Skip to main content
Top

03-05-2024 | Pancreatic Cancer | REVIEW

Harnessing Plant Flavonoids to Fight Pancreatic Cancer

Authors: Chengu Niu, Jing Zhang, Patrick I. Okolo 3rd

Published in: Current Nutrition Reports

Login to get access

Abstract

Purpose of Review

This review draws on the last fifteen years (2009–2024) of published data to summarize the potential effect of plant flavonoids on pancreatic carcinogenesis and discuss the possible mechanisms of action to establish their applicability as anti-cancer agents.

Recent Findings

This review found that the plant flavonoids with anti-pancreatic cancer activity mainly include chalcones, dihydrochalcones, flavanols, flavanones, flavones, isoflavonoids, flavonols, isoflavones, and flavanonols. Most of these flavonoids have anti-proliferative, pro-apoptotic, cell cycle arrest, anti-angiogenic, anti-inflammatory, anti-epithelial-mesenchymal transition, and anti-metastatic properties. Some flavonoids can also regulate autophagy, immune and glucose uptake in the context of pancreatic cancer. Several molecules and signaling pathways are associated with the pharmacological activities of plant flavonoids, including AMP-activated protein kinase, mitogen-activated protein kinases, phosphatidylinositol-3-kinase/protein kinase B, nuclear factor-κB, signal transducer, and activator of transcription 3, Smad3, epidermal growth factor receptor, and vascular endothelial growth factor.

Summary

This review provides strong evidence that plant flavonoids have potential against pancreatic carcinogenesis in experimental animals through various pharmacological mechanisms. They are a promising resource for use as adjuvant anti-cancer therapy. However, randomized controlled clinical trials with those flavonoids are needed.
Literature
1.
go back to reference Abboud Y, Samaan JS, Oh J, Jiang Y, Randhawa N, Lew D, et al. Increasing Pancreatic Cancer Incidence in Young Women in the United States: A Population-Based Time-Trend Analysis, 2001–2018. Gastroenterology. 2023;164(6):978-89.e6.PubMedCrossRef Abboud Y, Samaan JS, Oh J, Jiang Y, Randhawa N, Lew D, et al. Increasing Pancreatic Cancer Incidence in Young Women in the United States: A Population-Based Time-Trend Analysis, 2001–2018. Gastroenterology. 2023;164(6):978-89.e6.PubMedCrossRef
2.
3.
go back to reference Amri F, Koulali H, Jabi R, Zazour A, Bouziane M, Ismaili Z, et al. Pancreatic cancer: experience from an emerging country in North Africa. J Cancer Res Clin Oncol. 2023;149(15):14297–302.PubMedCrossRef Amri F, Koulali H, Jabi R, Zazour A, Bouziane M, Ismaili Z, et al. Pancreatic cancer: experience from an emerging country in North Africa. J Cancer Res Clin Oncol. 2023;149(15):14297–302.PubMedCrossRef
4.
go back to reference Masugi Y, Takamatsu M, Tanaka M, Hara K, Inoue Y, Hamada T, et al. Post-operative mortality and recurrence patterns in pancreatic cancer according to KRAS mutation and CDKN2A, p53, and SMAD4 expression. J Pathol Clin Res. 2023;9(5):339–53.PubMedPubMedCentralCrossRef Masugi Y, Takamatsu M, Tanaka M, Hara K, Inoue Y, Hamada T, et al. Post-operative mortality and recurrence patterns in pancreatic cancer according to KRAS mutation and CDKN2A, p53, and SMAD4 expression. J Pathol Clin Res. 2023;9(5):339–53.PubMedPubMedCentralCrossRef
5.
go back to reference Springfeld C, Ferrone CR, Katz MHG, Philip PA, Hong TS, Hackert T, et al. Neoadjuvant therapy for pancreatic cancer. Nat Rev Clin Oncol. 2023;20(5):318–37.PubMedCrossRef Springfeld C, Ferrone CR, Katz MHG, Philip PA, Hong TS, Hackert T, et al. Neoadjuvant therapy for pancreatic cancer. Nat Rev Clin Oncol. 2023;20(5):318–37.PubMedCrossRef
6.
go back to reference Ghaneh P, Palmer D, Cicconi S, Jackson R, Halloran CM, Rawcliffe C, et al. Immediate surgery compared with short-course neoadjuvant gemcitabine plus capecitabine, FOLFIRINOX, or chemoradiotherapy in patients with borderline resectable pancreatic cancer (ESPAC5): a four-arm, multicentre, randomised, phase 2 trial. Lancet Gastroenterol Hepatol. 2023;8(2):157–68.PubMedCrossRef Ghaneh P, Palmer D, Cicconi S, Jackson R, Halloran CM, Rawcliffe C, et al. Immediate surgery compared with short-course neoadjuvant gemcitabine plus capecitabine, FOLFIRINOX, or chemoradiotherapy in patients with borderline resectable pancreatic cancer (ESPAC5): a four-arm, multicentre, randomised, phase 2 trial. Lancet Gastroenterol Hepatol. 2023;8(2):157–68.PubMedCrossRef
7.
go back to reference Mukhtar S, Moradi A, Kodali A, Okoye C, Klein D, Mohamoud, et al. On the Menu: Analyzing the Macronutrients, Micronutrients, Beverages, Dietary Patterns, and Pancreatic Cancer Risk. Cureus. 2023;15(9):e45259.PubMedPubMedCentral Mukhtar S, Moradi A, Kodali A, Okoye C, Klein D, Mohamoud, et al. On the Menu: Analyzing the Macronutrients, Micronutrients, Beverages, Dietary Patterns, and Pancreatic Cancer Risk. Cureus. 2023;15(9):e45259.PubMedPubMedCentral
8.
go back to reference Mir SA, Dar A, Hamid L, Nisar N, Malik JA, Ali T, et al. Flavonoids as promising molecules in the cancer therapy: An insight. Curr Res Pharmacol Drug Discov. 2023;6:100167.PubMedPubMedCentralCrossRef Mir SA, Dar A, Hamid L, Nisar N, Malik JA, Ali T, et al. Flavonoids as promising molecules in the cancer therapy: An insight. Curr Res Pharmacol Drug Discov. 2023;6:100167.PubMedPubMedCentralCrossRef
9.
go back to reference Wang Y, Mou Y, Lu S, Xia Y, Cheng B. Polymethoxylated flavonoids in citrus fruits: absorption, metabolism, and anticancer mechanisms against breast cancer. PeerJ. 2024;12:e16711.PubMedPubMedCentralCrossRef Wang Y, Mou Y, Lu S, Xia Y, Cheng B. Polymethoxylated flavonoids in citrus fruits: absorption, metabolism, and anticancer mechanisms against breast cancer. PeerJ. 2024;12:e16711.PubMedPubMedCentralCrossRef
10.
go back to reference Asgharian P, Tazehkand AP, Soofiyani SR, Hosseini K, Martorell M, Tarhriz V, et al. Quercetin Impact in Pancreatic Cancer: An Overview on Its Therapeutic Effects. Oxid Med Cell Longev. 2021;2021:4393266.PubMedPubMedCentralCrossRef Asgharian P, Tazehkand AP, Soofiyani SR, Hosseini K, Martorell M, Tarhriz V, et al. Quercetin Impact in Pancreatic Cancer: An Overview on Its Therapeutic Effects. Oxid Med Cell Longev. 2021;2021:4393266.PubMedPubMedCentralCrossRef
11.
go back to reference Yuan D, Guo Y, Pu F, Yang C, Xiao X, Du H, et al. Opportunities and challenges in enhancing the bioavailability and bioactivity of dietary flavonoids: A novel delivery system perspective. Food Chem. 2024;430:137115.PubMedCrossRef Yuan D, Guo Y, Pu F, Yang C, Xiao X, Du H, et al. Opportunities and challenges in enhancing the bioavailability and bioactivity of dietary flavonoids: A novel delivery system perspective. Food Chem. 2024;430:137115.PubMedCrossRef
12.
go back to reference Usman OH, Kumar S, Walker RR 3rd, Xie G, Sumajit HC, Jalil AR, et al. Differential modulation of cellular phenotype and drug sensitivity by extracellular matrix proteins in primary and metastatic pancreatic cancer cells. Mol Biol Cell. 2023;34(13):ar130.PubMedPubMedCentralCrossRef Usman OH, Kumar S, Walker RR 3rd, Xie G, Sumajit HC, Jalil AR, et al. Differential modulation of cellular phenotype and drug sensitivity by extracellular matrix proteins in primary and metastatic pancreatic cancer cells. Mol Biol Cell. 2023;34(13):ar130.PubMedPubMedCentralCrossRef
13.
go back to reference Cao J, Wu J, Yang P, Qian K, Cheng Y, Xu M, et al. Dual Enzyme Cascade-Activated Popcorn-Like Nanoparticles Efficiently Remodeled Stellate Cells to Alleviate Pancreatic Desmoplasia. ACS Nano. 2023;17(20):19793–809.PubMedCrossRef Cao J, Wu J, Yang P, Qian K, Cheng Y, Xu M, et al. Dual Enzyme Cascade-Activated Popcorn-Like Nanoparticles Efficiently Remodeled Stellate Cells to Alleviate Pancreatic Desmoplasia. ACS Nano. 2023;17(20):19793–809.PubMedCrossRef
14.
go back to reference Roginsky AB, Ujiki MB, Ding XZ, Adrian TE. On the potential use of flavonoids in the treatment and prevention of pancreatic cancer. In Vivo. 2005;19(1):61–7.PubMed Roginsky AB, Ujiki MB, Ding XZ, Adrian TE. On the potential use of flavonoids in the treatment and prevention of pancreatic cancer. In Vivo. 2005;19(1):61–7.PubMed
15.
go back to reference Zhang X, Chen J, Xi B, Liu Y, Wang S, Gu L, et al. Agrimoniin is a dual inhibitor of AKT and ERK pathways that inhibit pancreatic cancer cell proliferation. Phytother Res. 2023;37(9):4076–91.PubMedCrossRef Zhang X, Chen J, Xi B, Liu Y, Wang S, Gu L, et al. Agrimoniin is a dual inhibitor of AKT and ERK pathways that inhibit pancreatic cancer cell proliferation. Phytother Res. 2023;37(9):4076–91.PubMedCrossRef
16.
go back to reference Chen J, Liu F, Wu J, Yang Y, He J, Wu F, et al. Effect of STK3 on proliferation and apoptosis of pancreatic cancer cells via PI3K/AKT/mTOR pathway. Cell Signal. 2023;106:110642.PubMedCrossRef Chen J, Liu F, Wu J, Yang Y, He J, Wu F, et al. Effect of STK3 on proliferation and apoptosis of pancreatic cancer cells via PI3K/AKT/mTOR pathway. Cell Signal. 2023;106:110642.PubMedCrossRef
17.
go back to reference Zheng B, Zheng Y, Zhang N, Zhang Y, Zheng B. Rhoifolin from Plumula Nelumbinis exhibits anti-cancer effects in pancreatic cancer via AKT/JNK signaling pathways. Sci Rep. 2022;12(1):5654.PubMedPubMedCentralCrossRef Zheng B, Zheng Y, Zhang N, Zhang Y, Zheng B. Rhoifolin from Plumula Nelumbinis exhibits anti-cancer effects in pancreatic cancer via AKT/JNK signaling pathways. Sci Rep. 2022;12(1):5654.PubMedPubMedCentralCrossRef
18.
go back to reference Kwak MK, Yang KM, Park J, Lee S, Park Y, Hong E, et al. Galangin enhances TGF-β1-mediated growth inhibition by suppressing phosphorylation of threonine 179 residue in Smad3 linker region. Biochem Biophys Res Commun. 2017;494(3–4):706–13.PubMedCrossRef Kwak MK, Yang KM, Park J, Lee S, Park Y, Hong E, et al. Galangin enhances TGF-β1-mediated growth inhibition by suppressing phosphorylation of threonine 179 residue in Smad3 linker region. Biochem Biophys Res Commun. 2017;494(3–4):706–13.PubMedCrossRef
19.
go back to reference •• Ruan Q, Wen C, Jin G, Yuan Z, Yang X, Wen Z, et al. Phloretin-induced STAT3 inhibition suppresses pancreatic cancer growth and progression via enhancing Nrf2 activity. Phytomedicine. 2023;2023(118):154990. This article elucidates the anti-cancer role of phloretin in pancreatic cancer through inhibition of cell proliferation. •• Ruan Q, Wen C, Jin G, Yuan Z, Yang X, Wen Z, et al. Phloretin-induced STAT3 inhibition suppresses pancreatic cancer growth and progression via enhancing Nrf2 activity. Phytomedicine. 2023;2023(118):154990. This article elucidates the anti-cancer role of phloretin in pancreatic cancer through inhibition of cell proliferation.
20.
go back to reference Du J, Tang B, Wang J, Sui H, Jin X, Wang L, et al. Antiproliferative effect of alpinetin in BxPC-3 pancreatic cancer cells. Int J Mol Med. 2012;29(4):607–12.PubMedPubMedCentralCrossRef Du J, Tang B, Wang J, Sui H, Jin X, Wang L, et al. Antiproliferative effect of alpinetin in BxPC-3 pancreatic cancer cells. Int J Mol Med. 2012;29(4):607–12.PubMedPubMedCentralCrossRef
21.
go back to reference Vu HA, Beppu Y, Chi HT, Sasaki K, Yamamoto H, Xinh PT, et al. Green tea epigallocatechin gallate exhibits anticancer effect in human pancreatic carcinoma cells via the inhibition of both focal adhesion kinase and insulin-like growth factor-I receptor. J Biomed Biotechnol. 2010;2010:290516.PubMedCrossRef Vu HA, Beppu Y, Chi HT, Sasaki K, Yamamoto H, Xinh PT, et al. Green tea epigallocatechin gallate exhibits anticancer effect in human pancreatic carcinoma cells via the inhibition of both focal adhesion kinase and insulin-like growth factor-I receptor. J Biomed Biotechnol. 2010;2010:290516.PubMedCrossRef
22.
go back to reference Yao K, Chen H, Lee MH, Li H, Ma W, Peng C, et al. Licochalcone A, a natural inhibitor of c-Jun N-terminal kinase 1. Cancer Prev Res (Phila). 2014;7(1):139–49.PubMedCrossRef Yao K, Chen H, Lee MH, Li H, Ma W, Peng C, et al. Licochalcone A, a natural inhibitor of c-Jun N-terminal kinase 1. Cancer Prev Res (Phila). 2014;7(1):139–49.PubMedCrossRef
23.
go back to reference Yoshizawa M, Shiozaki A, Ashihara E. Depletion of DNTTIP2 induces cell cycle arrest in pancreatic cancer cells. Cancer Genomics Proteomics. 2024;21(1):18–29.PubMedPubMedCentralCrossRef Yoshizawa M, Shiozaki A, Ashihara E. Depletion of DNTTIP2 induces cell cycle arrest in pancreatic cancer cells. Cancer Genomics Proteomics. 2024;21(1):18–29.PubMedPubMedCentralCrossRef
24.
go back to reference • Su J, Wang L, Yin X, Zhao Z, Hou Y, Ye X, et al. Rottlerin exhibits anti-cancer effect through inactivation of S phase kinase-associated protein 2 in pancreatic cancer cells. Am J Cancer Res. 2016;6(10):2178–91. A mechanism by which rottlerin induces cell cycle arrest that constrain tumour growth of pancreatic cancer is demonstrated here. • Su J, Wang L, Yin X, Zhao Z, Hou Y, Ye X, et al. Rottlerin exhibits anti-cancer effect through inactivation of S phase kinase-associated protein 2 in pancreatic cancer cells. Am J Cancer Res. 2016;6(10):2178–91. A mechanism by which rottlerin induces cell cycle arrest that constrain tumour growth of pancreatic cancer is demonstrated here.
25.
go back to reference Zhang Z, Auyeung KK, Sze SC, Zhang S, Yung KK, Ko JK. The dual roles of calycosin in growth inhibition and metastatic progression during pancreatic cancer development: A “TGF-β paradox.” Phytomedicine. 2020;68:153177.PubMedCrossRef Zhang Z, Auyeung KK, Sze SC, Zhang S, Yung KK, Ko JK. The dual roles of calycosin in growth inhibition and metastatic progression during pancreatic cancer development: A “TGF-β paradox.” Phytomedicine. 2020;68:153177.PubMedCrossRef
26.
go back to reference Rasam S, Lin Q, Shen S, Straubinger RM, Qu J. Highly reproducible quantitative proteomics analysis of pancreatic cancer cells reveals proteome-level effects of a novel combination drug therapy that induces cancer cell death via metabolic remodeling and activation of the extrinsic apoptosis pathway. J Proteome Res. 2023;22(12):3780–92.PubMedCrossRef Rasam S, Lin Q, Shen S, Straubinger RM, Qu J. Highly reproducible quantitative proteomics analysis of pancreatic cancer cells reveals proteome-level effects of a novel combination drug therapy that induces cancer cell death via metabolic remodeling and activation of the extrinsic apoptosis pathway. J Proteome Res. 2023;22(12):3780–92.PubMedCrossRef
27.
go back to reference Zhang T, Wang X, Zhang Q, Li K, Yang D, Zhang X, et al. Intrinsic and extrinsic pathways of apoptosis induced by multiple antibiotics residues and ocean acidification in hemocytes of scallop Argopecten irradians irradians: An interactionist perspective. Ecotoxicol Environ Saf. 2024;269:115806.PubMedCrossRef Zhang T, Wang X, Zhang Q, Li K, Yang D, Zhang X, et al. Intrinsic and extrinsic pathways of apoptosis induced by multiple antibiotics residues and ocean acidification in hemocytes of scallop Argopecten irradians irradians: An interactionist perspective. Ecotoxicol Environ Saf. 2024;269:115806.PubMedCrossRef
28.
go back to reference Khakinezhad Tehrani F, Ranji N, Kouhkan F, Hosseinzadeh S. PANC-1 cancer stem-like cell death with silybin encapsulated in polymersomes and deregulation of stemness-related miRNAs and their potential targets. Iran J Basic Med Sci. 2021;24(4):514–23.PubMedPubMedCentral Khakinezhad Tehrani F, Ranji N, Kouhkan F, Hosseinzadeh S. PANC-1 cancer stem-like cell death with silybin encapsulated in polymersomes and deregulation of stemness-related miRNAs and their potential targets. Iran J Basic Med Sci. 2021;24(4):514–23.PubMedPubMedCentral
29.
go back to reference Zhang Y, Li Z, Min Q, Palida A, Zhang Y, Tang R, et al. 8-Chrysoeriol, as a potential BCL-2 inhibitor triggers apoptosis of SW1990 pancreatic cancer cells. Bioorg Chem. 2018;77:478–84.PubMedCrossRef Zhang Y, Li Z, Min Q, Palida A, Zhang Y, Tang R, et al. 8-Chrysoeriol, as a potential BCL-2 inhibitor triggers apoptosis of SW1990 pancreatic cancer cells. Bioorg Chem. 2018;77:478–84.PubMedCrossRef
30.
go back to reference Du J, Jiang F, Xu SS, Huang ZF, Chen LL, Li L. Tephrosin induces apoptosis of human pancreatic cancer cells through the generation of reactive oxygen species. J Cancer. 2021;12(1):270–80.PubMedPubMedCentralCrossRef Du J, Jiang F, Xu SS, Huang ZF, Chen LL, Li L. Tephrosin induces apoptosis of human pancreatic cancer cells through the generation of reactive oxygen species. J Cancer. 2021;12(1):270–80.PubMedPubMedCentralCrossRef
31.
go back to reference Lee HS, Kim SH, Kim BM, Safe S, Lee SO. Broussochalcone a is a novel inhibitor of the orphan nuclear receptor NR4A1 and induces apoptosis in pancreatic cancer cells. Molecules. 2021;26(8):2316.PubMedPubMedCentralCrossRef Lee HS, Kim SH, Kim BM, Safe S, Lee SO. Broussochalcone a is a novel inhibitor of the orphan nuclear receptor NR4A1 and induces apoptosis in pancreatic cancer cells. Molecules. 2021;26(8):2316.PubMedPubMedCentralCrossRef
32.
go back to reference Kim C, Kim JH, Oh EY, Nam D, Lee SG, Lee J, et al. Blockage of STAT3 signaling pathway by morusin induces apoptosis and inhibits invasion in human pancreatic tumor cells. Pancreas. 2016;45(3):409–19.PubMedCrossRef Kim C, Kim JH, Oh EY, Nam D, Lee SG, Lee J, et al. Blockage of STAT3 signaling pathway by morusin induces apoptosis and inhibits invasion in human pancreatic tumor cells. Pancreas. 2016;45(3):409–19.PubMedCrossRef
33.
go back to reference Phillips PA, Sangwan V, Borja-Cacho D, Dudeja V, Vickers SM, Saluja AK. Myricetin induces pancreatic cancer cell death via the induction of apoptosis and inhibition of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Cancer Lett. 2011;308(2):181–8.PubMedPubMedCentralCrossRef Phillips PA, Sangwan V, Borja-Cacho D, Dudeja V, Vickers SM, Saluja AK. Myricetin induces pancreatic cancer cell death via the induction of apoptosis and inhibition of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Cancer Lett. 2011;308(2):181–8.PubMedPubMedCentralCrossRef
34.
go back to reference • Huo M, Xia A, Cheng W, Zhou M, Wang J, Shi T, et al. Rutin promotes pancreatic cancer cell apoptosis by upregulating miRNA-877–3p expression. Molecules. 2022;27(7):2293. This work impressively demonstrates rutin as novel apoptosis-inducing agent for the treatment of pancreatic cancer. • Huo M, Xia A, Cheng W, Zhou M, Wang J, Shi T, et al. Rutin promotes pancreatic cancer cell apoptosis by upregulating miRNA-877–3p expression. Molecules. 2022;27(7):2293. This work impressively demonstrates rutin as novel apoptosis-inducing agent for the treatment of pancreatic cancer.
35.
go back to reference Huang Q, Zhang J, Peng J, Zhang Y, Wang L, Wu J, et al. Effect of baicalin on proliferation and apoptosis in pancreatic cancer cells. Am J Transl Res. 2019;11(9):5645–54.PubMedPubMedCentral Huang Q, Zhang J, Peng J, Zhang Y, Wang L, Wu J, et al. Effect of baicalin on proliferation and apoptosis in pancreatic cancer cells. Am J Transl Res. 2019;11(9):5645–54.PubMedPubMedCentral
36.
go back to reference Huang H, Li X, Yu L, Liu L, Zhu H, Cao W, et al. Wogonoside inhibits TNF receptor-associated factor 6 (TRAF6) mediated-tumor microenvironment and prognosis of pancreatic cancer. Ann Transl Med. 2021;9(18):1460.PubMedPubMedCentralCrossRef Huang H, Li X, Yu L, Liu L, Zhu H, Cao W, et al. Wogonoside inhibits TNF receptor-associated factor 6 (TRAF6) mediated-tumor microenvironment and prognosis of pancreatic cancer. Ann Transl Med. 2021;9(18):1460.PubMedPubMedCentralCrossRef
37.
go back to reference Bhardwaj V, Tadinada SM, Jain A, Sehdev V, Daniels CK, Lai JC, et al. Biochanin A reduces pancreatic cancer survival and progression. Anticancer Drugs. 2014;25(3):296–302.PubMedCrossRef Bhardwaj V, Tadinada SM, Jain A, Sehdev V, Daniels CK, Lai JC, et al. Biochanin A reduces pancreatic cancer survival and progression. Anticancer Drugs. 2014;25(3):296–302.PubMedCrossRef
38.
go back to reference Li Y, Wang Y, Li L, Kong R, Pan S, Ji L, et al. Hyperoside induces apoptosis and inhibits growth in pancreatic cancer via Bcl-2 family and NF-κB signaling pathway both in vitro and in vivo. Tumour Biol. 2016;37(6):7345–55.PubMedCrossRef Li Y, Wang Y, Li L, Kong R, Pan S, Ji L, et al. Hyperoside induces apoptosis and inhibits growth in pancreatic cancer via Bcl-2 family and NF-κB signaling pathway both in vitro and in vivo. Tumour Biol. 2016;37(6):7345–55.PubMedCrossRef
39.
go back to reference Vargas JNS, Hamasaki M, Kawabata T, Youle RJ, Yoshimori T. The mechanisms and roles of selective autophagy in mammals. Nat Rev Mol Cell Biol. 2023;24(3):167–85.PubMedCrossRef Vargas JNS, Hamasaki M, Kawabata T, Youle RJ, Yoshimori T. The mechanisms and roles of selective autophagy in mammals. Nat Rev Mol Cell Biol. 2023;24(3):167–85.PubMedCrossRef
40.
go back to reference Xu H, Tan M, Hou GQ, Sang YZ, Lin L, Gan XC, et al. Blockade of DDR1/PYK2/ERK signaling suggesting SH2 superbinder as a novel autophagy inhibitor for pancreatic cancer. Cell Death Dis. 2023;14(12):811.PubMedPubMedCentralCrossRef Xu H, Tan M, Hou GQ, Sang YZ, Lin L, Gan XC, et al. Blockade of DDR1/PYK2/ERK signaling suggesting SH2 superbinder as a novel autophagy inhibitor for pancreatic cancer. Cell Death Dis. 2023;14(12):811.PubMedPubMedCentralCrossRef
41.
go back to reference Yu L, Chen M, Zhang R, Xu T. Antitumor effects of glychionide-a flavonoid in human pancreatic carcinoma cells are mediated by activation of apoptotic and autophagic pathways, cell cycle arrest, and disruption of mitochondrial membrane potential. Med Sci Monit. 2019;25:962–9.PubMedPubMedCentralCrossRef Yu L, Chen M, Zhang R, Xu T. Antitumor effects of glychionide-a flavonoid in human pancreatic carcinoma cells are mediated by activation of apoptotic and autophagic pathways, cell cycle arrest, and disruption of mitochondrial membrane potential. Med Sci Monit. 2019;25:962–9.PubMedPubMedCentralCrossRef
42.
go back to reference •• Zhang Z, Chen WQ, Zhang SQ, Bai JX, Liu B, Yung KK, et al. Isoliquiritigenin inhibits pancreatic cancer progression through blockade of p38 MAPK-regulated autophagy. Phytomedicine. 2022;106:154406. This work defines a dominant role of autophagy in potential anti-pancreatic cancer effects of isoliquiritigenin. •• Zhang Z, Chen WQ, Zhang SQ, Bai JX, Liu B, Yung KK, et al. Isoliquiritigenin inhibits pancreatic cancer progression through blockade of p38 MAPK-regulated autophagy. Phytomedicine. 2022;106:154406. This work defines a dominant role of autophagy in potential anti-pancreatic cancer effects of isoliquiritigenin.
43.
go back to reference Li SJ, Sun SJ, Gao J, Sun FB. Wogonin induces Beclin-1/PI3K and reactive oxygen species-mediated autophagy in human pancreatic cancer cells. Oncol Lett. 2016;12(6):5059–67.PubMedPubMedCentralCrossRef Li SJ, Sun SJ, Gao J, Sun FB. Wogonin induces Beclin-1/PI3K and reactive oxygen species-mediated autophagy in human pancreatic cancer cells. Oncol Lett. 2016;12(6):5059–67.PubMedPubMedCentralCrossRef
44.
go back to reference Liu X, Peng X, Cen S, Yang C, Ma Z, Shi X. Wogonin induces ferroptosis in pancreatic cancer cells by inhibiting the Nrf2/GPX4 axis. Front Pharmacol. 2023;14:1129662.PubMedPubMedCentralCrossRef Liu X, Peng X, Cen S, Yang C, Ma Z, Shi X. Wogonin induces ferroptosis in pancreatic cancer cells by inhibiting the Nrf2/GPX4 axis. Front Pharmacol. 2023;14:1129662.PubMedPubMedCentralCrossRef
45.
go back to reference Jia S, Xu X, Zhou S, Chen Y, Ding G, Cao L. Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways. Cell Death Dis. 2019;10(2):142.PubMedPubMedCentralCrossRef Jia S, Xu X, Zhou S, Chen Y, Ding G, Cao L. Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways. Cell Death Dis. 2019;10(2):142.PubMedPubMedCentralCrossRef
46.
go back to reference Huang C, Li H, Xu Y, Xu C, Sun H, Li Z, et al. BICC1 drives pancreatic cancer progression by inducing VEGF-independent angiogenesis. Signal Transduct Target Ther. 2023;8(1):271.PubMedPubMedCentralCrossRef Huang C, Li H, Xu Y, Xu C, Sun H, Li Z, et al. BICC1 drives pancreatic cancer progression by inducing VEGF-independent angiogenesis. Signal Transduct Target Ther. 2023;8(1):271.PubMedPubMedCentralCrossRef
47.
go back to reference Ghalehbandi S, Yuzugulen J, Pranjol MZI, Pourgholami MH. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur J Pharmacol. 2023;949:175586.PubMedCrossRef Ghalehbandi S, Yuzugulen J, Pranjol MZI, Pourgholami MH. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur J Pharmacol. 2023;949:175586.PubMedCrossRef
48.
go back to reference An YF, Pu N, Jia JB, Wang WQ, Liu L. Therapeutic advances targeting tumor angiogenesis in pancreatic cancer: Current dilemmas and future directions. Biochim Biophys Acta Rev Cancer. 2023;1878(5):188958.PubMedCrossRef An YF, Pu N, Jia JB, Wang WQ, Liu L. Therapeutic advances targeting tumor angiogenesis in pancreatic cancer: Current dilemmas and future directions. Biochim Biophys Acta Rev Cancer. 2023;1878(5):188958.PubMedCrossRef
49.
go back to reference He L, Wu Y, Lin L, Wang J, Wu Y, Chen Y, et al. Hispidulin, a small flavonoid molecule, suppresses the angiogenesis and growth of human pancreatic cancer by targeting vascular endothelial growth factor receptor 2-mediated PI3K/Akt/mTOR signaling pathway. Cancer Sci. 2011;102(1):219–25.PubMedCrossRef He L, Wu Y, Lin L, Wang J, Wu Y, Chen Y, et al. Hispidulin, a small flavonoid molecule, suppresses the angiogenesis and growth of human pancreatic cancer by targeting vascular endothelial growth factor receptor 2-mediated PI3K/Akt/mTOR signaling pathway. Cancer Sci. 2011;102(1):219–25.PubMedCrossRef
50.
go back to reference • Saito K, Matsuo Y, Imafuji H, Okubo T, Maeda Y, Sato T, et al. Xanthohumol inhibits angiogenesis by suppressing nuclear factor-κB activation in pancreatic cancer. Cancer Sci. 2018;109(1):132–40. This is an elegant study demonstrating that xanthohumol as anti-angiogenesis agent exerts its anti-cancer effects in pancreatic cancer. • Saito K, Matsuo Y, Imafuji H, Okubo T, Maeda Y, Sato T, et al. Xanthohumol inhibits angiogenesis by suppressing nuclear factor-κB activation in pancreatic cancer. Cancer Sci. 2018;109(1):132–40. This is an elegant study demonstrating that xanthohumol as anti-angiogenesis agent exerts its anti-cancer effects in pancreatic cancer.
51.
go back to reference Caronni N, La Terza F, Vittoria FM, Barbiera G, Mezzanzanica L, Cuzzola V, et al. IL-1β+ macrophages fuel pathogenic inflammation in pancreatic cancer. Nature. 2023;623(7986):415–22.PubMedCrossRef Caronni N, La Terza F, Vittoria FM, Barbiera G, Mezzanzanica L, Cuzzola V, et al. IL-1β+ macrophages fuel pathogenic inflammation in pancreatic cancer. Nature. 2023;623(7986):415–22.PubMedCrossRef
52.
go back to reference Wu Y, Seufert I, Al-Shaheri FN, Kurilov R, Bauer AS, Manoochehri M, et al. DNA-methylation signature accurately differentiates pancreatic cancer from chronic pancreatitis in tissue and plasma. Gut. 2023;72(12):2344–53.PubMedCrossRef Wu Y, Seufert I, Al-Shaheri FN, Kurilov R, Bauer AS, Manoochehri M, et al. DNA-methylation signature accurately differentiates pancreatic cancer from chronic pancreatitis in tissue and plasma. Gut. 2023;72(12):2344–53.PubMedCrossRef
53.
go back to reference Karamitopoulou E, Wenning AS, Acharjee A, Zlobec I, Aeschbacher P, Perren A, et al. Spatially restricted tumour-associated and host-associated immune drivers correlate with the recurrence sites of pancreatic cancer. Gut. 2023;72(8):1523–33.PubMedCrossRef Karamitopoulou E, Wenning AS, Acharjee A, Zlobec I, Aeschbacher P, Perren A, et al. Spatially restricted tumour-associated and host-associated immune drivers correlate with the recurrence sites of pancreatic cancer. Gut. 2023;72(8):1523–33.PubMedCrossRef
54.
go back to reference Kürbitz C, Heise D, Redmer T, Goumas F, Arlt A, Lemke J, et al. Epicatechin gallate and catechin gallate are superior to epigallocatechin gallate in growth suppression and anti-inflammatory activities in pancreatic tumor cells. Cancer Sci. 2011;102(4):728–34.PubMedCrossRef Kürbitz C, Heise D, Redmer T, Goumas F, Arlt A, Lemke J, et al. Epicatechin gallate and catechin gallate are superior to epigallocatechin gallate in growth suppression and anti-inflammatory activities in pancreatic tumor cells. Cancer Sci. 2011;102(4):728–34.PubMedCrossRef
55.
go back to reference Yousuf S, Qiu M, Voith von Voithenberg L, Hulkkonen J, Macinkovic I, Schulz AR, et al. Spatially resolved multi-omics single-cell analyses inform mechanisms of immune dysfunction in pancreatic cancer. Gastroenterology. 2023;165(4):891-908.e14.PubMedCrossRef Yousuf S, Qiu M, Voith von Voithenberg L, Hulkkonen J, Macinkovic I, Schulz AR, et al. Spatially resolved multi-omics single-cell analyses inform mechanisms of immune dysfunction in pancreatic cancer. Gastroenterology. 2023;165(4):891-908.e14.PubMedCrossRef
56.
go back to reference Zhang S, Fang W, Zhou S, Zhu D, Chen R, Gao X, et al. Single cell transcriptomic analyses implicate an immunosuppressive tumor microenvironment in pancreatic cancer liver metastasis. Nat Commun. 2023;14(1):5123.PubMedPubMedCentralCrossRef Zhang S, Fang W, Zhou S, Zhu D, Chen R, Gao X, et al. Single cell transcriptomic analyses implicate an immunosuppressive tumor microenvironment in pancreatic cancer liver metastasis. Nat Commun. 2023;14(1):5123.PubMedPubMedCentralCrossRef
57.
go back to reference Liu X, Zhang H, Cao J, Zhuo Y, Jin J, Gao Q, et al. Isobavachalcone activates antitumor immunity on orthotopic pancreatic cancer model: a screening and validation. Front Pharmacol. 2022;13:919035.PubMedPubMedCentralCrossRef Liu X, Zhang H, Cao J, Zhuo Y, Jin J, Gao Q, et al. Isobavachalcone activates antitumor immunity on orthotopic pancreatic cancer model: a screening and validation. Front Pharmacol. 2022;13:919035.PubMedPubMedCentralCrossRef
58.
go back to reference Zheng X, Li D, Li J, Wang B, Zhang L, Yuan X, et al. Optimization of the process for purifying icariin from Herba Epimedii by macroporous resin and the regulatory role of icariin in the tumor immune microenvironment. Biomed Pharmacother. 2019;118:109275.PubMedCrossRef Zheng X, Li D, Li J, Wang B, Zhang L, Yuan X, et al. Optimization of the process for purifying icariin from Herba Epimedii by macroporous resin and the regulatory role of icariin in the tumor immune microenvironment. Biomed Pharmacother. 2019;118:109275.PubMedCrossRef
59.
go back to reference • Feng YB, Chen L, Chen FX, Yang Y, Chen GH, Zhou ZH, et al. Immunopotentiation effects of apigenin on NK cell proliferation and killing pancreatic cancer cells. Int J Immunopathol Pharmacol. 2023;37:3946320231161174.Feng and colleagues demonstrate apigenin-mediated immunopotentiation properties contribute to its anti-tumor effect for pancreatic cancer. • Feng YB, Chen L, Chen FX, Yang Y, Chen GH, Zhou ZH, et al. Immunopotentiation effects of apigenin on NK cell proliferation and killing pancreatic cancer cells. Int J Immunopathol Pharmacol. 2023;37:3946320231161174.Feng and colleagues demonstrate apigenin-mediated immunopotentiation properties contribute to its anti-tumor effect for pancreatic cancer.
60.
go back to reference Koch V, Weitzer N, Dos Santos DP, Gruenewald LD, Mahmoudi S, Martin SS, et al. Multiparametric detection and outcome prediction of pancreatic cancer involving dual-energy CT, diffusion-weighted MRI, and radiomics. Cancer Imaging. 2023;23(1):38.PubMedPubMedCentralCrossRef Koch V, Weitzer N, Dos Santos DP, Gruenewald LD, Mahmoudi S, Martin SS, et al. Multiparametric detection and outcome prediction of pancreatic cancer involving dual-energy CT, diffusion-weighted MRI, and radiomics. Cancer Imaging. 2023;23(1):38.PubMedPubMedCentralCrossRef
61.
go back to reference Song Q, Zhang K, Sun T, Xu C, Zhao W, Zhang Z. Knockout of ENO1 leads to metabolism reprogramming and tumor retardation in pancreatic cancer. Front Oncol. 2023;13:1119886.PubMedPubMedCentralCrossRef Song Q, Zhang K, Sun T, Xu C, Zhao W, Zhang Z. Knockout of ENO1 leads to metabolism reprogramming and tumor retardation in pancreatic cancer. Front Oncol. 2023;13:1119886.PubMedPubMedCentralCrossRef
62.
go back to reference Hu X, Peng X, Zhang Y, Fan S, Liu X, Song Y, et al. Shikonin reverses cancer-associated fibroblast-induced gemcitabine resistance in pancreatic cancer cells by suppressing monocarboxylate transporter 4-mediated reverse Warburg effect. Phytomedicine. 2024;123:155214.PubMedCrossRef Hu X, Peng X, Zhang Y, Fan S, Liu X, Song Y, et al. Shikonin reverses cancer-associated fibroblast-induced gemcitabine resistance in pancreatic cancer cells by suppressing monocarboxylate transporter 4-mediated reverse Warburg effect. Phytomedicine. 2024;123:155214.PubMedCrossRef
63.
go back to reference • Park TH, Kim HS. Eupatilin suppresses pancreatic cancer cells via glucose uptake inhibition, AMPK activation, and cell cycle arrest. Anticancer Res. 2022;42(1):483–91. This study showed inhibition of glucose uptake as the underlying mechanism mediating the eupatilin-induced cell cycle arrest in pancreatic cancer. • Park TH, Kim HS. Eupatilin suppresses pancreatic cancer cells via glucose uptake inhibition, AMPK activation, and cell cycle arrest. Anticancer Res. 2022;42(1):483–91. This study showed inhibition of glucose uptake as the underlying mechanism mediating the eupatilin-induced cell cycle arrest in pancreatic cancer.
64.
go back to reference Zhu H, Xiao Y, Guo H, Guo Y, Huang Y, Shan Y, et al. The isoflavone puerarin exerts anti-tumor activity in pancreatic ductal adenocarcinoma by suppressing mTOR-mediated glucose metabolism. Aging (Albany NY). 2021;13(23):25089–105.PubMedCrossRef Zhu H, Xiao Y, Guo H, Guo Y, Huang Y, Shan Y, et al. The isoflavone puerarin exerts anti-tumor activity in pancreatic ductal adenocarcinoma by suppressing mTOR-mediated glucose metabolism. Aging (Albany NY). 2021;13(23):25089–105.PubMedCrossRef
65.
go back to reference Ni F, Tang H, Wang C, Zhang H, Zheng C, Zhang N, et al. Baohuoside I inhibits the proliferation of pancreatic cancer cells via mTOR/S6K1-Caspases/Bcl2/Bax apoptotic signaling. Cancer Manag Res. 2019;11:10609–21.PubMedPubMedCentralCrossRef Ni F, Tang H, Wang C, Zhang H, Zheng C, Zhang N, et al. Baohuoside I inhibits the proliferation of pancreatic cancer cells via mTOR/S6K1-Caspases/Bcl2/Bax apoptotic signaling. Cancer Manag Res. 2019;11:10609–21.PubMedPubMedCentralCrossRef
66.
go back to reference He RZ, Zheng JH, Yao HF, Xu DP, Yang MW, Liu DJ, et al. ADAMTS12 promotes migration and epithelial-mesenchymal transition and predicts poor prognosis for pancreatic cancer. Hepatobiliary Pancreat Dis Int. 2023;22(2):169–78.PubMedCrossRef He RZ, Zheng JH, Yao HF, Xu DP, Yang MW, Liu DJ, et al. ADAMTS12 promotes migration and epithelial-mesenchymal transition and predicts poor prognosis for pancreatic cancer. Hepatobiliary Pancreat Dis Int. 2023;22(2):169–78.PubMedCrossRef
67.
go back to reference Chen Q, Guo H, Jiang H, Hu Z, Yang X, Yuan Z, et al. S100A2 induces epithelial-mesenchymal transition and metastasis in pancreatic cancer by coordinating transforming growth factor β signaling in SMAD4-dependent manner. Cell Death Discov. 2023;9(1):356.PubMedPubMedCentralCrossRef Chen Q, Guo H, Jiang H, Hu Z, Yang X, Yuan Z, et al. S100A2 induces epithelial-mesenchymal transition and metastasis in pancreatic cancer by coordinating transforming growth factor β signaling in SMAD4-dependent manner. Cell Death Discov. 2023;9(1):356.PubMedPubMedCentralCrossRef
68.
go back to reference Ye T, Su J, Huang C, Yu D, Dai S, Huang X, et al. Isoorientin induces apoptosis, decreases invasiveness, and downregulates VEGF secretion by activating AMPK signaling in pancreatic cancer cells. Onco Targets Ther. 2016;9:7481–92.PubMedPubMedCentralCrossRef Ye T, Su J, Huang C, Yu D, Dai S, Huang X, et al. Isoorientin induces apoptosis, decreases invasiveness, and downregulates VEGF secretion by activating AMPK signaling in pancreatic cancer cells. Onco Targets Ther. 2016;9:7481–92.PubMedPubMedCentralCrossRef
69.
go back to reference • Lou C, Zhang F, Yang M, Zhao J, Zeng W, Fang X, et al. Naringenin decreases invasiveness and metastasis by inhibiting TGF-β-induced epithelial to mesenchymal transition in pancreatic cancer cells. PLoS One. 2012;7(12):e50956. This paper shows that inhibition of EMT have important roles in the potential anti-pancreatic cancer effects of naringenin. • Lou C, Zhang F, Yang M, Zhao J, Zeng W, Fang X, et al. Naringenin decreases invasiveness and metastasis by inhibiting TGF-β-induced epithelial to mesenchymal transition in pancreatic cancer cells. PLoS One. 2012;7(12):e50956. This paper shows that inhibition of EMT have important roles in the potential anti-pancreatic cancer effects of naringenin.
70.
go back to reference Sadri A. Is target-based drug discovery efficient? discovery and “Off-Target” mechanisms of all drugs. J Med Chem. 2023;66(18):12651–77.PubMedCrossRef Sadri A. Is target-based drug discovery efficient? discovery and “Off-Target” mechanisms of all drugs. J Med Chem. 2023;66(18):12651–77.PubMedCrossRef
71.
go back to reference Mahmoud L, Cougnoux A, Bekiari C, Ruiz Araceli, de Castroviejo Teba P, El Marrahi A, Panneau G, et al. Microscopy-based phenotypic monitoring of MDA-MB-231 spheroids allows the evaluation of phenotype-directed therapy. Exp Cell Res. 2023;425(2):113527.PubMedCrossRef Mahmoud L, Cougnoux A, Bekiari C, Ruiz Araceli, de Castroviejo Teba P, El Marrahi A, Panneau G, et al. Microscopy-based phenotypic monitoring of MDA-MB-231 spheroids allows the evaluation of phenotype-directed therapy. Exp Cell Res. 2023;425(2):113527.PubMedCrossRef
72.
go back to reference Magistrati M, Gilea AI, Gerra MC, Baruffini E, Dallabona C. Drug drop test: how to quickly identify potential therapeutic compounds for mitochondrial diseases using yeast saccharomyces cerevisiae. Int J Mol Sci. 2023;24(13):10696.PubMedPubMedCentralCrossRef Magistrati M, Gilea AI, Gerra MC, Baruffini E, Dallabona C. Drug drop test: how to quickly identify potential therapeutic compounds for mitochondrial diseases using yeast saccharomyces cerevisiae. Int J Mol Sci. 2023;24(13):10696.PubMedPubMedCentralCrossRef
73.
go back to reference Lu QY, Zhang L, Moro A, Chen MC, Harris DM, Eibl G, et al. Detection of baicalin metabolites baicalein and oroxylin-a in mouse pancreas and pancreatic xenografts. Pancreas. 2012;41(4):571–6.PubMedPubMedCentralCrossRef Lu QY, Zhang L, Moro A, Chen MC, Harris DM, Eibl G, et al. Detection of baicalin metabolites baicalein and oroxylin-a in mouse pancreas and pancreatic xenografts. Pancreas. 2012;41(4):571–6.PubMedPubMedCentralCrossRef
74.
go back to reference Nguyen MTT, Nguyen HX, Le TH, Do TNV, Dang PH, Pham TV, et al. A new flavanone derivative from the rhizomes of Boesenbergia pandurata. Nat Prod Res. 2022;36(8):1959–65.PubMedCrossRef Nguyen MTT, Nguyen HX, Le TH, Do TNV, Dang PH, Pham TV, et al. A new flavanone derivative from the rhizomes of Boesenbergia pandurata. Nat Prod Res. 2022;36(8):1959–65.PubMedCrossRef
75.
go back to reference Nöthlings U, Murphy SP, Wilkens LR, Boeing H, Schulze MB, Bueno-de-Mesquita HB, et al. A food pattern that is predictive of flavonol intake and risk of pancreatic cancer. Am J Clin Nutr. 2008;88(6):1653–62.PubMedCrossRef Nöthlings U, Murphy SP, Wilkens LR, Boeing H, Schulze MB, Bueno-de-Mesquita HB, et al. A food pattern that is predictive of flavonol intake and risk of pancreatic cancer. Am J Clin Nutr. 2008;88(6):1653–62.PubMedCrossRef
76.
go back to reference Gundogdu G, Dodurga Y, Cetin M, Secme M, Cicek B. The cytotoxic and genotoxic effects of daidzein on MIA PaCa-2 human pancreatic carcinoma cells and HT-29 human colon cancer cells. Drug Chem Toxicol. 2020;43(6):581–7.PubMedCrossRef Gundogdu G, Dodurga Y, Cetin M, Secme M, Cicek B. The cytotoxic and genotoxic effects of daidzein on MIA PaCa-2 human pancreatic carcinoma cells and HT-29 human colon cancer cells. Drug Chem Toxicol. 2020;43(6):581–7.PubMedCrossRef
77.
go back to reference Rossi M, Lugo A, Lagiou P, Zucchetto A, Polesel J, Serraino D, et al. Proanthocyanidins and other flavonoids in relation to pancreatic cancer: a case-control study in Italy. Ann Oncol. 2012;23(6):1488–93.PubMedCrossRef Rossi M, Lugo A, Lagiou P, Zucchetto A, Polesel J, Serraino D, et al. Proanthocyanidins and other flavonoids in relation to pancreatic cancer: a case-control study in Italy. Ann Oncol. 2012;23(6):1488–93.PubMedCrossRef
78.
go back to reference Wiedmann L, De Angelis RF, Vaquero-Siguero N, Donato E, Espinet E, Moll I, et al. HAPLN1 potentiates peritoneal metastasis in pancreatic cancer. Nat Commun. 2023;14(1):2353.PubMedPubMedCentralCrossRef Wiedmann L, De Angelis RF, Vaquero-Siguero N, Donato E, Espinet E, Moll I, et al. HAPLN1 potentiates peritoneal metastasis in pancreatic cancer. Nat Commun. 2023;14(1):2353.PubMedPubMedCentralCrossRef
79.
go back to reference Krauß L, Schneider C, Hessmann E, Saur D, Schneider G. Epigenetic control of pancreatic cancer metastasis. Cancer Metastasis Rev. 2023;42(4):1113–31.PubMedPubMedCentralCrossRef Krauß L, Schneider C, Hessmann E, Saur D, Schneider G. Epigenetic control of pancreatic cancer metastasis. Cancer Metastasis Rev. 2023;42(4):1113–31.PubMedPubMedCentralCrossRef
80.
go back to reference Hanin L. The circulation stage of the metastatic cascade: A mathematical description and its clinical implications. J Theor Biol. 2023;572:111582.PubMedCrossRef Hanin L. The circulation stage of the metastatic cascade: A mathematical description and its clinical implications. J Theor Biol. 2023;572:111582.PubMedCrossRef
81.
go back to reference • Chua AW, Hay HS, Rajendran P, Shanmugam MK, Li F, Bist P, et al. Butein downregulates chemokine receptor CXCR4 expression and function through suppression of NF-κB activation in breast and pancreatic tumor cells. Biochem Pharmacol. 2010;80(10):1553–62. This seminal article reports that butein inhibits the migration and invasion of pancreatic cancer by targeting NF-κB signaling. • Chua AW, Hay HS, Rajendran P, Shanmugam MK, Li F, Bist P, et al. Butein downregulates chemokine receptor CXCR4 expression and function through suppression of NF-κB activation in breast and pancreatic tumor cells. Biochem Pharmacol. 2010;80(10):1553–62. This seminal article reports that butein inhibits the migration and invasion of pancreatic cancer by targeting NF-κB signaling.
82.
go back to reference Zheng W, Lu S, Cai H, Kang M, Qin W, Li C, et al. Deguelin inhibits proliferation and migration of human pancreatic cancer cells in vitro targeting hedgehog pathway. Oncol Lett. 2016;12(4):2761–5.PubMedPubMedCentralCrossRef Zheng W, Lu S, Cai H, Kang M, Qin W, Li C, et al. Deguelin inhibits proliferation and migration of human pancreatic cancer cells in vitro targeting hedgehog pathway. Oncol Lett. 2016;12(4):2761–5.PubMedPubMedCentralCrossRef
83.
go back to reference Lee J, Lee J, Kim SJ, Kim JH. Quercetin-3-O-glucoside suppresses pancreatic cancer cell migration induced by tumor-deteriorated growth factors in vitro. Oncol Rep. 2016;35(4):2473–9.PubMedCrossRef Lee J, Lee J, Kim SJ, Kim JH. Quercetin-3-O-glucoside suppresses pancreatic cancer cell migration induced by tumor-deteriorated growth factors in vitro. Oncol Rep. 2016;35(4):2473–9.PubMedCrossRef
84.
go back to reference Huang X, Dai S, Dai J, Xiao Y, Bai Y, Chen B, et al. Luteolin decreases invasiveness, deactivates STAT3 signaling, and reverses interleukin-6 induced epithelial-mesenchymal transition and matrix metalloproteinase secretion of pancreatic cancer cells. Onco Targets Ther. 2015;8:2989–3001.PubMedPubMedCentralCrossRef Huang X, Dai S, Dai J, Xiao Y, Bai Y, Chen B, et al. Luteolin decreases invasiveness, deactivates STAT3 signaling, and reverses interleukin-6 induced epithelial-mesenchymal transition and matrix metalloproteinase secretion of pancreatic cancer cells. Onco Targets Ther. 2015;8:2989–3001.PubMedPubMedCentralCrossRef
85.
go back to reference Lee J, Kim JH. Kaempferol inhibits pancreatic cancer cell growth and migration through the blockade of EGFR-related pathway in vitro. PLoS ONE. 2016;11(5):e0155264.PubMedPubMedCentralCrossRef Lee J, Kim JH. Kaempferol inhibits pancreatic cancer cell growth and migration through the blockade of EGFR-related pathway in vitro. PLoS ONE. 2016;11(5):e0155264.PubMedPubMedCentralCrossRef
86.
go back to reference Lewis A, Nagrial A. Systematic review of single-agent vs. multi-agent chemotherapy for advanced pancreatic adenocarcinoma in elderly vs. younger patients. Cancers (Basel). 2023;15(8):2289. Lewis A, Nagrial A. Systematic review of single-agent vs. multi-agent chemotherapy for advanced pancreatic adenocarcinoma in elderly vs. younger patients. Cancers (Basel). 2023;15(8):2289.
87.
go back to reference Mangione W, Falls Z, Samudrala R. Effective holistic characterization of small molecule effects using heterogeneous biological networks. Front Pharmacol. 2023;14:1113007.PubMedPubMedCentralCrossRef Mangione W, Falls Z, Samudrala R. Effective holistic characterization of small molecule effects using heterogeneous biological networks. Front Pharmacol. 2023;14:1113007.PubMedPubMedCentralCrossRef
88.
go back to reference Malhotra L, Kaur P, Ethayathulla AS. Flavonoids as potential reactivators of structural mutation p53Y220C by computational and cell-based studies. J Biomol Struct Dyn. 2023;29:1–12.CrossRef Malhotra L, Kaur P, Ethayathulla AS. Flavonoids as potential reactivators of structural mutation p53Y220C by computational and cell-based studies. J Biomol Struct Dyn. 2023;29:1–12.CrossRef
89.
go back to reference Ibanez V, Vaitkus K, Zhang X, Ramasamy J, Rivers AE, Saunthararajah Y, et al. Combinatorial targeting of epigenome-modifying enzymes with decitabine and RN-1 synergistically increases HbF. Blood Adv. 2023;7(15):3891–902.PubMedPubMedCentralCrossRef Ibanez V, Vaitkus K, Zhang X, Ramasamy J, Rivers AE, Saunthararajah Y, et al. Combinatorial targeting of epigenome-modifying enzymes with decitabine and RN-1 synergistically increases HbF. Blood Adv. 2023;7(15):3891–902.PubMedPubMedCentralCrossRef
90.
go back to reference •• Liu X, Yang F, Jia D, Dong X, Zhang Y, Wu Z. Case report: A case study on the treatment using icaritin soft capsules in combination with lenvatinib achieving impressive PR and stage reduction in unresectable locally progressive pancreatic cancer and a literature review. Front Genet. 2023;14:1167470. First clinical evidence of icaritin in combination with lenvatinib resulting in a significant downstaging of the patient’s pancreatic tumor. •• Liu X, Yang F, Jia D, Dong X, Zhang Y, Wu Z. Case report: A case study on the treatment using icaritin soft capsules in combination with lenvatinib achieving impressive PR and stage reduction in unresectable locally progressive pancreatic cancer and a literature review. Front Genet. 2023;14:1167470. First clinical evidence of icaritin in combination with lenvatinib resulting in a significant downstaging of the patient’s pancreatic tumor.
91.
go back to reference Lee J, Kim DH, Kim JH. Combined administration of naringenin and hesperetin with optimal ratio maximizes the anti-cancer effect in human pancreatic cancer via down regulation of FAK and p38 signaling pathway. Phytomedicine. 2019;58:152762.PubMedCrossRef Lee J, Kim DH, Kim JH. Combined administration of naringenin and hesperetin with optimal ratio maximizes the anti-cancer effect in human pancreatic cancer via down regulation of FAK and p38 signaling pathway. Phytomedicine. 2019;58:152762.PubMedCrossRef
92.
go back to reference Sun H, Zhang N, Jin Y, Xu H. Cardamonin promotes the apoptosis and chemotherapy sensitivity to gemcitabine of pancreatic cancer through modulating the FOXO3a-FOXM1 axis. Dose Response. 2021;19(4):15593258211042164.PubMedPubMedCentralCrossRef Sun H, Zhang N, Jin Y, Xu H. Cardamonin promotes the apoptosis and chemotherapy sensitivity to gemcitabine of pancreatic cancer through modulating the FOXO3a-FOXM1 axis. Dose Response. 2021;19(4):15593258211042164.PubMedPubMedCentralCrossRef
93.
go back to reference Lim HK, Kwon HJ, Lee GS, Moon JH, Jung J. Chrysin-induced G protein-coupled estrogen receptor activation suppresses pancreatic cancer. Int J Mol Sci. 2022;23(17):9673.PubMedPubMedCentralCrossRef Lim HK, Kwon HJ, Lee GS, Moon JH, Jung J. Chrysin-induced G protein-coupled estrogen receptor activation suppresses pancreatic cancer. Int J Mol Sci. 2022;23(17):9673.PubMedPubMedCentralCrossRef
94.
go back to reference Zhou L, Yang C, Zhong W, Wang Q, Zhang D, Zhang J, et al. Chrysin induces autophagy-dependent ferroptosis to increase chemosensitivity to gemcitabine by targeting CBR1 in pancreatic cancer cells. Biochem Pharmacol. 2021;193:114813.PubMedCrossRef Zhou L, Yang C, Zhong W, Wang Q, Zhang D, Zhang J, et al. Chrysin induces autophagy-dependent ferroptosis to increase chemosensitivity to gemcitabine by targeting CBR1 in pancreatic cancer cells. Biochem Pharmacol. 2021;193:114813.PubMedCrossRef
95.
go back to reference • Elbaz HA, Lee I, Antwih DA, Liu J, Hüttemann M, Zielske SP. Epicatechin stimulates mitochondrial activity and selectively sensitizes cancer cells to radiation. PLoS One. 2014;9(2):e88322. This paper suggests epicatechin as a potentiator for radiation responses in pancreatic cancer. • Elbaz HA, Lee I, Antwih DA, Liu J, Hüttemann M, Zielske SP. Epicatechin stimulates mitochondrial activity and selectively sensitizes cancer cells to radiation. PLoS One. 2014;9(2):e88322. This paper suggests epicatechin as a potentiator for radiation responses in pancreatic cancer.
96.
go back to reference Li Z, Zou X, Zhu H, Chen M, Zhao Y. Inhibitory effect of baicalein combined with gemcitabine in human pancreatic cancer cell lines. Oncol Lett. 2018;15(4):5459–64.PubMedPubMedCentral Li Z, Zou X, Zhu H, Chen M, Zhao Y. Inhibitory effect of baicalein combined with gemcitabine in human pancreatic cancer cell lines. Oncol Lett. 2018;15(4):5459–64.PubMedPubMedCentral
97.
go back to reference Suzuki R, Kang Y, Li X, Roife D, Zhang R, Fleming JB. Genistein potentiates the antitumor effect of 5-Fluorouracil by inducing apoptosis and autophagy in human pancreatic cancer cells. Anticancer Res. 2014;34(9):4685–92.PubMedPubMedCentral Suzuki R, Kang Y, Li X, Roife D, Zhang R, Fleming JB. Genistein potentiates the antitumor effect of 5-Fluorouracil by inducing apoptosis and autophagy in human pancreatic cancer cells. Anticancer Res. 2014;34(9):4685–92.PubMedPubMedCentral
98.
go back to reference • Liu ZJ, Xu W, Han J, Liu QY, Gao LF, Wang XH, et al. Quercetin induces apoptosis and enhances gemcitabine therapeutic efficacy against gemcitabine-resistant cancer cells. Anticancer Drugs. 2020;31(7):684–92. This study provides a mechanism by which quercetin in combination with gemcitabine resulted in increased potential anti-pancreatic cancer effects compared with gemcitabine alone. • Liu ZJ, Xu W, Han J, Liu QY, Gao LF, Wang XH, et al. Quercetin induces apoptosis and enhances gemcitabine therapeutic efficacy against gemcitabine-resistant cancer cells. Anticancer Drugs. 2020;31(7):684–92. This study provides a mechanism by which quercetin in combination with gemcitabine resulted in increased potential anti-pancreatic cancer effects compared with gemcitabine alone.
99.
go back to reference Kolbeinsson HM, Chandana S, Wright GP, Chung M. Pancreatic cancer: a review of current treatment and novel therapies. J Invest Surg. 2023;36(1):2129884.PubMedCrossRef Kolbeinsson HM, Chandana S, Wright GP, Chung M. Pancreatic cancer: a review of current treatment and novel therapies. J Invest Surg. 2023;36(1):2129884.PubMedCrossRef
Metadata
Title
Harnessing Plant Flavonoids to Fight Pancreatic Cancer
Authors
Chengu Niu
Jing Zhang
Patrick I. Okolo 3rd
Publication date
03-05-2024
Publisher
Springer US
Published in
Current Nutrition Reports
Electronic ISSN: 2161-3311
DOI
https://doi.org/10.1007/s13668-024-00545-9
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.