Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2013

Open Access 01-12-2013 | Research article

Early application of pulsed electromagnetic field in the treatment of postoperative delayed union of long-bone fractures: a prospective randomized controlled study

Authors: Hong-fei Shi, Jin Xiong, Yi-xin Chen, Jun-fei Wang, Xu-sheng Qiu, Yin-he Wang, Yong Qiu

Published in: BMC Musculoskeletal Disorders | Issue 1/2013

Login to get access

Abstract

Background

Pulsed electromagnetic field (PEMF) is reported to be an effective adjunct for the management of nonunion long-bone fractures. Most studies implement PEMF treatment after 6 months or longer of delayed union or nonunion following fracture treatment. Despite these variations in treatment, the early application of PEMF following a diagnosis of a postoperative delayed union has not been specifically analyzed. In this study, the outcomes of postoperative delayed union of long-bone fractures treated with an early application of PEMF were evaluated as compared with a sham-treated control group.

Methods

In this prospective, randomized controlled study, a total of 58 long-bone fracture patients, who presented with delayed union of between 16 weeks and 6 months, were randomly split into two groups and subjected to an early application of PEMF or sham treatment. Clinical and radiological assessments were performed to evaluate the healing status. Treatment efficacy was assessed at three month intervals.

Results

Patients in the PEMF group showed a higher rate of union than those in the control group after the first three months of treatment, but this difference failed to achieve statistical significance. At the end of the study, PEMF treatment conducted for an average of 4.8 months led to a success rate of 77.4%. This was significantly higher than the control, which had an average duration of 4.4 months and a success rate of 48.1%. The total time from operation to the end of the study was a mean of 9.6 months for patients in the PEMF group.

Conclusions

Fracture patients treated with an early application of PEMF achieved a significantly increased rate of union and an overall reduced suffering time compared with patients that receive PEMF after the 6 months or more of delayed union, as described by others.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tseng SS, Lee MA, Reddi AH: Nonunions and the potential of stem cells in fracture-healing. J Bone Joint Surg Am. 2008, 90 (Suppl 1): 92-98.CrossRefPubMed Tseng SS, Lee MA, Reddi AH: Nonunions and the potential of stem cells in fracture-healing. J Bone Joint Surg Am. 2008, 90 (Suppl 1): 92-98.CrossRefPubMed
2.
go back to reference Einhorn TA, Laurencin CT, Lyons K: An AAOS-NIH symposium. Fracture repair: challenges, opportunities, and directions for future research. J Bone Joint Surg Am. 2008, 90 (2): 438-442. 10.2106/JBJS.G.01092.CrossRefPubMed Einhorn TA, Laurencin CT, Lyons K: An AAOS-NIH symposium. Fracture repair: challenges, opportunities, and directions for future research. J Bone Joint Surg Am. 2008, 90 (2): 438-442. 10.2106/JBJS.G.01092.CrossRefPubMed
3.
go back to reference Calori GM, Mazza E, Colombo M, Ripamonti C, Tagliabue L: Treatment of long bone non-unions with polytherapy: Indications and clinical results. Injury. 2011, 42 (6): 587-590. 10.1016/j.injury.2011.03.046.CrossRefPubMed Calori GM, Mazza E, Colombo M, Ripamonti C, Tagliabue L: Treatment of long bone non-unions with polytherapy: Indications and clinical results. Injury. 2011, 42 (6): 587-590. 10.1016/j.injury.2011.03.046.CrossRefPubMed
4.
go back to reference Chao EY, Inoue N: Biophysical stimulation of bone fracture repair, regeneration and remodelling. Eur Cell Mater. 2003, 6: 72-84. discussion 84–75PubMed Chao EY, Inoue N: Biophysical stimulation of bone fracture repair, regeneration and remodelling. Eur Cell Mater. 2003, 6: 72-84. discussion 84–75PubMed
5.
go back to reference Shi HF, Cheung WH, Qin L, Leung AH, Leung KS: Low-magnitude high-frequency vibration treatment augments fracture healing in ovariectomy-induced osteoporotic bone. Bone. 2010, 46 (5): 1299-1305. 10.1016/j.bone.2009.11.028.CrossRefPubMed Shi HF, Cheung WH, Qin L, Leung AH, Leung KS: Low-magnitude high-frequency vibration treatment augments fracture healing in ovariectomy-induced osteoporotic bone. Bone. 2010, 46 (5): 1299-1305. 10.1016/j.bone.2009.11.028.CrossRefPubMed
6.
go back to reference Bassett CA, Pilla AA, Pawluk RJ: A non-operative salvage of surgically-resistant pseudarthroses and non-unions by pulsing electromagnetic fields, A preliminary report. Clin Orthop Relat Res. 1977, 124: 128-143.PubMed Bassett CA, Pilla AA, Pawluk RJ: A non-operative salvage of surgically-resistant pseudarthroses and non-unions by pulsing electromagnetic fields, A preliminary report. Clin Orthop Relat Res. 1977, 124: 128-143.PubMed
7.
go back to reference Mollon B, da Silva V, Busse JW, Einhorn TA, Bhandari M: Electrical stimulation for long-bone fracture-healing: a meta-analysis of randomized controlled trials. J Bone Joint Surg Am. 2008, 90 (11): 2322-2330. 10.2106/JBJS.H.00111.CrossRefPubMed Mollon B, da Silva V, Busse JW, Einhorn TA, Bhandari M: Electrical stimulation for long-bone fracture-healing: a meta-analysis of randomized controlled trials. J Bone Joint Surg Am. 2008, 90 (11): 2322-2330. 10.2106/JBJS.H.00111.CrossRefPubMed
8.
go back to reference Griffin XL, Costa ML, Parsons N, Smith N: Electromagnetic field stimulation for treating delayed union or non-union of long bone fractures in adults. Cochrane Database Syst Rev. 2011, 4: CD008471-PubMed Griffin XL, Costa ML, Parsons N, Smith N: Electromagnetic field stimulation for treating delayed union or non-union of long bone fractures in adults. Cochrane Database Syst Rev. 2011, 4: CD008471-PubMed
9.
go back to reference Novicoff WM, Manaswi A, Hogan MV, Brubaker SM, Mihalko WM, Saleh KJ: Critical analysis of the evidence for current technologies in bone-healing and repair. J Bone Joint Surg Am. 2008, 90 (Suppl 1): 85-91.CrossRefPubMed Novicoff WM, Manaswi A, Hogan MV, Brubaker SM, Mihalko WM, Saleh KJ: Critical analysis of the evidence for current technologies in bone-healing and repair. J Bone Joint Surg Am. 2008, 90 (Suppl 1): 85-91.CrossRefPubMed
10.
go back to reference Griffin XL, Warner F, Costa M: The role of electromagnetic stimulation in the management of established non-union of long bone fractures: what is the evidence?. Injury. 2008, 39 (4): 419-429. 10.1016/j.injury.2007.12.014.CrossRefPubMed Griffin XL, Warner F, Costa M: The role of electromagnetic stimulation in the management of established non-union of long bone fractures: what is the evidence?. Injury. 2008, 39 (4): 419-429. 10.1016/j.injury.2007.12.014.CrossRefPubMed
11.
go back to reference Barker AT, Dixon RA, Sharrard WJ, Sutcliffe ML: Pulsed magnetic field therapy for tibial non-union, Interim results of a double-blind trial. Lancet. 1984, 1 (8384): 994-996.CrossRefPubMed Barker AT, Dixon RA, Sharrard WJ, Sutcliffe ML: Pulsed magnetic field therapy for tibial non-union, Interim results of a double-blind trial. Lancet. 1984, 1 (8384): 994-996.CrossRefPubMed
12.
go back to reference Scott G, King JB: A prospective, double-blind trial of electrical capacitive coupling in the treatment of non-union of long bones. J Bone Joint Surg Am. 1994, 76 (6): 820-826.PubMed Scott G, King JB: A prospective, double-blind trial of electrical capacitive coupling in the treatment of non-union of long bones. J Bone Joint Surg Am. 1994, 76 (6): 820-826.PubMed
13.
go back to reference Simonis RB, Parnell EJ, Ray PS, Peacock JL: Electrical treatment of tibial non-union: a prospective, randomised, double-blind trial. Injury. 2003, 34 (5): 357-362. 10.1016/S0020-1383(02)00209-7.CrossRefPubMed Simonis RB, Parnell EJ, Ray PS, Peacock JL: Electrical treatment of tibial non-union: a prospective, randomised, double-blind trial. Injury. 2003, 34 (5): 357-362. 10.1016/S0020-1383(02)00209-7.CrossRefPubMed
14.
go back to reference Punt BJ, den Hoed PT, Fontijne WPJ: Pulsed electromagnetic fields in the treatment of nonunion. Eur J Orthop Surg Traumatol. 2008, 18 (2): 127-133. 10.1007/s00590-007-0271-8.CrossRef Punt BJ, den Hoed PT, Fontijne WPJ: Pulsed electromagnetic fields in the treatment of nonunion. Eur J Orthop Surg Traumatol. 2008, 18 (2): 127-133. 10.1007/s00590-007-0271-8.CrossRef
15.
go back to reference Heckman JD, Ingram AJ, Loyd RD, Luck JV, Mayer PW: Nonunion treatment with pulsed electromagnetic fields. Clin Orthop Relat Res. 1981, 161: 58-66.PubMed Heckman JD, Ingram AJ, Loyd RD, Luck JV, Mayer PW: Nonunion treatment with pulsed electromagnetic fields. Clin Orthop Relat Res. 1981, 161: 58-66.PubMed
16.
go back to reference de Haas WG, Beaupre A, Cameron H, English E: The Canadian experience with pulsed magnetic fields in the treatment of ununited tibial fractures. Clin Orthop Relat Res. 1986, 208: 55-58.PubMed de Haas WG, Beaupre A, Cameron H, English E: The Canadian experience with pulsed magnetic fields in the treatment of ununited tibial fractures. Clin Orthop Relat Res. 1986, 208: 55-58.PubMed
17.
go back to reference Meskens MW, Stuyck JA, Mulier JC: Treatment of delayed union and nonunion of the tibia by pulsed electromagnetic fields, A retrospective follow-up. Bull Hosp Jt Dis Orthop Inst. 1988, 48 (2): 170-175.PubMed Meskens MW, Stuyck JA, Mulier JC: Treatment of delayed union and nonunion of the tibia by pulsed electromagnetic fields, A retrospective follow-up. Bull Hosp Jt Dis Orthop Inst. 1988, 48 (2): 170-175.PubMed
18.
go back to reference Sharrard WJ: A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures. J Bone Joint Surg Br. 1990, 72 (3): 347-355.PubMed Sharrard WJ: A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures. J Bone Joint Surg Br. 1990, 72 (3): 347-355.PubMed
20.
go back to reference Campbell WC, Canale ST, Beaty JH: Campbell's operative orthopaedics. 2008, Philadelphia, PA: Mosby/Elsevier, 11 Campbell WC, Canale ST, Beaty JH: Campbell's operative orthopaedics. 2008, Philadelphia, PA: Mosby/Elsevier, 11
21.
go back to reference Dijkman BG, Sprague S, Schemitsch EH, Bhandari M: When is a fracture healed? Radiographic and clinical criteria revisited. J Orthop Trauma. 2010, 24 (Suppl 1): S76-S80.CrossRefPubMed Dijkman BG, Sprague S, Schemitsch EH, Bhandari M: When is a fracture healed? Radiographic and clinical criteria revisited. J Orthop Trauma. 2010, 24 (Suppl 1): S76-S80.CrossRefPubMed
22.
go back to reference Zimmermann G, Moghaddam A: Trauma: Non-union: New trends. European Instructional Lectures. Volume 10. Edited by: Bentley G. 2010, Dordrecht Heidelberg London New York: Springer, 15-19. 1CrossRef Zimmermann G, Moghaddam A: Trauma: Non-union: New trends. European Instructional Lectures. Volume 10. Edited by: Bentley G. 2010, Dordrecht Heidelberg London New York: Springer, 15-19. 1CrossRef
23.
go back to reference Rodriguez-Merchan EC, Forriol F: Nonunion: general principles and experimental data. Clin Orthop Relat Res. 2004, 419: 4-12.CrossRefPubMed Rodriguez-Merchan EC, Forriol F: Nonunion: general principles and experimental data. Clin Orthop Relat Res. 2004, 419: 4-12.CrossRefPubMed
24.
go back to reference Khan Y, Laurencin CT: Fracture repair with ultrasound: clinical and cell-based evaluation. J Bone Joint Surg Am. 2008, 90 (Suppl 1): 138-144.CrossRefPubMed Khan Y, Laurencin CT: Fracture repair with ultrasound: clinical and cell-based evaluation. J Bone Joint Surg Am. 2008, 90 (Suppl 1): 138-144.CrossRefPubMed
25.
go back to reference Seebach C, Henrich D, Tewksbury R, Wilhelm K, Marzi I: Number and proliferative capacity of human mesenchymal stem cells are modulated positively in multiple trauma patients and negatively in atrophic nonunions. Calcif Tissue Int. 2007, 80 (4): 294-300. 10.1007/s00223-007-9020-6.CrossRefPubMed Seebach C, Henrich D, Tewksbury R, Wilhelm K, Marzi I: Number and proliferative capacity of human mesenchymal stem cells are modulated positively in multiple trauma patients and negatively in atrophic nonunions. Calcif Tissue Int. 2007, 80 (4): 294-300. 10.1007/s00223-007-9020-6.CrossRefPubMed
26.
go back to reference Hofmann A, Ritz U, Hessmann MH, Schmid C, Tresch A, Rompe JD, Meurer A, Rommens PM: Cell viability, osteoblast differentiation, and gene expression are altered in human osteoblasts from hypertrophic fracture non-unions. Bone. 2008, 42 (5): 894-906. 10.1016/j.bone.2008.01.013.CrossRefPubMed Hofmann A, Ritz U, Hessmann MH, Schmid C, Tresch A, Rompe JD, Meurer A, Rommens PM: Cell viability, osteoblast differentiation, and gene expression are altered in human osteoblasts from hypertrophic fracture non-unions. Bone. 2008, 42 (5): 894-906. 10.1016/j.bone.2008.01.013.CrossRefPubMed
27.
go back to reference Bassett CA, Mitchell SN, Gaston SR: Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J Bone Joint Surg Am. 1981, 63 (4): 511-523.PubMed Bassett CA, Mitchell SN, Gaston SR: Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J Bone Joint Surg Am. 1981, 63 (4): 511-523.PubMed
28.
go back to reference Colson DJ, Browett JP, Fiddian NJ, Watson B: Treatment of delayed- and non-union of fractures using pulsed electromagnetic fields. J Biomed Eng. 1988, 10 (4): 301-304. 10.1016/0141-5425(88)90058-1.CrossRefPubMed Colson DJ, Browett JP, Fiddian NJ, Watson B: Treatment of delayed- and non-union of fractures using pulsed electromagnetic fields. J Biomed Eng. 1988, 10 (4): 301-304. 10.1016/0141-5425(88)90058-1.CrossRefPubMed
29.
go back to reference Freedman LS: Pulsating electromagnetic fields in the treatment of delayed and non-union of fractures: results from a district general hospital. Injury. 1985, 16 (5): 315-317. 10.1016/0020-1383(85)90134-2.CrossRefPubMed Freedman LS: Pulsating electromagnetic fields in the treatment of delayed and non-union of fractures: results from a district general hospital. Injury. 1985, 16 (5): 315-317. 10.1016/0020-1383(85)90134-2.CrossRefPubMed
30.
go back to reference Adie S, Harris IA, Naylor JM, Rae H, Dao A, Yong S, Ying V: Pulsed electromagnetic field stimulation for acute tibial shaft fractures: a multicenter, double-blind, randomized trial. J Bone Joint Surg Am. 2011, 93 (17): 1569-1576. 10.2106/JBJS.J.00869.CrossRefPubMed Adie S, Harris IA, Naylor JM, Rae H, Dao A, Yong S, Ying V: Pulsed electromagnetic field stimulation for acute tibial shaft fractures: a multicenter, double-blind, randomized trial. J Bone Joint Surg Am. 2011, 93 (17): 1569-1576. 10.2106/JBJS.J.00869.CrossRefPubMed
31.
go back to reference Hayda RA, Brighton CT, Esterhai JL: Pathophysiology of delayed healing. Clin Orthop Relat Res. 1998, 355 Suppl: S31-S40.CrossRefPubMed Hayda RA, Brighton CT, Esterhai JL: Pathophysiology of delayed healing. Clin Orthop Relat Res. 1998, 355 Suppl: S31-S40.CrossRefPubMed
32.
go back to reference Marsh D: Concepts of fracture union, delayed union, and nonunion. Clin Orthop Relat Res. 1998, 355 Suppl: S22-S30.CrossRefPubMed Marsh D: Concepts of fracture union, delayed union, and nonunion. Clin Orthop Relat Res. 1998, 355 Suppl: S22-S30.CrossRefPubMed
Metadata
Title
Early application of pulsed electromagnetic field in the treatment of postoperative delayed union of long-bone fractures: a prospective randomized controlled study
Authors
Hong-fei Shi
Jin Xiong
Yi-xin Chen
Jun-fei Wang
Xu-sheng Qiu
Yin-he Wang
Yong Qiu
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2013
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-14-35

Other articles of this Issue 1/2013

BMC Musculoskeletal Disorders 1/2013 Go to the issue