Skip to main content
Top
Published in: Inflammation Research 6/2019

01-06-2019 | Ulcerative Colitis | Original Research Paper

Pharmacological effects of TAK-828F: an orally available RORγt inverse agonist, in mouse colitis model and human blood cells of inflammatory bowel disease

Authors: Keiko Igaki, Yoshiki Nakamura, Masayuki Tanaka, Shinta Mizuno, Yusuke Yoshimatsu, Yusaku Komoike, Keiko Uga, Akira Shibata, Hisashi Imaichi, Satou Takayuki, Yoshimasa Ishimura, Masashi Yamasaki, Takanori Kanai, Yasuhiro Tsukimi, Noboru Tsuchimori

Published in: Inflammation Research | Issue 6/2019

Login to get access

Abstract

Objective and design

To evaluate the potency of RORγt blockade for treatment of Inflammatory Bowel Disease (IBD), the efficacy of TAK-828F, a novel RORγt inverse agonist, in anti-TNF-α mAb non-responsive mouse colitis model and effect of TAK-828F on IL-17 production in peripheral mononuclear blood cells (PBMCs) of anti-TNF-α naive and treatment-failure patients of IBD was investigated.

Methods and results

The colitis model showed Th17-dependent pathogenicity and response to anti-IL-12/23p40 monoclonal antibody (mAb), but no response to anti-TNF-α mAb. In the model, TAK-828F, at oral dosages of 1 and 3 mg/kg, inhibited progression of colitis and reduced the immune reaction that characterize Th17 cells. Anti-IL-17A mAb showed neither efficacy nor change in the T cell population and colonic gene expression in the model. In the normal mouse, a 4-week treatment of TAK-828F at 30 mg/kg did not severely reduce lymphocyte cell counts in peripheral and intestinal mucosa, which was observed in RORγ−/− mice. TAK-828F strongly inhibited IL-17 gene expression with IC50 values from 21.4 to 34.4 nmol/L in PBMCs from anti-TNF mAb naive and treatment-failure patients of IBD.

Conclusions

These results indicate that RORγt blockade would provide an effective approach for treating refractory patients with IBD by blocking IL-23/Th17 pathway.
Literature
1.
go back to reference Ghosh S, Mitchell R. Impact of inflammatory bowel disease on quality of life: results of the European Federation of Crohn’s and Ulcerative Colitis Associations (EFCCA) patient survey. J Crohns Colitis. 2007;1:10–20.CrossRefPubMed Ghosh S, Mitchell R. Impact of inflammatory bowel disease on quality of life: results of the European Federation of Crohn’s and Ulcerative Colitis Associations (EFCCA) patient survey. J Crohns Colitis. 2007;1:10–20.CrossRefPubMed
2.
go back to reference Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–34.CrossRefPubMed Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–34.CrossRefPubMed
3.
go back to reference Pithadia AB, Jain S. Treatment of inflammatory bowel disease (IBD). Pharmacol Rep. 2011;63:629–42.CrossRefPubMed Pithadia AB, Jain S. Treatment of inflammatory bowel disease (IBD). Pharmacol Rep. 2011;63:629–42.CrossRefPubMed
4.
go back to reference Mozaffari S, Nikfar S, Abdolghaffari AH, Abdollahi M. New biologic therapeutics for ulcerative colitis and Crohn’s disease. Expert Opin Biol Ther. 2014;14:583–600.CrossRefPubMed Mozaffari S, Nikfar S, Abdolghaffari AH, Abdollahi M. New biologic therapeutics for ulcerative colitis and Crohn’s disease. Expert Opin Biol Ther. 2014;14:583–600.CrossRefPubMed
5.
go back to reference Chandar AK, Singh S, Murad MH, Peyrin-Biroulet L, Loftus EV Jr. Efficacy and safety of natalizumab and vedolizumab for the management of Crohn’s disease: a systematic review and meta-analysis. Inflamm Bowel Dis. 2015;21:1695–708.CrossRefPubMed Chandar AK, Singh S, Murad MH, Peyrin-Biroulet L, Loftus EV Jr. Efficacy and safety of natalizumab and vedolizumab for the management of Crohn’s disease: a systematic review and meta-analysis. Inflamm Bowel Dis. 2015;21:1695–708.CrossRefPubMed
6.
go back to reference Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science (New York, NY). 2006;314:1461–3.CrossRef Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science (New York, NY). 2006;314:1461–3.CrossRef
7.
go back to reference Cummings JR, Ahmad T, Geremia A, Beckly J, Cooney R, Hancock L, et al. Contribution of the novel inflammatory bowel disease gene IL23R to disease susceptibility and phenotype. Inflamm Bowel Dis. 2007;13:1063–8.CrossRefPubMed Cummings JR, Ahmad T, Geremia A, Beckly J, Cooney R, Hancock L, et al. Contribution of the novel inflammatory bowel disease gene IL23R to disease susceptibility and phenotype. Inflamm Bowel Dis. 2007;13:1063–8.CrossRefPubMed
8.
go back to reference Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008;40:955–62.CrossRefPubMedPubMedCentral Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008;40:955–62.CrossRefPubMedPubMedCentral
9.
go back to reference Fisher SA, Tremelling M, Anderson CA, Gwilliam R, Bumpstead S, Prescott NJ, et al. Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat Genet. 2008;40:710–2.CrossRefPubMedPubMedCentral Fisher SA, Tremelling M, Anderson CA, Gwilliam R, Bumpstead S, Prescott NJ, et al. Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat Genet. 2008;40:710–2.CrossRefPubMedPubMedCentral
10.
go back to reference Mannon PJ, Fuss IJ, Mayer L, Elson CO, Sandborn WJ, Present D, et al. Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med. 2004;351:2069–79.CrossRefPubMed Mannon PJ, Fuss IJ, Mayer L, Elson CO, Sandborn WJ, Present D, et al. Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med. 2004;351:2069–79.CrossRefPubMed
11.
go back to reference Sandborn WJ, Feagan BG, Fedorak RN, Scherl E, Fleisher MR, Katz S, et al. A randomized trial of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn’s disease. Gastroenterology. 2008;135:1130–41.CrossRefPubMed Sandborn WJ, Feagan BG, Fedorak RN, Scherl E, Fleisher MR, Katz S, et al. A randomized trial of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn’s disease. Gastroenterology. 2008;135:1130–41.CrossRefPubMed
12.
go back to reference Tuskey A, Behm BW. Profile of ustekinumab and its potential in patients with moderate-to-severe Crohn’s disease. Clin Exp Gastroenterol. 2014;7:173–9.PubMedPubMedCentral Tuskey A, Behm BW. Profile of ustekinumab and its potential in patients with moderate-to-severe Crohn’s disease. Clin Exp Gastroenterol. 2014;7:173–9.PubMedPubMedCentral
13.
go back to reference Feagan BG, Sandborn WJ, D’Haens G, Panes J, Kaser A, Ferrante M, et al. Induction therapy with the selective interleukin-23 inhibitor risankizumab in patients with moderate-to-severe Crohn’s disease: a randomised, double-blind, placebo-controlled phase 2 study. Lancet (Lond, Engl). 2017;389:1699–709.CrossRef Feagan BG, Sandborn WJ, D’Haens G, Panes J, Kaser A, Ferrante M, et al. Induction therapy with the selective interleukin-23 inhibitor risankizumab in patients with moderate-to-severe Crohn’s disease: a randomised, double-blind, placebo-controlled phase 2 study. Lancet (Lond, Engl). 2017;389:1699–709.CrossRef
14.
go back to reference Hoeve MA, Savage ND, de Boer T, Langenberg DM, de Waal Malefyt R, Ottenhoff TH, et al. Divergent effects of IL-12 and IL-23 on the production of IL-17 by human T cells. Eur J Immunol. 2006;36:661–70.CrossRefPubMed Hoeve MA, Savage ND, de Boer T, Langenberg DM, de Waal Malefyt R, Ottenhoff TH, et al. Divergent effects of IL-12 and IL-23 on the production of IL-17 by human T cells. Eur J Immunol. 2006;36:661–70.CrossRefPubMed
15.
go back to reference Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem. 2003;278:1910–4.CrossRefPubMed Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem. 2003;278:1910–4.CrossRefPubMed
16.
go back to reference Rovedatti L, Kudo T, Biancheri P, Sarra M, Knowles CH, Rampton DS, et al. Differential regulation of interleukin 17 and interferon gamma production in inflammatory bowel disease. Gut. 2009;58:1629–36.CrossRefPubMed Rovedatti L, Kudo T, Biancheri P, Sarra M, Knowles CH, Rampton DS, et al. Differential regulation of interleukin 17 and interferon gamma production in inflammatory bowel disease. Gut. 2009;58:1629–36.CrossRefPubMed
17.
go back to reference Kebir H, Ifergan I, Alvarez JI, Bernard M, Poirier J, Arbour N, et al. Preferential recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis. Ann Neurol. 2009;66:390–402.CrossRefPubMed Kebir H, Ifergan I, Alvarez JI, Bernard M, Poirier J, Arbour N, et al. Preferential recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis. Ann Neurol. 2009;66:390–402.CrossRefPubMed
18.
go back to reference Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.CrossRefPubMed Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.CrossRefPubMed
19.
go back to reference Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, et al. Phenotypic and functional features of human Th17 cells. J Exp Med. 2007;204:1849–61.CrossRefPubMedPubMedCentral Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, et al. Phenotypic and functional features of human Th17 cells. J Exp Med. 2007;204:1849–61.CrossRefPubMedPubMedCentral
20.
go back to reference Lochner M, Peduto L, Cherrier M, Sawa S, Langa F, Varona R, et al. In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t+ T cells. J Exp Med. 2008;205:1381–93.CrossRefPubMedPubMedCentral Lochner M, Peduto L, Cherrier M, Sawa S, Langa F, Varona R, et al. In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t+ T cells. J Exp Med. 2008;205:1381–93.CrossRefPubMedPubMedCentral
21.
go back to reference Kono M, Ochida A, Oda T, Imada T, Banno Y, Taya N, et al. Discovery of [cis-3-({(5R)-5-[(7-fluoro-1,1-dimethyl-2,3-dihydro-1 H-inden-5-yl)carbamoyl]-2-methoxy-7,8-dihydro-1,6-naphthyridin-6(5H)-yl}carbonyl)cyclobutyl]acetic acid (TAK-828F) as a potent, selective, and orally available novel retinoic acid receptor-related orphan receptor gammat inverse agonist. J Med Chem. 2018;61:2973–88.CrossRefPubMed Kono M, Ochida A, Oda T, Imada T, Banno Y, Taya N, et al. Discovery of [cis-3-({(5R)-5-[(7-fluoro-1,1-dimethyl-2,3-dihydro-1 H-inden-5-yl)carbamoyl]-2-methoxy-7,8-dihydro-1,6-naphthyridin-6(5H)-yl}carbonyl)cyclobutyl]acetic acid (TAK-828F) as a potent, selective, and orally available novel retinoic acid receptor-related orphan receptor gammat inverse agonist. J Med Chem. 2018;61:2973–88.CrossRefPubMed
22.
go back to reference Nakagawa H, Koyama R, Kamada Y, Ochida A, Kono M, Shirai J, et al. Biochemical properties of TAK-828F, a potent and selective retinoid-related orphan receptor gamma t inverse agonist. Pharmacology. 2018;102:244–52.CrossRefPubMed Nakagawa H, Koyama R, Kamada Y, Ochida A, Kono M, Shirai J, et al. Biochemical properties of TAK-828F, a potent and selective retinoid-related orphan receptor gamma t inverse agonist. Pharmacology. 2018;102:244–52.CrossRefPubMed
23.
go back to reference Shibata A, Uga K, Sato T, Sagara M, Igaki K, Nakamura Y, et al. Pharmacological inhibitory profile of TAK-828F, a potent and selective orally available RORgammat inverse agonist. Biochem Pharmacol. 2018;150:35–45.CrossRefPubMed Shibata A, Uga K, Sato T, Sagara M, Igaki K, Nakamura Y, et al. Pharmacological inhibitory profile of TAK-828F, a potent and selective orally available RORgammat inverse agonist. Biochem Pharmacol. 2018;150:35–45.CrossRefPubMed
24.
go back to reference Igaki K, Nakamura Y, Komoike Y, Uga K, Shibata A, Ishimura Y, et al. Pharmacological evaluation of TAK-828F, a novel orally available RORgammat inverse agonist, on murine colitis model. Inflammation. 2019;42:91–102.CrossRefPubMed Igaki K, Nakamura Y, Komoike Y, Uga K, Shibata A, Ishimura Y, et al. Pharmacological evaluation of TAK-828F, a novel orally available RORgammat inverse agonist, on murine colitis model. Inflammation. 2019;42:91–102.CrossRefPubMed
25.
go back to reference Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, Higgins PD, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61:1693–700.CrossRefPubMed Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, Higgins PD, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61:1693–700.CrossRefPubMed
26.
go back to reference Yamamoto S, Ooshima Y, Nakata M, Yano T, Matsuoka K, Watanabe S, et al. Generation of gene-targeted mice using embryonic stem cells derived from a transgenic mouse model of Alzheimer’s disease. Transgenic Res. 2013;22:537–47.CrossRefPubMed Yamamoto S, Ooshima Y, Nakata M, Yano T, Matsuoka K, Watanabe S, et al. Generation of gene-targeted mice using embryonic stem cells derived from a transgenic mouse model of Alzheimer’s disease. Transgenic Res. 2013;22:537–47.CrossRefPubMed
27.
go back to reference Jetten AM. Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal. 2009;7:e003.CrossRefPubMedPubMedCentral Jetten AM. Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal. 2009;7:e003.CrossRefPubMedPubMedCentral
28.
go back to reference Igaki K, Komoike Y, Nakamura Y, Watanabe T, Yamasaki M, Fleming P, et al. MLN3126, an antagonist of the chemokine receptor CCR28, ameliorates inflammation in a T cell mediated mouse colitis model. Int Immunopharmacol. 2018;60:160–9.CrossRefPubMed Igaki K, Komoike Y, Nakamura Y, Watanabe T, Yamasaki M, Fleming P, et al. MLN3126, an antagonist of the chemokine receptor CCR28, ameliorates inflammation in a T cell mediated mouse colitis model. Int Immunopharmacol. 2018;60:160–9.CrossRefPubMed
29.
go back to reference Epple HJ. Therapy- and non-therapy-dependent infectious complications in inflammatory bowel disease. Dig Dis (Basel, Switz). 2009;27:555–9.CrossRef Epple HJ. Therapy- and non-therapy-dependent infectious complications in inflammatory bowel disease. Dig Dis (Basel, Switz). 2009;27:555–9.CrossRef
30.
go back to reference Sandborn WJ, Gasink C, Gao LL, Blank MA, Johanns J, Guzzo C, et al. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N Engl J Med. 2012;367:1519–28.CrossRefPubMed Sandborn WJ, Gasink C, Gao LL, Blank MA, Johanns J, Guzzo C, et al. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N Engl J Med. 2012;367:1519–28.CrossRefPubMed
31.
go back to reference Ahern PP, Schiering C, Buonocore S, McGeachy MJ, Cua DJ, Maloy KJ, et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity. 2010;33:279–88.CrossRefPubMedPubMedCentral Ahern PP, Schiering C, Buonocore S, McGeachy MJ, Cua DJ, Maloy KJ, et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity. 2010;33:279–88.CrossRefPubMedPubMedCentral
32.
go back to reference Withers DR, Hepworth MR, Wang X, Mackley EC, Halford EE, Dutton EE, et al. Transient inhibition of ROR-gammat therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nat Med. 2016;22:319–23.CrossRefPubMedPubMedCentral Withers DR, Hepworth MR, Wang X, Mackley EC, Halford EE, Dutton EE, et al. Transient inhibition of ROR-gammat therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nat Med. 2016;22:319–23.CrossRefPubMedPubMedCentral
33.
go back to reference Maxwell JR, Zhang Y, Brown WA, Smith CL, Byrne FR, Fiorino M, et al. Differential roles for interleukin-23 and interleukin-17 in intestinal immunoregulation. Immunity. 2015;43:739–50.CrossRefPubMed Maxwell JR, Zhang Y, Brown WA, Smith CL, Byrne FR, Fiorino M, et al. Differential roles for interleukin-23 and interleukin-17 in intestinal immunoregulation. Immunity. 2015;43:739–50.CrossRefPubMed
34.
go back to reference Patel DD, Kuchroo VK. Th17 cell pathway in human immunity: lessons from genetics and therapeutic interventions. Immunity. 2015;43:1040–51.CrossRefPubMed Patel DD, Kuchroo VK. Th17 cell pathway in human immunity: lessons from genetics and therapeutic interventions. Immunity. 2015;43:1040–51.CrossRefPubMed
35.
go back to reference Lee JS, Tato CM, Joyce-Shaikh B, Gulen MF, Cayatte C, Chen Y, et al. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity. 2015;43:727–38.CrossRefPubMedPubMedCentral Lee JS, Tato CM, Joyce-Shaikh B, Gulen MF, Cayatte C, Chen Y, et al. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity. 2015;43:727–38.CrossRefPubMedPubMedCentral
36.
go back to reference Serafini N, Klein Wolterink RG, Satoh-Takayama N, Xu W, Vosshenrich CA, Hendriks RW, et al. Gata3 drives development of RORgammat+ group 3 innate lymphoid cells. J Exp Med. 2014;211:199–208.CrossRefPubMedPubMedCentral Serafini N, Klein Wolterink RG, Satoh-Takayama N, Xu W, Vosshenrich CA, Hendriks RW, et al. Gata3 drives development of RORgammat+ group 3 innate lymphoid cells. J Exp Med. 2014;211:199–208.CrossRefPubMedPubMedCentral
37.
go back to reference Qiu J, Zhou L. Aryl hydrocarbon receptor promotes RORgammat(+) group 3 ILCs and controls intestinal immunity and inflammation. Semin Immunopathol. 2013;35:657–70.CrossRefPubMedPubMedCentral Qiu J, Zhou L. Aryl hydrocarbon receptor promotes RORgammat(+) group 3 ILCs and controls intestinal immunity and inflammation. Semin Immunopathol. 2013;35:657–70.CrossRefPubMedPubMedCentral
38.
go back to reference Okada S, Markle JG, Deenick EK, Mele F, Averbuch D, Lagos M, et al. IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science (New York, NY). 2015;349:606–13.CrossRef Okada S, Markle JG, Deenick EK, Mele F, Averbuch D, Lagos M, et al. IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science (New York, NY). 2015;349:606–13.CrossRef
Metadata
Title
Pharmacological effects of TAK-828F: an orally available RORγt inverse agonist, in mouse colitis model and human blood cells of inflammatory bowel disease
Authors
Keiko Igaki
Yoshiki Nakamura
Masayuki Tanaka
Shinta Mizuno
Yusuke Yoshimatsu
Yusaku Komoike
Keiko Uga
Akira Shibata
Hisashi Imaichi
Satou Takayuki
Yoshimasa Ishimura
Masashi Yamasaki
Takanori Kanai
Yasuhiro Tsukimi
Noboru Tsuchimori
Publication date
01-06-2019
Publisher
Springer International Publishing
Published in
Inflammation Research / Issue 6/2019
Print ISSN: 1023-3830
Electronic ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-019-01234-y

Other articles of this Issue 6/2019

Inflammation Research 6/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine