Skip to main content
Top
Published in: Clinical Pharmacokinetics 10/2023

20-09-2023 | Hepatitis C | Review Article

Mechanisms and Clinical Significance of Pharmacokinetic Drug Interactions Mediated by FDA and EMA-approved Hepatitis C Direct-Acting Antiviral Agents

Author: Michael Murray

Published in: Clinical Pharmacokinetics | Issue 10/2023

Login to get access

Abstract

The treatment of patients infected with the hepatitis C virus (HCV) has been revolutionised by the development of direct-acting antiviral agents (DAAs) that target specific HCV proteins involved in viral replication. The first DAAs were associated with clinical problems such as adverse drug reactions and pharmacokinetic drug–drug interactions (DDIs). Current FDA/EMA-approved treatments are combinations of DAAs that simultaneously target the HCV N5A-protein, the HCV N5B-polymerase and the HCV NS3/4A-protease. Adverse events and DDIs are less likely with these DAA combinations but several DDIs of potential clinical significance remain. Much of the available information on the interaction of DAAs with CYP drug-metabolising enzymes and influx and efflux transporters is contained in regulatory summaries and is focused on DDIs of likely clinical importance. Important DDIs perpetrated by current DAAs include increases in the pharmacokinetic exposure to statins and dabigatran. Some mechanistic information can be deduced. Although the free concentrations of DAAs in serum are very low, a number of these DDIs are likely mediated by the inhibition of systemic influx transporters, especially OATP1B1/1B3. Other DDIs may arise by DAA-mediated inhibition of intestinal efflux transporters, which increases the systemic concentrations of some coadministered drugs. Conversely, DAAs are victims of DDIs mediated by cyclosporin, ketoconazole, omeprazole and HIV antiretroviral drug combinations, especially when boosted by ritonavir and, to a lesser extent, cobicistat. In addition, concurrent administration of inducers, such as rifampicin, carbamazepine and efavirenz, decreases exposure to some DAAs. Drug-drug interactions that increase the accumulation of HCV N3/4A-protease inhibitors like grazoprevir may exacerbate hepatic injury in HCV patients.
Literature
7.
go back to reference Simmonds P, Bukh J, Combet C, Deléage G, Enomoto N, Feinstone S, Halfon P, Inchauspé G, Kuiken C, Maertens G, Mizokami M, Murphy DG, Okamoto H, Pawlotsky JM, Penin F, Sablon E, Shin-I T, Stuyver LJ, Thiel HJ, Viazov S, Weiner AJ, Widell A. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology. 2005;42:962–73. https://doi.org/10.1002/hep.20819.CrossRefPubMed Simmonds P, Bukh J, Combet C, Deléage G, Enomoto N, Feinstone S, Halfon P, Inchauspé G, Kuiken C, Maertens G, Mizokami M, Murphy DG, Okamoto H, Pawlotsky JM, Penin F, Sablon E, Shin-I T, Stuyver LJ, Thiel HJ, Viazov S, Weiner AJ, Widell A. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology. 2005;42:962–73. https://​doi.​org/​10.​1002/​hep.​20819.CrossRefPubMed
9.
go back to reference Zeuzem S, Andreone P, Pol S, Lawitz E, Diago M, Roberts S, Focaccia R, Younossi Z, Foster GR, Horban A, Ferenci P, Nevens F, Müllhaupt B, Pockros P, Terg R, Shouval D, van Hoek B, Weiland O, Van Heeswijk R, De Meyer S, Luo D, Boogaerts G, Polo R, Picchio G, Beumont M. Telaprevir for retreatment of HCV infection. N Engl J Med. 2011;364:2417–28. https://doi.org/10.1056/NEJMoa1013086.CrossRefPubMed Zeuzem S, Andreone P, Pol S, Lawitz E, Diago M, Roberts S, Focaccia R, Younossi Z, Foster GR, Horban A, Ferenci P, Nevens F, Müllhaupt B, Pockros P, Terg R, Shouval D, van Hoek B, Weiland O, Van Heeswijk R, De Meyer S, Luo D, Boogaerts G, Polo R, Picchio G, Beumont M. Telaprevir for retreatment of HCV infection. N Engl J Med. 2011;364:2417–28. https://​doi.​org/​10.​1056/​NEJMoa1013086.CrossRefPubMed
19.
go back to reference Vander Borght S, Libbrecht L, Katoonizadeh A, van Pelt J, Cassiman D, Nevens F, Van Lommel A, Peterson BE, Fevery J, Jansen PL, Roskams TA. Breast cancer resistance protein (BCRP/ABCG2) is expressed by progenitor cells/reactive ductules and hepatocytes and its expression pattern is influenced by disease etiology and species type: possible functional consequences. J Histochem Cytochem. 2006;54:1051–9. https://doi.org/10.1369/jhc.5A6912.2006.CrossRefPubMed Vander Borght S, Libbrecht L, Katoonizadeh A, van Pelt J, Cassiman D, Nevens F, Van Lommel A, Peterson BE, Fevery J, Jansen PL, Roskams TA. Breast cancer resistance protein (BCRP/ABCG2) is expressed by progenitor cells/reactive ductules and hepatocytes and its expression pattern is influenced by disease etiology and species type: possible functional consequences. J Histochem Cytochem. 2006;54:1051–9. https://​doi.​org/​10.​1369/​jhc.​5A6912.​2006.CrossRefPubMed
28.
go back to reference Guengerich FP, Turvy CG. Comparison of levels of several human microsomal cytochrome P-450 enzymes and epoxide hydrolase in normal and disease states using immunochemical analysis of surgical liver samples. J Pharmacol Exp Ther. 1991;256:1189–94.PubMed Guengerich FP, Turvy CG. Comparison of levels of several human microsomal cytochrome P-450 enzymes and epoxide hydrolase in normal and disease states using immunochemical analysis of surgical liver samples. J Pharmacol Exp Ther. 1991;256:1189–94.PubMed
33.
go back to reference Murray M, Zaluzny L, Dannan GA, Guengerich FP, Farrell GC. Altered regulation of cytochrome P-450 enzymes in choline-deficient cirrhotic male rat liver: Impaired regulation and activity of the male-specific androst-4-ene-17-dione 16α-hydroxylase, cytochrome P-450UT-A, in hepatic cirrhosis. Mol Pharmacol. 1987;31:117–21.PubMed Murray M, Zaluzny L, Dannan GA, Guengerich FP, Farrell GC. Altered regulation of cytochrome P-450 enzymes in choline-deficient cirrhotic male rat liver: Impaired regulation and activity of the male-specific androst-4-ene-17-dione 16α-hydroxylase, cytochrome P-450UT-A, in hepatic cirrhosis. Mol Pharmacol. 1987;31:117–21.PubMed
50.
go back to reference Lin CW, Dutta S, Ding B, Wang T, Zadeikis N, Asatryan A, Kort J, Campbell A, Podsadecki T, Liu W. Pharmacokinetics, safety, and tolerability of glecaprevir and pibrentasvir in healthy White, Chinese, and Japanese adult subjects. J Clin Pharmacol. 2017;57:1616–24. https://doi.org/10.1002/jcph.959.CrossRefPubMed Lin CW, Dutta S, Ding B, Wang T, Zadeikis N, Asatryan A, Kort J, Campbell A, Podsadecki T, Liu W. Pharmacokinetics, safety, and tolerability of glecaprevir and pibrentasvir in healthy White, Chinese, and Japanese adult subjects. J Clin Pharmacol. 2017;57:1616–24. https://​doi.​org/​10.​1002/​jcph.​959.CrossRefPubMed
55.
go back to reference Brainard DM, Petry A, Anderson MS, Mitselos A, Laethem T, Heirman I, Caro L, Stone JA, Sun P, Panorchan P, Van Bortel LM, Iwamoto M, Wagner JA. Safety, tolerability, and pharmacokinetics after single and multiple doses of MK-5172, a novel HCV NS3/4A protease inhibitor with potent activity against known resistance mutants, in healthy subjects. Hepatology. 2010;52:1216A-A1217. Brainard DM, Petry A, Anderson MS, Mitselos A, Laethem T, Heirman I, Caro L, Stone JA, Sun P, Panorchan P, Van Bortel LM, Iwamoto M, Wagner JA. Safety, tolerability, and pharmacokinetics after single and multiple doses of MK-5172, a novel HCV NS3/4A protease inhibitor with potent activity against known resistance mutants, in healthy subjects. Hepatology. 2010;52:1216A-A1217.
56.
go back to reference Summa V, Ludmerer SW, McCauley JA, Fandozzi C, Burlein C, Claudio G, Coleman PJ, Dimuzio JM, Ferrara M, Di Filippo M, Gates AT, Graham DJ, Harper S, Hazuda DJ, Huang Q, McHale C, Monteagudo E, Pucci V, Rowley M, Rudd MT, Soriano A, Stahlhut MW, Vacca JP, Olsen DB, Liverton NJ, Carroll SS. MK-5172, a selective inhibitor of hepatitis C virus NS3/4A protease with broad activity across genotypes and resistant variants. Antimicrob Agents Chemother. 2012;56:4161–7. https://doi.org/10.1128/AAC.00324-12.CrossRefPubMedPubMedCentral Summa V, Ludmerer SW, McCauley JA, Fandozzi C, Burlein C, Claudio G, Coleman PJ, Dimuzio JM, Ferrara M, Di Filippo M, Gates AT, Graham DJ, Harper S, Hazuda DJ, Huang Q, McHale C, Monteagudo E, Pucci V, Rowley M, Rudd MT, Soriano A, Stahlhut MW, Vacca JP, Olsen DB, Liverton NJ, Carroll SS. MK-5172, a selective inhibitor of hepatitis C virus NS3/4A protease with broad activity across genotypes and resistant variants. Antimicrob Agents Chemother. 2012;56:4161–7. https://​doi.​org/​10.​1128/​AAC.​00324-12.CrossRefPubMedPubMedCentral
61.
go back to reference Eley T, Han YH, Huang SP, He B, Li W, Bedford W, Stonier M, Gardiner D, Sims K, Rodrigues AD, Bertz RJ. Organic anion transporting polypeptide-mediated transport of, and inhibition by, asunaprevir, an inhibitor of hepatitis C virus NS3 protease. Clin Pharmacol Ther. 2015;97:159–66. https://doi.org/10.1002/cpt.4.CrossRefPubMed Eley T, Han YH, Huang SP, He B, Li W, Bedford W, Stonier M, Gardiner D, Sims K, Rodrigues AD, Bertz RJ. Organic anion transporting polypeptide-mediated transport of, and inhibition by, asunaprevir, an inhibitor of hepatitis C virus NS3 protease. Clin Pharmacol Ther. 2015;97:159–66. https://​doi.​org/​10.​1002/​cpt.​4.CrossRefPubMed
63.
go back to reference Li W, Zhao W, Liu X, Huang X, Lopez OD, Leet JE, Fancher RM, Nguyen V, Goodrich J, Easter J, Hong Y, Caceres-Cortes J, Chang SY, Ma L, Belema M, Hamann LG, Gao M, Zhu M, Shu YZ, Humphreys WG, Johnson BM. Biotransformation of daclatasvir in vitro and in nonclinical species: Formation of the main metabolite by pyrrolidine δ-oxidation and rearrangement. Drug Metab Dispos. 2016;44:809–20. https://doi.org/10.1124/dmd.115.068866.CrossRefPubMed Li W, Zhao W, Liu X, Huang X, Lopez OD, Leet JE, Fancher RM, Nguyen V, Goodrich J, Easter J, Hong Y, Caceres-Cortes J, Chang SY, Ma L, Belema M, Hamann LG, Gao M, Zhu M, Shu YZ, Humphreys WG, Johnson BM. Biotransformation of daclatasvir in vitro and in nonclinical species: Formation of the main metabolite by pyrrolidine δ-oxidation and rearrangement. Drug Metab Dispos. 2016;44:809–20. https://​doi.​org/​10.​1124/​dmd.​115.​068866.CrossRefPubMed
66.
go back to reference Murray M, Wilkinson CF, Marcus C, Dubé CE. Structure-activity relationships in the interactions of alkoxymethylenedioxybenzene derivatives with rat hepatic microsomal mixed-function oxidases in vivo. Mol Pharmacol. 1983;24:129–36.PubMed Murray M, Wilkinson CF, Marcus C, Dubé CE. Structure-activity relationships in the interactions of alkoxymethylenedioxybenzene derivatives with rat hepatic microsomal mixed-function oxidases in vivo. Mol Pharmacol. 1983;24:129–36.PubMed
68.
go back to reference Murray M, Butler AM, Stupans I. Competitive inhibition of human liver microsomal P450 3A-dependent steroid 6β-hydroxylation activity by cyclophosphamide and ifosfamide in vitro. J Pharmacol Exp Ther. 1994;270:645–9.PubMed Murray M, Butler AM, Stupans I. Competitive inhibition of human liver microsomal P450 3A-dependent steroid 6β-hydroxylation activity by cyclophosphamide and ifosfamide in vitro. J Pharmacol Exp Ther. 1994;270:645–9.PubMed
70.
go back to reference Ortiz de Montellano PR, Kunze KL, Beilan HS, Wheeler C. Destruction of cytochrome P-450 by vinyl fluoride, fluroxene, and acetylene. Evidence for a radical intermediate in olefin oxidation. Biochemistry. 1982;21:1331-9. doi: https://doi.org/10.1021/bi00535a035. Ortiz de Montellano PR, Kunze KL, Beilan HS, Wheeler C. Destruction of cytochrome P-450 by vinyl fluoride, fluroxene, and acetylene. Evidence for a radical intermediate in olefin oxidation. Biochemistry. 1982;21:1331-9. doi: https://​doi.​org/​10.​1021/​bi00535a035.
72.
go back to reference Mogalian E, German P, Kearney BP, Yang CY, Brainard D, McNally J, Moorehead L, Mathias A. Use of multiple probes to assess transporter- and cytochrome P450-mediated drug-drug interaction potential of the pangenotypic HCV NS5A inhibitor velpatasvir. Clinical Pharmacokinet. 2016;55:605–13. https://doi.org/10.1007/s40262-015-0334-7.CrossRef Mogalian E, German P, Kearney BP, Yang CY, Brainard D, McNally J, Moorehead L, Mathias A. Use of multiple probes to assess transporter- and cytochrome P450-mediated drug-drug interaction potential of the pangenotypic HCV NS5A inhibitor velpatasvir. Clinical Pharmacokinet. 2016;55:605–13. https://​doi.​org/​10.​1007/​s40262-015-0334-7.CrossRef
87.
go back to reference Indolfi G, Kelly D, Nebbia G, Iorio R, Mania A, Giacomet V, Szenborn L, Shao J, Sang Yue M, Hsueh CH, Parhy B, Kersey K, Mangia A, Pawlowska M, Bansal S. Sofosbuvir-velpatasvir-voxilaprevir in adolescents 12 to 17 years old with HCV infection. Hepatology. 2022;76:445–55. https://doi.org/10.1002/hep.32393.CrossRefPubMed Indolfi G, Kelly D, Nebbia G, Iorio R, Mania A, Giacomet V, Szenborn L, Shao J, Sang Yue M, Hsueh CH, Parhy B, Kersey K, Mangia A, Pawlowska M, Bansal S. Sofosbuvir-velpatasvir-voxilaprevir in adolescents 12 to 17 years old with HCV infection. Hepatology. 2022;76:445–55. https://​doi.​org/​10.​1002/​hep.​32393.CrossRefPubMed
92.
go back to reference Ito K, Chiba K, Horikawa M, Ishigami M, Mizuno N, Aoki J, Gotoh Y, Iwatsubo T, Kanamitsu SI, Kato M, Kawahara I, Niinuma K, Nishino A, Sato N, Tsukamoto Y, Ueda K, Itoh T, Sugiyama Y. Which concentration of the inhibitor should be used to predict in vivo drug interactions from in vitro data? AAPS PharmSci. 2002;4:E25. https://doi.org/10.1208/ps040425.CrossRefPubMed Ito K, Chiba K, Horikawa M, Ishigami M, Mizuno N, Aoki J, Gotoh Y, Iwatsubo T, Kanamitsu SI, Kato M, Kawahara I, Niinuma K, Nishino A, Sato N, Tsukamoto Y, Ueda K, Itoh T, Sugiyama Y. Which concentration of the inhibitor should be used to predict in vivo drug interactions from in vitro data? AAPS PharmSci. 2002;4:E25. https://​doi.​org/​10.​1208/​ps040425.CrossRefPubMed
93.
go back to reference Ito K, Iwatsubo T, Kanamitsu S, Ueda K, Suzuki H, Sugiyama Y. Prediction of pharmacokinetic alterations caused by drug-drug interactions: metabolic interaction in the liver. Pharmacol Rev. 1998;50:387–412.PubMed Ito K, Iwatsubo T, Kanamitsu S, Ueda K, Suzuki H, Sugiyama Y. Prediction of pharmacokinetic alterations caused by drug-drug interactions: metabolic interaction in the liver. Pharmacol Rev. 1998;50:387–412.PubMed
94.
go back to reference Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KLR, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36. https://doi.org/10.1038/nrd3028.CrossRefPubMed Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KLR, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36. https://​doi.​org/​10.​1038/​nrd3028.CrossRefPubMed
117.
122.
go back to reference Millard DC, Strock CJ, Carlson CB, Aoyama N, Juhasz K, Goetze TA, Stoelzle-Feix S, Becker N, Fertig N, January CT, Anson BD, Ross JD. Identification of drug-drug interactions in vitro: A case study evaluating the effects of sofosbuvir and amiodarone on hiPSC-derived cardiomyocytes. Toxicol Sci. 2016;154:174–82. https://doi.org/10.1093/toxsci/kfw153.CrossRefPubMed Millard DC, Strock CJ, Carlson CB, Aoyama N, Juhasz K, Goetze TA, Stoelzle-Feix S, Becker N, Fertig N, January CT, Anson BD, Ross JD. Identification of drug-drug interactions in vitro: A case study evaluating the effects of sofosbuvir and amiodarone on hiPSC-derived cardiomyocytes. Toxicol Sci. 2016;154:174–82. https://​doi.​org/​10.​1093/​toxsci/​kfw153.CrossRefPubMed
127.
go back to reference Feng HP, Caro L, Fandozzi C, Chu X, Guo Z, Talaty J, Panebianco D, Dunnington K, Du L, Hanley WD, Fraser IP, Mitselos A, Denef JF, De Lepeleire I, de Hoon JN, Vandermeulen C, Marshall WL, Jumes P, Huang X, Martinho M, Valesky R, Butterton JR, Iwamoto M, Yeh WW. Pharmacokinetic interactions between the hepatitis C virus inhibitors elbasvir and grazoprevir and HIV protease inhibitors ritonavir, atazanavir, lopinavir, and darunavir in healthy volunteers. Antimicrob Agents Chemother. 2019;63:e02142-e2218. https://doi.org/10.1128/AAC.02142-18.CrossRefPubMedPubMedCentral Feng HP, Caro L, Fandozzi C, Chu X, Guo Z, Talaty J, Panebianco D, Dunnington K, Du L, Hanley WD, Fraser IP, Mitselos A, Denef JF, De Lepeleire I, de Hoon JN, Vandermeulen C, Marshall WL, Jumes P, Huang X, Martinho M, Valesky R, Butterton JR, Iwamoto M, Yeh WW. Pharmacokinetic interactions between the hepatitis C virus inhibitors elbasvir and grazoprevir and HIV protease inhibitors ritonavir, atazanavir, lopinavir, and darunavir in healthy volunteers. Antimicrob Agents Chemother. 2019;63:e02142-e2218. https://​doi.​org/​10.​1128/​AAC.​02142-18.CrossRefPubMedPubMedCentral
128.
137.
go back to reference Bierman WFW, Scheffer GL, Schoonderwoerd A, Jansen G, van Agtmael MA, Danner SA, Scheper RJ. Protease inhibitors atazanavir, lopinavir and ritonavir are potent blockers, but poor substrates, of ABC transporters in a broad panel of ABC transporter-overexpressing cell lines. J Antimicrob Chemother. 2010;65:1672–80. https://doi.org/10.1093/jac/dkq209.CrossRefPubMed Bierman WFW, Scheffer GL, Schoonderwoerd A, Jansen G, van Agtmael MA, Danner SA, Scheper RJ. Protease inhibitors atazanavir, lopinavir and ritonavir are potent blockers, but poor substrates, of ABC transporters in a broad panel of ABC transporter-overexpressing cell lines. J Antimicrob Chemother. 2010;65:1672–80. https://​doi.​org/​10.​1093/​jac/​dkq209.CrossRefPubMed
144.
go back to reference Mogalian E, Stamm LM, Osinusi A, Brainard DM, Shen G, Ling KHJ, Mathias A. Drug-drug interaction studies between hepatitis C virus antivirals sofosbuvir/velpatasvir and boosted and unboosted Human Immunodeficiency Virus antiretroviral regimens in healthy volunteers. Clin Infect Dis. 2018;67:934–40. https://doi.org/10.1093/cid/ciy201.CrossRefPubMed Mogalian E, Stamm LM, Osinusi A, Brainard DM, Shen G, Ling KHJ, Mathias A. Drug-drug interaction studies between hepatitis C virus antivirals sofosbuvir/velpatasvir and boosted and unboosted Human Immunodeficiency Virus antiretroviral regimens in healthy volunteers. Clin Infect Dis. 2018;67:934–40. https://​doi.​org/​10.​1093/​cid/​ciy201.CrossRefPubMed
146.
go back to reference Feng HP, Guo Z, Fandozzi C, Panebianco D, Caro L, Wolford D, Dreyer DP, Valesky R, Martinho M, Rizk ML, Iwamoto M, Yeh WW. Pharmacokinetic interactions between the fixed-dose combinations of elvitegravir/cobicistat/tenofovir disoproxil fumarate/emtricitabine and elbasvir/grazoprevir in healthy adult participants. Clin Pharmacol Drug Developm. 2019;8:952–61. https://doi.org/10.1002/cpdd.702.CrossRef Feng HP, Guo Z, Fandozzi C, Panebianco D, Caro L, Wolford D, Dreyer DP, Valesky R, Martinho M, Rizk ML, Iwamoto M, Yeh WW. Pharmacokinetic interactions between the fixed-dose combinations of elvitegravir/cobicistat/tenofovir disoproxil fumarate/emtricitabine and elbasvir/grazoprevir in healthy adult participants. Clin Pharmacol Drug Developm. 2019;8:952–61. https://​doi.​org/​10.​1002/​cpdd.​702.CrossRef
148.
go back to reference Minuesa G, Volk C, Molina-Arcas M, Gorboulev V, Erkizia I, Arndt P, Clotet B, Pastor-Anglada M, Koepsell H, Martinez-Picado J. Transport of lamivudine [(-)-beta-L-2’,3’-dideoxy-3’-thiacytidine] and high-affinity interaction of nucleoside reverse transcriptase inhibitors with human organic cation transporters 1, 2, and 3. J Pharmacol Exp Ther. 2009;329:252–61. https://doi.org/10.1124/jpet.108.146225.CrossRefPubMed Minuesa G, Volk C, Molina-Arcas M, Gorboulev V, Erkizia I, Arndt P, Clotet B, Pastor-Anglada M, Koepsell H, Martinez-Picado J. Transport of lamivudine [(-)-beta-L-2’,3’-dideoxy-3’-thiacytidine] and high-affinity interaction of nucleoside reverse transcriptase inhibitors with human organic cation transporters 1, 2, and 3. J Pharmacol Exp Ther. 2009;329:252–61. https://​doi.​org/​10.​1124/​jpet.​108.​146225.CrossRefPubMed
157.
go back to reference Caro L, Wenning L, Guo Z, Fraser IP, Fandozzi C, Talaty J, Panebianco D, Ho M, Uemura N, Reitmann C, Angus P, Gane E, Marbury T, Smith WB, Iwamoto M, Butterton JR, Yeh WW. Effect of hepatic impairment on the pharmacokinetics of grazoprevir, a hepatitis C virus protease inhibitor. Antimicrob Agents Chemother. 2017;61:e00813-e817. https://doi.org/10.1128/AAC.00813-17.CrossRefPubMedPubMedCentral Caro L, Wenning L, Guo Z, Fraser IP, Fandozzi C, Talaty J, Panebianco D, Ho M, Uemura N, Reitmann C, Angus P, Gane E, Marbury T, Smith WB, Iwamoto M, Butterton JR, Yeh WW. Effect of hepatic impairment on the pharmacokinetics of grazoprevir, a hepatitis C virus protease inhibitor. Antimicrob Agents Chemother. 2017;61:e00813-e817. https://​doi.​org/​10.​1128/​AAC.​00813-17.CrossRefPubMedPubMedCentral
Metadata
Title
Mechanisms and Clinical Significance of Pharmacokinetic Drug Interactions Mediated by FDA and EMA-approved Hepatitis C Direct-Acting Antiviral Agents
Author
Michael Murray
Publication date
20-09-2023
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 10/2023
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-023-01302-x

Other articles of this Issue 10/2023

Clinical Pharmacokinetics 10/2023 Go to the issue