stimulation (EStim) has been proven to promote bone healing in experimental settings and has been used clinically for many years and yet it has not become a mainstream clinical treatment.

Methods

To better understand this discrepancy we reviewed 72 animal and 69 clinical studies published between 1978 and 2017, and separately asked 161 orthopedic surgeons worldwide about their awareness, experience, and acceptance of EStim for treating fracture patients.

Results

Of the 72 animal studies, 77% reported positive outcomes, and the most common model, bone, fracture type, and method of administering EStim were dog, tibia, large bone defects, and DC, respectively. Of the 69 clinical studies, 73% reported positive outcomes, and the most common bone treated, fracture type, and method of administration were tibia, delayed/non-unions, and PEMF, respectively. Of the 161 survey respondents, most (73%) were aware of the positive outcomes reported in the literature, yet only 32% used EStim in their patients. The most common fracture they treated was delayed/non-unions, and the greatest problems with EStim were high costs and inconsistent results.

Conclusion

Despite their awareness of EStim’s pro-fracture healing effects few orthopedic surgeons use it in their patients. Our review of the literature and survey indicate that this is due to confusion in the literature due to the great variation in methods reported, and the inconsistent results associated with this treatment approach. In spite of this surgeons seem to be open to using this treatment if advancements in the technology were able to provide an easy to use, cost-effective method to deliver EStim in their fracture patients. 
Literature
1.
go back to reference Garrat AC. Electrophysiology and electrotherapeutics. Boston: Ticknor and Fields; 1860. Garrat AC. Electrophysiology and electrotherapeutics. Boston: Ticknor and Fields; 1860.
3.
go back to reference Chalidis B, Sachinis N, Assiotis A, Maccauro G, Graziani F. Stimulation of bone formation and fracture healing with pulsed electromagnetic fields: biologic responses and clinical implications. Int J Immunopathol Pharmacol. 2011;24:17–20.CrossRefPubMed Chalidis B, Sachinis N, Assiotis A, Maccauro G, Graziani F. Stimulation of bone formation and fracture healing with pulsed electromagnetic fields: biologic responses and clinical implications. Int J Immunopathol Pharmacol. 2011;24:17–20.CrossRefPubMed
4.
go back to reference Aaron RK, Boyan BD, Ciombor DM, Schwartz Z, Simon BJ. Stimulation of growth factor synthesis by electric and electromagnetic fields [review]. Clin Orthop. 2004;419:30–7.CrossRef Aaron RK, Boyan BD, Ciombor DM, Schwartz Z, Simon BJ. Stimulation of growth factor synthesis by electric and electromagnetic fields [review]. Clin Orthop. 2004;419:30–7.CrossRef
5.
go back to reference Simonis RB, Parnell EJ, Ray PS, Peacock JL. Electrical treatment of tibial non-union: a prospective, randomised, double-blind trial. Injury. 2003;34:357–62.CrossRefPubMed Simonis RB, Parnell EJ, Ray PS, Peacock JL. Electrical treatment of tibial non-union: a prospective, randomised, double-blind trial. Injury. 2003;34:357–62.CrossRefPubMed
6.
go back to reference Andersen T, Christensen FB, Ernst C, Fruensgaard S, Østergaard J, Andersen JL, et al. The effect of electrical stimulation on lumbar spinal fusion in older patients: a randomized, controlled, multi-center trial: part 1: functional outcome. Spine. 2009;34:2241–7.CrossRefPubMed Andersen T, Christensen FB, Ernst C, Fruensgaard S, Østergaard J, Andersen JL, et al. The effect of electrical stimulation on lumbar spinal fusion in older patients: a randomized, controlled, multi-center trial: part 1: functional outcome. Spine. 2009;34:2241–7.CrossRefPubMed
7.
go back to reference Steinberg ME, Brighton CT, Hayken GD, Tooze SE, Steinberg DR. Early results in the treatment of avascular necrosis of the femoral head with electrical stimulation. Orthop Clin N Am. 1984;15:163–75. Steinberg ME, Brighton CT, Hayken GD, Tooze SE, Steinberg DR. Early results in the treatment of avascular necrosis of the femoral head with electrical stimulation. Orthop Clin N Am. 1984;15:163–75.
8.
go back to reference Sharrard WJ, Sutcliffe ML, Robson MJ, Maceachern AG. The treatment of fibrous non-union of fractures by pulsing electromagnetic stimulation. J Bone Jt Surg Br. 1982;64:189–93.CrossRef Sharrard WJ, Sutcliffe ML, Robson MJ, Maceachern AG. The treatment of fibrous non-union of fractures by pulsing electromagnetic stimulation. J Bone Jt Surg Br. 1982;64:189–93.CrossRef
9.
go back to reference Brighton C, Shaman P, Heppenstall R. Tibial nonunion treated with direct current, capacitive coupling, or bone graft. Clin Orthop. 1995;321:223–34. Brighton C, Shaman P, Heppenstall R. Tibial nonunion treated with direct current, capacitive coupling, or bone graft. Clin Orthop. 1995;321:223–34.
10.
go back to reference Borsalino G, Bagnacani M, Bettati E, et al. Electrical stimulation of human femoral intertrochanteric osteotomies. Clin Orthop. 1988;237:256–63. Borsalino G, Bagnacani M, Bettati E, et al. Electrical stimulation of human femoral intertrochanteric osteotomies. Clin Orthop. 1988;237:256–63.
11.
go back to reference Bassett CA, Mitchell SN, Schink MM. Treatment of therapeutically resistant non-unions with bone grafts and pulsing electromagnetic fields. J Bone Jt Surg Am. 1982;64:1214–20.CrossRef Bassett CA, Mitchell SN, Schink MM. Treatment of therapeutically resistant non-unions with bone grafts and pulsing electromagnetic fields. J Bone Jt Surg Am. 1982;64:1214–20.CrossRef
12.
go back to reference Steinberg ME, Brighton CT, Corces A, Hayken GD, Steinberg DR, Strafford B, et al. Osteonecrosis of the femoral head. Results of core decompression and grafting with and without electrical stimulation. Clin Orthop Relat Res. 1989;249:199–208. Steinberg ME, Brighton CT, Corces A, Hayken GD, Steinberg DR, Strafford B, et al. Osteonecrosis of the femoral head. Results of core decompression and grafting with and without electrical stimulation. Clin Orthop Relat Res. 1989;249:199–208.
15.
go back to reference Ercan B, Webster TJ. Greater osteoblast proliferation on anodized nanotubular titanium upon electrical stimulation. Int J Nanomed. 2008;3(4):477–85. Ercan B, Webster TJ. Greater osteoblast proliferation on anodized nanotubular titanium upon electrical stimulation. Int J Nanomed. 2008;3(4):477–85.
18.
go back to reference Yamada A, Gaja N, Ohya S, Muraki K, Narita H, Ohwada T, et al. Usefulness and limitation of DiBAC4(3), a voltage-sensitive fluorescent dye, for the measurement of membrane potentials regulated by recombinant large conductance Ca2+-activated K+ channels in HEK293 cells. Jpn J Pharmacol. 2001;86(3):342–50.CrossRefPubMed Yamada A, Gaja N, Ohya S, Muraki K, Narita H, Ohwada T, et al. Usefulness and limitation of DiBAC4(3), a voltage-sensitive fluorescent dye, for the measurement of membrane potentials regulated by recombinant large conductance Ca2+-activated K+ channels in HEK293 cells. Jpn J Pharmacol. 2001;86(3):342–50.CrossRefPubMed
21.
go back to reference Behari J. Effect of electrical stimulation in mineralization and collagen enrichment of osteoporotic rat bones. In: 2008 International conference on recent advances in microwave theory and applications 2008. Behari J. Effect of electrical stimulation in mineralization and collagen enrichment of osteoporotic rat bones. In: 2008 International conference on recent advances in microwave theory and applications 2008.
26.
go back to reference Brochet F, Weber J. LinkedIn Corporation. Harvard Business School Case 112–006; 2012. Brochet F, Weber J. LinkedIn Corporation. Harvard Business School Case 112–006; 2012.
28.
go back to reference Sharrard WJW. A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures. J Bone Jt Surg Br. 1990;72:347–55.CrossRef Sharrard WJW. A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures. J Bone Jt Surg Br. 1990;72:347–55.CrossRef
29.
go back to reference Brighton CT. Treatment of non-union of the tibia with constant direct current. J Trauma. 1981;21:189–95.CrossRefPubMed Brighton CT. Treatment of non-union of the tibia with constant direct current. J Trauma. 1981;21:189–95.CrossRefPubMed
31.
go back to reference Spadaro JA. Electrically stimulated bone growth in animals and man. Review of the literature. Clin Orthop Relat Res. 1977;122:325–32. Spadaro JA. Electrically stimulated bone growth in animals and man. Review of the literature. Clin Orthop Relat Res. 1977;122:325–32.
32.
go back to reference Barker AT, Dixon RA, Sharrard WJW, Sutcliffe ML. Pulsed magnetic field therapy for tibial non-union. Interim results of a double-blind trial. Lancet. 1984;1:994–6.CrossRefPubMed Barker AT, Dixon RA, Sharrard WJW, Sutcliffe ML. Pulsed magnetic field therapy for tibial non-union. Interim results of a double-blind trial. Lancet. 1984;1:994–6.CrossRefPubMed
33.
go back to reference Brighton C, Pollack S. Treatment of recalcitrant non-unions with a capacitively coupled electrical field. J Bone Joint Surg. 1985;67A:577–85.CrossRef Brighton C, Pollack S. Treatment of recalcitrant non-unions with a capacitively coupled electrical field. J Bone Joint Surg. 1985;67A:577–85.CrossRef
35.
go back to reference EXOGEN. EXOGEN® Bone healing system shown to be most cost-effective bone stimulator. 2005. EXOGEN. EXOGEN® Bone healing system shown to be most cost-effective bone stimulator. 2005.
36.
go back to reference Schultz M, Oremus M, Whitman C, Conway J. Cost-effectiveness of bone stimulators in the conservative treatment of stable nonunion fractures. Value Health. 2004;7:723 (International Society for Pharmacoeconomics and Outcomes Research (ISPOR)).CrossRef Schultz M, Oremus M, Whitman C, Conway J. Cost-effectiveness of bone stimulators in the conservative treatment of stable nonunion fractures. Value Health. 2004;7:723 (International Society for Pharmacoeconomics and Outcomes Research (ISPOR)).CrossRef
39.
go back to reference Colson DJ, Browett JP, Fiddian NJ, Watson B. Treatment of delayed- and non-union of fractures using pulsed electromagnetic fields. J Biomed Eng. 1988;10:301–4.CrossRefPubMed Colson DJ, Browett JP, Fiddian NJ, Watson B. Treatment of delayed- and non-union of fractures using pulsed electromagnetic fields. J Biomed Eng. 1988;10:301–4.CrossRefPubMed
40.
go back to reference Meril AJ. Direct current stimulation of allograft in anterior and posterior lumbar interbody fusions. Spine. 1994;19:2393–8.CrossRefPubMed Meril AJ. Direct current stimulation of allograft in anterior and posterior lumbar interbody fusions. Spine. 1994;19:2393–8.CrossRefPubMed
41.
go back to reference Simmons JW, Hayes MA, Christensen DK, Dwyer AP, Koullsis CS, Kimmich SJ. The effect of postoperative pulsing electromagnetic fields on lumbar fusion: an open trial phase study. Quebec, Canada: Presented at the North American Spine Society; 1989. Simmons JW, Hayes MA, Christensen DK, Dwyer AP, Koullsis CS, Kimmich SJ. The effect of postoperative pulsing electromagnetic fields on lumbar fusion: an open trial phase study. Quebec, Canada: Presented at the North American Spine Society; 1989.
42.
go back to reference Lee K. Clinical investigation of the spinal stem system open trial phase: pseudarthrosis stratum. Las Vegas, Nevada: Presented at the annual meeting of the American Academy of Orthopaedic Surgeons; 1989. Lee K. Clinical investigation of the spinal stem system open trial phase: pseudarthrosis stratum. Las Vegas, Nevada: Presented at the annual meeting of the American Academy of Orthopaedic Surgeons; 1989.
43.
go back to reference Ebrahim S, Mollon B, Bance S, Busse JW, Bhandari M. Low-intensity pulsed ultrasonography versus electrical stimulation for fracture healing: a systematic review and network meta-analysis. Can J Surg. 2014;57(3):E105–18.CrossRefPubMedPubMedCentral Ebrahim S, Mollon B, Bance S, Busse JW, Bhandari M. Low-intensity pulsed ultrasonography versus electrical stimulation for fracture healing: a systematic review and network meta-analysis. Can J Surg. 2014;57(3):E105–18.CrossRefPubMedPubMedCentral
48.
go back to reference Buzza EP, Shibli JA, Barbeiro RH, Barbosa JR. Effects of electromagnetic field on bone healing around commercially pure titanium surface: histologic and mechanical study in rabbits. Implant Dent. 2003;12:182–7.CrossRefPubMed Buzza EP, Shibli JA, Barbeiro RH, Barbosa JR. Effects of electromagnetic field on bone healing around commercially pure titanium surface: histologic and mechanical study in rabbits. Implant Dent. 2003;12:182–7.CrossRefPubMed
49.
go back to reference Fredericks DC, Piehl DJ, Baker JT, Abbott J, Nepola JV. Effects of pulsed electromagnetic field stimulation on distraction osteogenesis in the rabbit tibial leg lengthening model. J Pediatr Orthop. 2003;23:478–83.PubMed Fredericks DC, Piehl DJ, Baker JT, Abbott J, Nepola JV. Effects of pulsed electromagnetic field stimulation on distraction osteogenesis in the rabbit tibial leg lengthening model. J Pediatr Orthop. 2003;23:478–83.PubMed
50.
go back to reference France JC, Norman TL, Santrock RD, McGrath B, Simon BJ. The efficacy of direct current stimulation for lumbar intertransverse process fusions in an animal model. Spine. 2001;26:1002–8.CrossRefPubMed France JC, Norman TL, Santrock RD, McGrath B, Simon BJ. The efficacy of direct current stimulation for lumbar intertransverse process fusions in an animal model. Spine. 2001;26:1002–8.CrossRefPubMed
54.
go back to reference Matsumoto H, Ochi M, Abiko Y, Hirose Y, Kaku T, Sakaguchi K. Pulsed electromagnetic fields promote bone formation around dental implants inserted into the femur of rabbits. Clin Oral Implant Res. 2000;11(4):354–60.CrossRef Matsumoto H, Ochi M, Abiko Y, Hirose Y, Kaku T, Sakaguchi K. Pulsed electromagnetic fields promote bone formation around dental implants inserted into the femur of rabbits. Clin Oral Implant Res. 2000;11(4):354–60.CrossRef
55.
go back to reference Ottani V, Raspanti M, Martini D, Tretola G, Ruggeri A, Franchi M, et al. Electromagnetic stimulation on the bone growth using backscattered electron imaging. Micron. 2002;33:121–5.CrossRefPubMed Ottani V, Raspanti M, Martini D, Tretola G, Ruggeri A, Franchi M, et al. Electromagnetic stimulation on the bone growth using backscattered electron imaging. Micron. 2002;33:121–5.CrossRefPubMed
56.
go back to reference Rubinacci A, Black J, Brighton CT, Friedenberg ZB. Changes in bioelectric potentials on bone associated with direct current stimulation of osteogenesis. J Orthop Res. 1988;6:335–45.CrossRefPubMed Rubinacci A, Black J, Brighton CT, Friedenberg ZB. Changes in bioelectric potentials on bone associated with direct current stimulation of osteogenesis. J Orthop Res. 1988;6:335–45.CrossRefPubMed
57.
go back to reference Shafer DM, Rogerson K, Norton L, Bennett J. The effect of electrical perturbation on osseointegration of titanium dental implants. J Oral Maxillofac Surg. 1995;53:1063–8.CrossRefPubMed Shafer DM, Rogerson K, Norton L, Bennett J. The effect of electrical perturbation on osseointegration of titanium dental implants. J Oral Maxillofac Surg. 1995;53:1063–8.CrossRefPubMed
58.
go back to reference Shimizu E, Matsuda-Honjyo Y, Samoto H, Saito R, Nakajima Y, Nakayama Y, et al. Static magnetic fields-induced bone sialoprotein (BSP) expression is mediated through FGF2 response element and pituitary-specific transcription factor-1 motif. J Cell Biochem. 2004;91:1183–96.CrossRefPubMed Shimizu E, Matsuda-Honjyo Y, Samoto H, Saito R, Nakajima Y, Nakayama Y, et al. Static magnetic fields-induced bone sialoprotein (BSP) expression is mediated through FGF2 response element and pituitary-specific transcription factor-1 motif. J Cell Biochem. 2004;91:1183–96.CrossRefPubMed
59.
go back to reference Smith R. Nagel D Effects of pulsing electromagnetic fields on bone growth and articular cartilage. Clin Orthop. 1983;181:277–82. Smith R. Nagel D Effects of pulsing electromagnetic fields on bone growth and articular cartilage. Clin Orthop. 1983;181:277–82.
60.
go back to reference Taylor BC, French BG, Fowler TT, Russell J, Poka A. Induced membrane technique for reconstruction to manage bone loss. J Am Acad Orthop Surg. 2012;20:142–50.CrossRefPubMed Taylor BC, French BG, Fowler TT, Russell J, Poka A. Induced membrane technique for reconstruction to manage bone loss. J Am Acad Orthop Surg. 2012;20:142–50.CrossRefPubMed
61.
62.
go back to reference Yonemori K, Matsunaga S, Ishidou Y, Maeda S, Yoshida H. Early effects of electrical stimulation on osteogenesis. Bone. 1996;19:173–80.CrossRefPubMed Yonemori K, Matsunaga S, Ishidou Y, Maeda S, Yoshida H. Early effects of electrical stimulation on osteogenesis. Bone. 1996;19:173–80.CrossRefPubMed
63.
go back to reference Zimmerman M, Parsons JR, Alexander H, Weiss AB. The electrical stimulation of bone using a filamentous carbon cathode. J Biomed Mater Res. 1984;18:927–38.CrossRefPubMed Zimmerman M, Parsons JR, Alexander H, Weiss AB. The electrical stimulation of bone using a filamentous carbon cathode. J Biomed Mater Res. 1984;18:927–38.CrossRefPubMed
64.
go back to reference Berry JL, Geiger JM, Moran JM, Skraba JS, Greenwald AS. Use of tricalcium phosphate or electrical-stimulation to enhance the bone porous implant interface. J Biomed Mater Res. 1986;20:65–77.CrossRefPubMed Berry JL, Geiger JM, Moran JM, Skraba JS, Greenwald AS. Use of tricalcium phosphate or electrical-stimulation to enhance the bone porous implant interface. J Biomed Mater Res. 1986;20:65–77.CrossRefPubMed
66.
go back to reference Branham GB, Triplett RG, Yeandle S, Vieras F. The effect of electrical current on the healing of mandibular freeze-dried bone allografts in dogs. J Oral Maxillofac Surg. 1985;43(6):403–7.CrossRefPubMed Branham GB, Triplett RG, Yeandle S, Vieras F. The effect of electrical current on the healing of mandibular freeze-dried bone allografts in dogs. J Oral Maxillofac Surg. 1985;43(6):403–7.CrossRefPubMed
67.
go back to reference Chakkalakal DA, Lippiello L, Shindell RL, Connolly JF. Electrophysiology of direct current stimulation of fracture healing in canine radius. IEEE Trans Biomed Eng. 1990;37:1048–58.CrossRefPubMed Chakkalakal DA, Lippiello L, Shindell RL, Connolly JF. Electrophysiology of direct current stimulation of fracture healing in canine radius. IEEE Trans Biomed Eng. 1990;37:1048–58.CrossRefPubMed
68.
go back to reference Colella SM, Miller AG, Stang RG, Stoebe TG, Spengler DM. Fixation of porous titanium implants in cortical bone enhanced by electrical stimulation. J Biomed Mater Res. 1981;15:37–46.CrossRefPubMed Colella SM, Miller AG, Stang RG, Stoebe TG, Spengler DM. Fixation of porous titanium implants in cortical bone enhanced by electrical stimulation. J Biomed Mater Res. 1981;15:37–46.CrossRefPubMed
69.
go back to reference Connolly JF, Henry H, Jardon J. The Electrical Enhancement of Periosteal Proliferation in Normal and Delayed Fracture Healing. Clin Orthop. 1977;124:97–105. Connolly JF, Henry H, Jardon J. The Electrical Enhancement of Periosteal Proliferation in Normal and Delayed Fracture Healing. Clin Orthop. 1977;124:97–105.
70.
go back to reference Dejardin LM, Kahanovitz N, Arnoczky SP, Simon BJ. The effect of varied electrical current densities on lumbar spinal fusions in dogs. Spine J. 2001;1:341–7.CrossRefPubMed Dejardin LM, Kahanovitz N, Arnoczky SP, Simon BJ. The effect of varied electrical current densities on lumbar spinal fusions in dogs. Spine J. 2001;1:341–7.CrossRefPubMed
71.
go back to reference Doyle ND. Rehabilitation of fractures in small animals: maximize outcomes, minimize complications. Clin Tech Small Anim Pract. 2004;19:180–91.CrossRefPubMed Doyle ND. Rehabilitation of fractures in small animals: maximize outcomes, minimize complications. Clin Tech Small Anim Pract. 2004;19:180–91.CrossRefPubMed
72.
go back to reference Rodriguez Fuentes AE, Marcondes de Souza JP, Valeri V, Mascarenhas S. Experimental model of electric stimulation of pseudarthrosis healing. Clin Orthop. 1984;183:267–75. Rodriguez Fuentes AE, Marcondes de Souza JP, Valeri V, Mascarenhas S. Experimental model of electric stimulation of pseudarthrosis healing. Clin Orthop. 1984;183:267–75.
73.
go back to reference Inoue N, Ohnishi I, Chen D, Deitz LW, Schwardt JD, Chao EYS. Effect of pulsed electromagnetic fields (PEMF) on late-phase osteotomy gap healing in a canine tibial model. J Orthop Res. 2002;20:1106–14.CrossRefPubMed Inoue N, Ohnishi I, Chen D, Deitz LW, Schwardt JD, Chao EYS. Effect of pulsed electromagnetic fields (PEMF) on late-phase osteotomy gap healing in a canine tibial model. J Orthop Res. 2002;20:1106–14.CrossRefPubMed
74.
go back to reference Jacobs JD, Norton LA. Electrical stimulation of osteogenesis in periodontal defects. Clin Orthop. 1977;124:41–52. Jacobs JD, Norton LA. Electrical stimulation of osteogenesis in periodontal defects. Clin Orthop. 1977;124:41–52.
75.
go back to reference Jacobs RR, Luethi U, Dueland RT, Perren SM. Electrical stimulation of experimental nonunions. Clin Orthop Relat Res. 1981;161:146–53. Jacobs RR, Luethi U, Dueland RT, Perren SM. Electrical stimulation of experimental nonunions. Clin Orthop Relat Res. 1981;161:146–53.
76.
go back to reference Kahanovitz N, Arnoczky S, Nemzek J, Shores A. The effect of EMF pulsing on posterior lumbar spinal fusion in dogs. Spine. 1994;19:705–9.CrossRefPubMed Kahanovitz N, Arnoczky S, Nemzek J, Shores A. The effect of EMF pulsing on posterior lumbar spinal fusion in dogs. Spine. 1994;19:705–9.CrossRefPubMed
77.
go back to reference Lindsey RW, Grobman J, Leggon RE, Panjabi M, Friedlaender GE. Effects of bone graft and electrical stimulation on the strength of healing bony defects in dogs. Clin Orthop. 1987;222:275–80. Lindsey RW, Grobman J, Leggon RE, Panjabi M, Friedlaender GE. Effects of bone graft and electrical stimulation on the strength of healing bony defects in dogs. Clin Orthop. 1987;222:275–80.
79.
go back to reference Ortman LF, Casey DM, Deers M. Bioelectric stimulation and residual ridge resorption. J Prosthet Dent. 1992;67:67–71.CrossRefPubMed Ortman LF, Casey DM, Deers M. Bioelectric stimulation and residual ridge resorption. J Prosthet Dent. 1992;67:67–71.CrossRefPubMed
80.
go back to reference Dev MED, Org ART, Ingrowth T, Recum V, Al PET. ABSTRACT The effect of electrical stimulation on the interfacial strength of the porous polymethylmethacrylate implant/oral tissue union and the amount. Department of Interdisciplinary Studies, College of Engineering Clemson University Clemson, 1978;6:291–303. Dev MED, Org ART, Ingrowth T, Recum V, Al PET. ABSTRACT The effect of electrical stimulation on the interfacial strength of the porous polymethylmethacrylate implant/oral tissue union and the amount. Department of Interdisciplinary Studies, College of Engineering Clemson University Clemson, 1978;6:291–303.
81.
go back to reference Cundy PJ, Paterson DC. A ten year review of treatment of delayed union and nonunion with an implanted bone growth stimulator. Clin Orthop Relat Res. 1988;259:216–22. Cundy PJ, Paterson DC. A ten year review of treatment of delayed union and nonunion with an implanted bone growth stimulator. Clin Orthop Relat Res. 1988;259:216–22.
82.
go back to reference Paterson DC, Hillier TM, Carter RF, Ludbrook J, Maxwell GM, Savage JP. Experimental delayed union of the dog tibia and its use in assessing the effect of an electrical bone growth stimulator. Clin Orthop. 1977;128:340–50. Paterson DC, Hillier TM, Carter RF, Ludbrook J, Maxwell GM, Savage JP. Experimental delayed union of the dog tibia and its use in assessing the effect of an electrical bone growth stimulator. Clin Orthop. 1977;128:340–50.
83.
go back to reference Paterson DC, Carter RF, Tilbury RF, Ludbrook J. Savage JP The effects of varying current levels of electrical stimulation. Clin Ortho Relat Res. 1982;169:303–12. Paterson DC, Carter RF, Tilbury RF, Ludbrook J. Savage JP The effects of varying current levels of electrical stimulation. Clin Ortho Relat Res. 1982;169:303–12.
84.
go back to reference Pepper JR, Herbert MA, Anderson JR, Bobechko WP. Effect of capacitive coupled electrical stimulation on regenerate bone. J Orthop Res. 1996;14:296–302.CrossRefPubMed Pepper JR, Herbert MA, Anderson JR, Bobechko WP. Effect of capacitive coupled electrical stimulation on regenerate bone. J Orthop Res. 1996;14:296–302.CrossRefPubMed
85.
go back to reference Schutzer SF, Jasty M, Bragdon CR, Harrigan TP, Harris WH. A double-blind study on the effects of a capacitively coupled electrical field on bone ingrowth into porous-surfaced canine total hip prosthesis. Clin Orthop Rel Res. 1990;260:297–304.CrossRef Schutzer SF, Jasty M, Bragdon CR, Harrigan TP, Harris WH. A double-blind study on the effects of a capacitively coupled electrical field on bone ingrowth into porous-surfaced canine total hip prosthesis. Clin Orthop Rel Res. 1990;260:297–304.CrossRef
86.
go back to reference Shayesteh YS, Eslami B, Dehghan MM, Vaziri H, Alikhassi M, Mangoli A, et al. The effect of a constant electrical field on osseointegration after immediate implantation in dog mandibles: a preliminary study: basic science research. J Prosthodont. 2007;16:337–42.CrossRefPubMed Shayesteh YS, Eslami B, Dehghan MM, Vaziri H, Alikhassi M, Mangoli A, et al. The effect of a constant electrical field on osseointegration after immediate implantation in dog mandibles: a preliminary study: basic science research. J Prosthodont. 2007;16:337–42.CrossRefPubMed
87.
go back to reference Shokry M. Preliminary study on the use of a silver oxide watch battery (1.5 V) for electrical enhancement of bone healing. Vet Res Commun. 1985;9:245–50.CrossRefPubMed Shokry M. Preliminary study on the use of a silver oxide watch battery (1.5 V) for electrical enhancement of bone healing. Vet Res Commun. 1985;9:245–50.CrossRefPubMed
88.
go back to reference Srivastava KP, Lahiri V, Khare A. Chandra H Histomorphologic evidence of fracture healing after direct electrical stimulation in dogs. J Trauma. 1982;22(9):785–6.CrossRefPubMed Srivastava KP, Lahiri V, Khare A. Chandra H Histomorphologic evidence of fracture healing after direct electrical stimulation in dogs. J Trauma. 1982;22(9):785–6.CrossRefPubMed
90.
go back to reference Brighton CT, Tadduni GT, Goll SR, Pollack SR. Treatment of denervation/disuse osteoporosis in the rat with a capacitively coupled electrical signal: effects on bone formation and bone resorption. J Orthop Res. 1988;6:676–84.CrossRefPubMed Brighton CT, Tadduni GT, Goll SR, Pollack SR. Treatment of denervation/disuse osteoporosis in the rat with a capacitively coupled electrical signal: effects on bone formation and bone resorption. J Orthop Res. 1988;6:676–84.CrossRefPubMed
91.
go back to reference Giannunzio GA, Speerli RC, Guglielmotti MB. Electrical field effect on peri-implant osteogenesis: a histologic and histomorphometric study. Implant Dent. 2008;17:118–26.CrossRefPubMed Giannunzio GA, Speerli RC, Guglielmotti MB. Electrical field effect on peri-implant osteogenesis: a histologic and histomorphometric study. Implant Dent. 2008;17:118–26.CrossRefPubMed
92.
go back to reference Guizzardi S, Silvestre M, Govoni P, Scandroglio R. Pulsed electromagnetic field stimulation on posterior spinal fusions: a histological study in rats. J Spinal Disord. 1994;7:36–40.CrossRefPubMed Guizzardi S, Silvestre M, Govoni P, Scandroglio R. Pulsed electromagnetic field stimulation on posterior spinal fusions: a histological study in rats. J Spinal Disord. 1994;7:36–40.CrossRefPubMed
94.
go back to reference Lirani-Galvão APR, Bergamaschi CT, Silva OL, Lazaretti-Castro M. Electrical field stimulation improves bone mineral density in ovariectomized rats. Braz J Med Biol Res. 2006;39:1501–5.CrossRefPubMed Lirani-Galvão APR, Bergamaschi CT, Silva OL, Lazaretti-Castro M. Electrical field stimulation improves bone mineral density in ovariectomized rats. Braz J Med Biol Res. 2006;39:1501–5.CrossRefPubMed
96.
go back to reference Marino AA, Cullen JM, Reichmanis M, Becker RO. Fracture healing in rats exposed to extremely low frequency electric fields. Clin Orthop 1979;145:239–44. Marino AA, Cullen JM, Reichmanis M, Becker RO. Fracture healing in rats exposed to extremely low frequency electric fields. Clin Orthop 1979;145:239–44.
98.
go back to reference Nakajima M, Inoue M, Hojo T, Inoue N, Tanaka K, Takatori R, et al. Effect of electroacupuncture on the healing process of tibia fracture in a rat model: a randomised controlled trial. Acupunct Med. 2010;28:140–3.CrossRefPubMed Nakajima M, Inoue M, Hojo T, Inoue N, Tanaka K, Takatori R, et al. Effect of electroacupuncture on the healing process of tibia fracture in a rat model: a randomised controlled trial. Acupunct Med. 2010;28:140–3.CrossRefPubMed
101.
go back to reference Spadaro JA, Becker RO. Function of implanted cathodes in electrode-induced bone growth. Med Biol Eng Comput. 1979;17:769–75.CrossRefPubMed Spadaro JA, Becker RO. Function of implanted cathodes in electrode-induced bone growth. Med Biol Eng Comput. 1979;17:769–75.CrossRefPubMed
102.
go back to reference Takano-Yamamoto T, Kawakami M, Sakuda M. Effect of a pulsing electromagnetic field on demineralized bone-matrix-induced bone formation in a bony defect in the premaxilla of rats. J Dent Res. 1992;71:1920–5.CrossRefPubMed Takano-Yamamoto T, Kawakami M, Sakuda M. Effect of a pulsing electromagnetic field on demineralized bone-matrix-induced bone formation in a bony defect in the premaxilla of rats. J Dent Res. 1992;71:1920–5.CrossRefPubMed
104.
go back to reference Uysal T, Amasyali M, Olmez H, Karslioglu Y, Gunhan O. Stimulation of bone formation by direct electrical current in an orthopedically expanded suture in the rat. Korean J Orthod. 2010;40:106–14.CrossRef Uysal T, Amasyali M, Olmez H, Karslioglu Y, Gunhan O. Stimulation of bone formation by direct electrical current in an orthopedically expanded suture in the rat. Korean J Orthod. 2010;40:106–14.CrossRef
111.
go back to reference El-Hakim IE, Azim AM, El-Hassan MF, Maree SM. Preliminary investigation into the effects of electrical stimulation on mandibular distraction osteogenesis in goats. Int J Oral Maxillofac Surg. 2004;33(1):42–7.CrossRefPubMed El-Hakim IE, Azim AM, El-Hassan MF, Maree SM. Preliminary investigation into the effects of electrical stimulation on mandibular distraction osteogenesis in goats. Int J Oral Maxillofac Surg. 2004;33(1):42–7.CrossRefPubMed
112.
go back to reference Law HT, Annan I, McCarthy ID, Hughes SP, Stead AC, Camburn MA, et al. The effect of induced electric currents on bone after experimental osteotomy in sheep. J Bone Jt Surg Br. 1985;67:463–9.CrossRef Law HT, Annan I, McCarthy ID, Hughes SP, Stead AC, Camburn MA, et al. The effect of induced electric currents on bone after experimental osteotomy in sheep. J Bone Jt Surg Br. 1985;67:463–9.CrossRef
114.
go back to reference Toth JM, Seim HB, Schwardt JD, Humphrey WB, Wallskog JA, Turner AS. Direct current electrical stimulation increases the fusion rate of spinal fusion cages. Spine. 2000;25:2580–7.CrossRefPubMed Toth JM, Seim HB, Schwardt JD, Humphrey WB, Wallskog JA, Turner AS. Direct current electrical stimulation increases the fusion rate of spinal fusion cages. Spine. 2000;25:2580–7.CrossRefPubMed
115.
go back to reference Canè V, Botti P, Farneti D, Soana S. Electromagnetic stimulation of bone repair: a histomorphometric study. J Orthop Res. 1991;9:908–17.CrossRefPubMed Canè V, Botti P, Farneti D, Soana S. Electromagnetic stimulation of bone repair: a histomorphometric study. J Orthop Res. 1991;9:908–17.CrossRefPubMed
116.
go back to reference Kold SE, Hickman J. Preliminary study of quantitative aspects and the effect of pulsed electromagnetic field treatment on the incorporation of equine cancellous bone graft. Equine Vet J. 1987;19(2):120–4.CrossRefPubMed Kold SE, Hickman J. Preliminary study of quantitative aspects and the effect of pulsed electromagnetic field treatment on the incorporation of equine cancellous bone graft. Equine Vet J. 1987;19(2):120–4.CrossRefPubMed
117.
go back to reference Sanders-Shamis M, Bramlage LR, Weisbrode SE, Gabel AA. A preliminary investigation of the effect of selected electromagnetic field devices on healing of cannon bone osteotomies in horses. Equine Vet J. 1989;21:201–5.CrossRefPubMed Sanders-Shamis M, Bramlage LR, Weisbrode SE, Gabel AA. A preliminary investigation of the effect of selected electromagnetic field devices on healing of cannon bone osteotomies in horses. Equine Vet J. 1989;21:201–5.CrossRefPubMed
118.
go back to reference Abeed RI, Naseer M, Abel EW. Capacitively coupled electrical stimulation treatment: results from patients with failed long bone fracture unions. J Orthop Trauma. 1998;12:510–3.CrossRefPubMed Abeed RI, Naseer M, Abel EW. Capacitively coupled electrical stimulation treatment: results from patients with failed long bone fracture unions. J Orthop Trauma. 1998;12:510–3.CrossRefPubMed
120.
go back to reference Andersen T, Christensen FB, Egund N, Ernst C, Fruensgaard S, Ostergaard J, et al. The effect of electrical stimulation on lumbar spinal fusion in older patients: a randomized, controlled, multi-center trial: part 2: fusion rates. Spine. 2009;34:2248–53.CrossRefPubMed Andersen T, Christensen FB, Egund N, Ernst C, Fruensgaard S, Ostergaard J, et al. The effect of electrical stimulation on lumbar spinal fusion in older patients: a randomized, controlled, multi-center trial: part 2: fusion rates. Spine. 2009;34:2248–53.CrossRefPubMed
123.
go back to reference Bassett CA, Mitchell SN, Gaston SR. Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J Bone Jt Surg Am. 1981;63:511–23.CrossRef Bassett CA, Mitchell SN, Gaston SR. Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J Bone Jt Surg Am. 1981;63:511–23.CrossRef
124.
go back to reference Beck BR, Matheson GO, Bergman G, Norling T, Fredericson M, Hoffman AR, et al. Do capacitively coupled electric fields accelerate tibial stress fracture healing? A randomized controlled trial. Am J Sports Med. 2008;36(3):545–53.CrossRefPubMed Beck BR, Matheson GO, Bergman G, Norling T, Fredericson M, Hoffman AR, et al. Do capacitively coupled electric fields accelerate tibial stress fracture healing? A randomized controlled trial. Am J Sports Med. 2008;36(3):545–53.CrossRefPubMed
125.
go back to reference Benazzo F, Mosconi M, Beccarisi G, Galli U. Use of capacitive coupled electric fields in stress fractures in athletes. Clin Orthop Relat Res. 1995;310:145–9. Benazzo F, Mosconi M, Beccarisi G, Galli U. Use of capacitive coupled electric fields in stress fractures in athletes. Clin Orthop Relat Res. 1995;310:145–9.
127.
go back to reference Bronner S, Novella T, Becica L. Management of a delayed-union sesamoid fracture in a dancer. J Orthop Sports Phys Ther. 2007;37:529–40.CrossRefPubMed Bronner S, Novella T, Becica L. Management of a delayed-union sesamoid fracture in a dancer. J Orthop Sports Phys Ther. 2007;37:529–40.CrossRefPubMed
128.
go back to reference Capanna R, Donati D, Masetti C, Manfrini M, Panozzo A, Cadossi R, et al. Effect of electromagnetic fields on patients undergoing massive bone graft following bone tumor resection. A double blind study. Clin Orthop Rel Res. 1994;306:213–21. Capanna R, Donati D, Masetti C, Manfrini M, Panozzo A, Cadossi R, et al. Effect of electromagnetic fields on patients undergoing massive bone graft following bone tumor resection. A double blind study. Clin Orthop Rel Res. 1994;306:213–21.
129.
go back to reference de Haas WG, Watson J, Morrison DM. Non-invasive treatment of ununited fractures of the tibia using electrical stimulation. J Bone Jt Surg Br. 1980;62:465–70.CrossRef de Haas WG, Watson J, Morrison DM. Non-invasive treatment of ununited fractures of the tibia using electrical stimulation. J Bone Jt Surg Br. 1980;62:465–70.CrossRef
130.
go back to reference Donley BG, Ward DM. Implantable electrical stimulation in high-risk hindfoot fusions. Foot Ankle Int. 2002;23:13–8.CrossRefPubMed Donley BG, Ward DM. Implantable electrical stimulation in high-risk hindfoot fusions. Foot Ankle Int. 2002;23:13–8.CrossRefPubMed
131.
go back to reference Dunn A, Rush G. Electrical stimulation in treatment of delayed union and nonunion of fractures and osteotomies. South Med J. 1984;77:1530–4.CrossRefPubMed Dunn A, Rush G. Electrical stimulation in treatment of delayed union and nonunion of fractures and osteotomies. South Med J. 1984;77:1530–4.CrossRefPubMed
132.
go back to reference Foley K, Mroz T, Arnold P. Randomized, prospective, and controlled clinical trial of pulsed electromagnetic field stimulation for cervical fusion. Spine J. 2008;8:436–42.CrossRefPubMed Foley K, Mroz T, Arnold P. Randomized, prospective, and controlled clinical trial of pulsed electromagnetic field stimulation for cervical fusion. Spine J. 2008;8:436–42.CrossRefPubMed
133.
go back to reference Fourie JA, Bowerbank P. Stimulation of bone healing in new fractures of the tibial shaft using interferential currents. Physiother Res Int. 1997;2:255–68.CrossRefPubMed Fourie JA, Bowerbank P. Stimulation of bone healing in new fractures of the tibial shaft using interferential currents. Physiother Res Int. 1997;2:255–68.CrossRefPubMed
134.
go back to reference Freedman LS. Pulsating electromagnetic fields in the treatment of delayed and non-union of fractures: results from a district general hospital. Injury. 1985;16:315–7.CrossRefPubMed Freedman LS. Pulsating electromagnetic fields in the treatment of delayed and non-union of fractures: results from a district general hospital. Injury. 1985;16:315–7.CrossRefPubMed
135.
go back to reference Garland D, Holt P, Harrington JT, Caldwell J, Zizic T, Cholewczynski J. A 3-month, randomized, double-blind, placebo-controlled study to evaluate the safety and efficacy of a highly optimized, capacitively coupled, pulsed electrical stimulator in patients with osteoarthritis of the knee. Osteoarthr Cartil. 2007;15(6):630–7.CrossRef Garland D, Holt P, Harrington JT, Caldwell J, Zizic T, Cholewczynski J. A 3-month, randomized, double-blind, placebo-controlled study to evaluate the safety and efficacy of a highly optimized, capacitively coupled, pulsed electrical stimulator in patients with osteoarthritis of the knee. Osteoarthr Cartil. 2007;15(6):630–7.CrossRef
136.
go back to reference Goodwin C, Brighton C, Guyer R, Johnson J, Light K, Yuan H. A double blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusion. Spine. 1999;24:1349–57.CrossRefPubMed Goodwin C, Brighton C, Guyer R, Johnson J, Light K, Yuan H. A double blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusion. Spine. 1999;24:1349–57.CrossRefPubMed
137.
go back to reference Hanft JR, Goggin JP, Landsman A, Surprenant M. The role of combined magnetic field bone growth stimulation as an adjunct in the treatment of neuroarthropathy/Charcot joint: an expanded pilot study. J Foot Ankle Surg. 1998;37:510–5.CrossRefPubMed Hanft JR, Goggin JP, Landsman A, Surprenant M. The role of combined magnetic field bone growth stimulation as an adjunct in the treatment of neuroarthropathy/Charcot joint: an expanded pilot study. J Foot Ankle Surg. 1998;37:510–5.CrossRefPubMed
139.
go back to reference Hannemann PFW, Göttgens KWA, van Wely BJ, Kolkman KA, Werre AJ, Poeze M, et al. The clinical and radiological outcome of pulsed electromagnetic field treatment for acute scaphoid fractures: a randomised double-blind placebo-controlled multicentre trial. J Bone Jt Surg Br. 2012;94(10):1403–8.CrossRef Hannemann PFW, Göttgens KWA, van Wely BJ, Kolkman KA, Werre AJ, Poeze M, et al. The clinical and radiological outcome of pulsed electromagnetic field treatment for acute scaphoid fractures: a randomised double-blind placebo-controlled multicentre trial. J Bone Jt Surg Br. 2012;94(10):1403–8.CrossRef
140.
go back to reference Holmes GB. Treatment of delayed unions and nonunions of the proximal fifth metatarsal with pulsed electromagnetic fields. Foot Ankle Int. 1994;15:552–6.CrossRefPubMed Holmes GB. Treatment of delayed unions and nonunions of the proximal fifth metatarsal with pulsed electromagnetic fields. Foot Ankle Int. 1994;15:552–6.CrossRefPubMed
141.
go back to reference Ito H, Shirai Y. The efficacy of ununited tibial fracture treatment using pulsing electromagnetic fields: relation to biological activity on nonunion bone ends. J Nippon Med Sch. 2001;68(2):149–53.CrossRefPubMed Ito H, Shirai Y. The efficacy of ununited tibial fracture treatment using pulsing electromagnetic fields: relation to biological activity on nonunion bone ends. J Nippon Med Sch. 2001;68(2):149–53.CrossRefPubMed
143.
go back to reference Jenis L, Howard S, Rebecca S, Brett Y. Prospective comparison of the effect of direct current electrical stimulation and pulsed electromagnetic fields on instrumented posteolateral lumbar arthrodesis. Spinal Disord. 2000;13:290–6.CrossRef Jenis L, Howard S, Rebecca S, Brett Y. Prospective comparison of the effect of direct current electrical stimulation and pulsed electromagnetic fields on instrumented posteolateral lumbar arthrodesis. Spinal Disord. 2000;13:290–6.CrossRef
144.
go back to reference Jorgensen TE. Electrical stimulation of human fracture healing by means of a slow pulsating, asymmetrical direct current. Clin Orthop Rel R. 1977;124:127. Jorgensen TE. Electrical stimulation of human fracture healing by means of a slow pulsating, asymmetrical direct current. Clin Orthop Rel R. 1977;124:127.
145.
go back to reference Kahn J. Transcutaneous electrical nerve stimulation for nonunited fractures; a clinical report. Phys Ther. 1982;62:840–4.CrossRefPubMed Kahn J. Transcutaneous electrical nerve stimulation for nonunited fractures; a clinical report. Phys Ther. 1982;62:840–4.CrossRefPubMed
146.
go back to reference Kane WJ. Direct current electrical bone growth stimulation for spinal fusion. Spine. 1988;13:363–5.CrossRefPubMed Kane WJ. Direct current electrical bone growth stimulation for spinal fusion. Spine. 1988;13:363–5.CrossRefPubMed
147.
go back to reference Kucharzyk D. A controlled prospective outcome study of implantable electrical stimulation with spinal instrumentation in a high risk spinal fusion population. Spine. 1999;24:465–68.CrossRefPubMed Kucharzyk D. A controlled prospective outcome study of implantable electrical stimulation with spinal instrumentation in a high risk spinal fusion population. Spine. 1999;24:465–68.CrossRefPubMed
148.
go back to reference Lazovic M, Kocic M, Dimitrijevic L, Stankovic I, Spalevic M, Ciric T. Pulsed electromagnetic field during cast immobilization in postmenopausal women with Colles’ fracture. Srp Arh Celok Lek. 2012;140(9–10):619–24.CrossRefPubMed Lazovic M, Kocic M, Dimitrijevic L, Stankovic I, Spalevic M, Ciric T. Pulsed electromagnetic field during cast immobilization in postmenopausal women with Colles’ fracture. Srp Arh Celok Lek. 2012;140(9–10):619–24.CrossRefPubMed
149.
go back to reference Linovitz R, Pathria M, Bernhardt M, Green D, Law M, McGuire R, et al. Combined magnetic fields accelerate and increase spine fusion: a double-blind, randomized, placebo controlled study. Spine. 2002;27:1383–9.CrossRefPubMed Linovitz R, Pathria M, Bernhardt M, Green D, Law M, McGuire R, et al. Combined magnetic fields accelerate and increase spine fusion: a double-blind, randomized, placebo controlled study. Spine. 2002;27:1383–9.CrossRefPubMed
150.
go back to reference Livesley PJ, Mugglestone A, Whitton J. Electrotherapy and the management of minimally displaced fracture of the neck of the humerus. Injury. 1992;23:323–6.CrossRefPubMed Livesley PJ, Mugglestone A, Whitton J. Electrotherapy and the management of minimally displaced fracture of the neck of the humerus. Injury. 1992;23:323–6.CrossRefPubMed
151.
go back to reference Madronero A, Pitillas I, Manso FJ. Pulsed electromagnetic field treatment failure in radius non-united fracture healing. J Biomed Eng. 1988;10:463–6.CrossRefPubMed Madronero A, Pitillas I, Manso FJ. Pulsed electromagnetic field treatment failure in radius non-united fracture healing. J Biomed Eng. 1988;10:463–6.CrossRefPubMed
152.
go back to reference Mammi GI, Rocchi R, Cadossi R, et al. The electrical stimulation of tibial osteotomies: A double-blind study. Clin Orthop. 1993;288:246–53. Mammi GI, Rocchi R, Cadossi R, et al. The electrical stimulation of tibial osteotomies: A double-blind study. Clin Orthop. 1993;288:246–53.
153.
go back to reference Marks RA. Spine fusion for discogenic low back pain: outcomes in patients treated with or without pulsed electromagnetic field stimulation. Adv Ther. 2000;17:57–67.CrossRefPubMed Marks RA. Spine fusion for discogenic low back pain: outcomes in patients treated with or without pulsed electromagnetic field stimulation. Adv Ther. 2000;17:57–67.CrossRefPubMed
154.
go back to reference Martinez-Rondanelli A, Martinez JP, Moncada ME, Manzi E, Pinedo CR, Cadavid H. Electromagnetic stimulation as coadjuvant in the healing of diaphyseal femoral fractures: a randomized controlled trial. Colomb Med (Cali). 2014;45(2):67–71.CrossRef Martinez-Rondanelli A, Martinez JP, Moncada ME, Manzi E, Pinedo CR, Cadavid H. Electromagnetic stimulation as coadjuvant in the healing of diaphyseal femoral fractures: a randomized controlled trial. Colomb Med (Cali). 2014;45(2):67–71.CrossRef
155.
go back to reference Massari L, Fini M, Cadossi R. Biophysical stimulation with pulsed electromagnetic fields in osteonecrosis of the femoral head. J Bone Jt Surg Am. 2006;88:56–60. Massari L, Fini M, Cadossi R. Biophysical stimulation with pulsed electromagnetic fields in osteonecrosis of the femoral head. J Bone Jt Surg Am. 2006;88:56–60.
156.
go back to reference Masureik C, Eriksson C. Preliminary clinical evaluation of the effect of small electrical currents on the healing of jaw fractures. Clin Orthop Relat R. 1977;124:84–91. Masureik C, Eriksson C. Preliminary clinical evaluation of the effect of small electrical currents on the healing of jaw fractures. Clin Orthop Relat R. 1977;124:84–91.
157.
go back to reference Meskens M, Stuyck J, Mulier J. Treatment of delayed union and nonunion of the tibia by pulsed electromagnetic fields. Bull Hosp Jt Dis Orthop Inst. 1988;48:170–5.PubMed Meskens M, Stuyck J, Mulier J. Treatment of delayed union and nonunion of the tibia by pulsed electromagnetic fields. Bull Hosp Jt Dis Orthop Inst. 1988;48:170–5.PubMed
158.
go back to reference Paterson D, Simonis RB. Electrical stimulation in the treatment of congenital pseudoarthrosis of the tibia. J Bone Jt Surg Br. 1985;67:454–62.CrossRef Paterson D, Simonis RB. Electrical stimulation in the treatment of congenital pseudoarthrosis of the tibia. J Bone Jt Surg Br. 1985;67:454–62.CrossRef
159.
go back to reference Punt BJ, Den Hoed PT, Fontijne WPJ. Pulsed electromagnetic fields in the treatment of nonunion. Eur J Orthop Surg Traumatol. 2008;18:127–33.CrossRef Punt BJ, Den Hoed PT, Fontijne WPJ. Pulsed electromagnetic fields in the treatment of nonunion. Eur J Orthop Surg Traumatol. 2008;18:127–33.CrossRef
160.
go back to reference Reilingh ML, van Bergen CJA, Gerards RM, van Eekeren IC, de Haan RJ, Sierevelt IN, et al. Effects of pulsed electromagnetic fields on return to sports after arthroscopic debridement and microfracture of osteochondral talar defects: a randomized, double-blind, placebo-controlled, multicenter trial. Am J Sports Med. 2016;44(5):1292–300. https://doi.org/10.1177/0363546515626544.CrossRefPubMed Reilingh ML, van Bergen CJA, Gerards RM, van Eekeren IC, de Haan RJ, Sierevelt IN, et al. Effects of pulsed electromagnetic fields on return to sports after arthroscopic debridement and microfracture of osteochondral talar defects: a randomized, double-blind, placebo-controlled, multicenter trial. Am J Sports Med. 2016;44(5):1292–300. https://​doi.​org/​10.​1177/​0363546515626544​.CrossRefPubMed
161.
go back to reference Rogozinski A, Rogozinski C. Efficacy of implanted bone growth stimulation in instrumented lumbosacral spinal fusion. Spine. 1996;21:2479–483.CrossRefPubMed Rogozinski A, Rogozinski C. Efficacy of implanted bone growth stimulation in instrumented lumbosacral spinal fusion. Spine. 1996;21:2479–483.CrossRefPubMed
162.
go back to reference Saltzman C, Lightfoot A, Amendola A. PEMF as treatment for delayed healing of foot and ankle arthrodesis. Foot Ankle Int. 2004;25:771–3.CrossRefPubMed Saltzman C, Lightfoot A, Amendola A. PEMF as treatment for delayed healing of foot and ankle arthrodesis. Foot Ankle Int. 2004;25:771–3.CrossRefPubMed
163.
go back to reference Scott G, King JB. A prospective, double-blind trial of electrical capacitive coupling in the treatment of non-union of long bones. J Bone Jt Surg Am. 1994;76:820–6.CrossRef Scott G, King JB. A prospective, double-blind trial of electrical capacitive coupling in the treatment of non-union of long bones. J Bone Jt Surg Am. 1994;76:820–6.CrossRef
165.
go back to reference Simmons JW. Treatment of failed posterior lumbar interbody fusion (PLIF) of the spine with pulsing electromagnetic fields. Clin Orthop Relat Res. 1985;183:127. Simmons JW. Treatment of failed posterior lumbar interbody fusion (PLIF) of the spine with pulsing electromagnetic fields. Clin Orthop Relat Res. 1985;183:127.
166.
go back to reference Simmons JW, Mooney V, Thacker I. Pseudarthrosis after lumbar spine fusion: nonoperative salvage with pulsed electromagnetic fields. Am J Orthop. 2004;33:27–30.PubMed Simmons JW, Mooney V, Thacker I. Pseudarthrosis after lumbar spine fusion: nonoperative salvage with pulsed electromagnetic fields. Am J Orthop. 2004;33:27–30.PubMed
167.
go back to reference Streit A, Watson BC, Granata JD, Philbin TM, Lin H-N, O’Connor JP, et al. Effect on clinical outcome and growth factor synthesis with adjunctive use of pulsed electromagnetic fields for fifth metatarsal nonunion fracture: a double-blind randomized study. Foot Ankle Int. 2016;37(9):919–23. https://doi.org/10.1177/1071100716652621.CrossRefPubMed Streit A, Watson BC, Granata JD, Philbin TM, Lin H-N, O’Connor JP, et al. Effect on clinical outcome and growth factor synthesis with adjunctive use of pulsed electromagnetic fields for fifth metatarsal nonunion fracture: a double-blind randomized study. Foot Ankle Int. 2016;37(9):919–23. https://​doi.​org/​10.​1177/​1071100716652621​.CrossRefPubMed
168.
go back to reference Steinberg ME, Brighton CT, Bands RE, Hartman KM. Capacitive coupling as an adjunctive treatment for avascular necrosis. Clin Orthop Relat Res. 1990;261:11–8. Steinberg ME, Brighton CT, Bands RE, Hartman KM. Capacitive coupling as an adjunctive treatment for avascular necrosis. Clin Orthop Relat Res. 1990;261:11–8.
170.
go back to reference Wahlstrom O, Knutsson H. A device for generation of electromagnetic fields of extremely low frequency. J Biomed Eng. 1984;6:293–6.CrossRefPubMed Wahlstrom O, Knutsson H. A device for generation of electromagnetic fields of extremely low frequency. J Biomed Eng. 1984;6:293–6.CrossRefPubMed
171.
go back to reference Welch WC, Willis SL, Gerszten PC. Implantable direct current stimulation in para-axial cervical arthrodesis. Adv Ther. 2004;21:389–400.CrossRefPubMed Welch WC, Willis SL, Gerszten PC. Implantable direct current stimulation in para-axial cervical arthrodesis. Adv Ther. 2004;21:389–400.CrossRefPubMed
Metadata
Title
Electrical stimulation-based bone fracture treatment, if it works so well why do not more surgeons use it?
Authors
Mit Balvantray Bhavsar
Zhihua Han
Thomas DeCoster
Liudmila Leppik
Karla Mychellyne Costa Oliveira
John H Barker
Publication date
01-04-2020
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Trauma and Emergency Surgery / Issue 2/2020
Print ISSN: 1863-9933
Electronic ISSN: 1863-9941
DOI
https://doi.org/10.1007/s00068-019-01127-z

Other articles of this Issue 2/2020

European Journal of Trauma and Emergency Surgery 2/2020 Go to the issue