Skip to main content
Top
Published in: Medical Oncology 5/2017

01-05-2017 | Review Article

LincRNa-p21: function and mechanism in cancer

Authors: Shaoyun Chen, Hairong Liang, Hui Yang, Kairu Zhou, Longmei Xu, Jiaxian Liu, Bei Lai, Li Song, Hao Luo, Jianming Peng, Zhidong Liu, Yongmei Xiao, Wen Chen, Huanwen Tang

Published in: Medical Oncology | Issue 5/2017

Login to get access

Abstract

In view of the rapid development of gene chips and high-throughput sequencing technology, noncoding RNAs (ncRNas) form a high percentage of the mammalian genome. Two major subgroups of ncRNAs that have been identified are the long ncRNAs (lncRNas) and the microRNAs. A number of studies in the past few years have showed crucial functions for lncRNas in cancer. LincRNa-p21 as a p53-dependent transcriptional target gene and a potential diagnostic marker is involved in proliferation, cell cycle, metabolism and reprogramming. In addition, more researches revealed that lincRNa-p21 is associated with cancer progression and contributed to the treatment and prognosis of cancer. In this review, we briefly summarize the function and molecular mechanisms of lincRNa-p21 in cancer and its regulation for the genes expression .
Literature
1.
go back to reference Gao D, Xiao Z, Li HP, Han DH, Zhang YP. LncRNA MALAT-1 elevates HMGB1 to promote autophagy resulting in inhibition of tumor cell apoptosis in multiple Myeloma. J Cell Biochem. 2017. doi:10.1002/jcb.25987. Gao D, Xiao Z, Li HP, Han DH, Zhang YP. LncRNA MALAT-1 elevates HMGB1 to promote autophagy resulting in inhibition of tumor cell apoptosis in multiple Myeloma. J Cell Biochem. 2017. doi:10.​1002/​jcb.​25987.
2.
3.
go back to reference Tang J, Xie Y, Xu X, Yin Y, Jiang R, Deng L, et al. Bidirectional transcription of Linc00441 and RB1 via H3K27 modification-dependent way promotes hepatocellular carcinoma. Cell Death Dis. 2017;8(3):e2675.PubMedCrossRef Tang J, Xie Y, Xu X, Yin Y, Jiang R, Deng L, et al. Bidirectional transcription of Linc00441 and RB1 via H3K27 modification-dependent way promotes hepatocellular carcinoma. Cell Death Dis. 2017;8(3):e2675.PubMedCrossRef
4.
go back to reference Zhai H, Fesler A, Schee K, Fodstad Ø, Flatmark K, Ju J. Clinical significance of long intergenic noncoding RNA-p21 in colorectal cancer. Clin Colorectal Cancer. 2013;12(4):261–6.PubMedCrossRef Zhai H, Fesler A, Schee K, Fodstad Ø, Flatmark K, Ju J. Clinical significance of long intergenic noncoding RNA-p21 in colorectal cancer. Clin Colorectal Cancer. 2013;12(4):261–6.PubMedCrossRef
5.
go back to reference Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, et al. A large intergenic noncoding rna induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–19.PubMedPubMedCentralCrossRef Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, et al. A large intergenic noncoding rna induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–19.PubMedPubMedCentralCrossRef
6.
go back to reference Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21.PubMedCrossRef Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21.PubMedCrossRef
7.
8.
go back to reference Dimitrova N, Zamudio J, Jong R, Soukup D, Resnick R, Sarma K, et al. LincRNA-p21 activates p21 In cis to promote polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell. 2014;54(5):777–90.PubMedPubMedCentralCrossRef Dimitrova N, Zamudio J, Jong R, Soukup D, Resnick R, Sarma K, et al. LincRNA-p21 activates p21 In cis to promote polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell. 2014;54(5):777–90.PubMedPubMedCentralCrossRef
9.
go back to reference Wu G, Cai J, Han Y, Chen J, Huang ZP, Chen C, et al. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation. 2014;130(17):1452–65.PubMedPubMedCentralCrossRef Wu G, Cai J, Han Y, Chen J, Huang ZP, Chen C, et al. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation. 2014;130(17):1452–65.PubMedPubMedCentralCrossRef
10.
go back to reference Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature. 1993;362(6423):857–60.PubMedCrossRef Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature. 1993;362(6423):857–60.PubMedCrossRef
11.
go back to reference Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387(6630):296–9.PubMedCrossRef Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387(6630):296–9.PubMedCrossRef
12.
go back to reference Yin Y, Stephen CW, Luciani MG, Fåhraeus R. p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat Cell Biol. 2002;4(6):462–7.PubMedCrossRef Yin Y, Stephen CW, Luciani MG, Fåhraeus R. p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat Cell Biol. 2002;4(6):462–7.PubMedCrossRef
13.
go back to reference Wei G, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90(4):595–606.CrossRef Wei G, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90(4):595–606.CrossRef
14.
go back to reference Lin Liu DMSR. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol. 1999;19(2):1202–9.CrossRef Lin Liu DMSR. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol. 1999;19(2):1202–9.CrossRef
16.
go back to reference Toyama T, Iwase H, Watson P, Muzik H, Saettler E, Magliocco A, et al. Suppression of ING1 expression in sporadic breast cancer. Oncogene. 1999;18(37):5187–93.PubMedCrossRef Toyama T, Iwase H, Watson P, Muzik H, Saettler E, Magliocco A, et al. Suppression of ING1 expression in sporadic breast cancer. Oncogene. 1999;18(37):5187–93.PubMedCrossRef
17.
go back to reference He GH, Helbing CC, Wagner MJ, Sensen CW, Riabowol K. Phylogenetic analysis of the ING family of PHD finger proteins. Mol Biol Evol. 1951;23(22):104–16. He GH, Helbing CC, Wagner MJ, Sensen CW, Riabowol K. Phylogenetic analysis of the ING family of PHD finger proteins. Mol Biol Evol. 1951;23(22):104–16.
18.
go back to reference Gunduz M, Demircan K, Gunduz E, Katase N, Tamamura R, Nagatsuka H. Potential usage of ING family members in cancer diagnostics and molecular therapy. Curr Drug Targets. 2009;10(5):465–76.PubMedCrossRef Gunduz M, Demircan K, Gunduz E, Katase N, Tamamura R, Nagatsuka H. Potential usage of ING family members in cancer diagnostics and molecular therapy. Curr Drug Targets. 2009;10(5):465–76.PubMedCrossRef
19.
go back to reference Tran UM, Rajarajacholan U, Soh J, Kim T, Thalappilly S, Sensen CW, et al. LincRNA-p21 acts as a mediator of ING1b-induced apoptosis. Cell Death Disease. 2015;6(3):478.CrossRef Tran UM, Rajarajacholan U, Soh J, Kim T, Thalappilly S, Sensen CW, et al. LincRNA-p21 acts as a mediator of ING1b-induced apoptosis. Cell Death Disease. 2015;6(3):478.CrossRef
20.
go back to reference Zheng J, Dong P, Mao Y, Chen S, Wu X, Li G, et al. LincRNA-p21 inhibits hepatic stellate cells activation and liver fibrogenesis via p21. FEBS J. 2015;282(24):4810–21.PubMedCrossRef Zheng J, Dong P, Mao Y, Chen S, Wu X, Li G, et al. LincRNA-p21 inhibits hepatic stellate cells activation and liver fibrogenesis via p21. FEBS J. 2015;282(24):4810–21.PubMedCrossRef
21.
go back to reference Braun AC. On the origin of the cancer cells. Am Sci. 1970;58(3):307–20.PubMed Braun AC. On the origin of the cancer cells. Am Sci. 1970;58(3):307–20.PubMed
22.
go back to reference Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004;5(5):343–54.PubMedCrossRef Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004;5(5):343–54.PubMedCrossRef
23.
go back to reference Kaelin WG, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30(4):393–402.PubMedCrossRef Kaelin WG, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30(4):393–402.PubMedCrossRef
24.
go back to reference Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIF targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–8.PubMedCrossRef Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIF targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–8.PubMedCrossRef
25.
go back to reference Yang F, Zhang H, Mei Y, Wu M. Reciprocal regulation of HIF-1α and LincRNA-p21 modulates the Warburg effect. Mol Cell. 2013;53(1):88–100.PubMedCrossRef Yang F, Zhang H, Mei Y, Wu M. Reciprocal regulation of HIF-1α and LincRNA-p21 modulates the Warburg effect. Mol Cell. 2013;53(1):88–100.PubMedCrossRef
26.
go back to reference Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.PubMedCrossRef Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.PubMedCrossRef
27.
go back to reference Polo J, Anderssen E, Walsh R, Schwarz B, Nefzger C, Lim SM, et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell. 2012;151(7):1617–32.PubMedPubMedCentralCrossRef Polo J, Anderssen E, Walsh R, Schwarz B, Nefzger C, Lim SM, et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell. 2012;151(7):1617–32.PubMedPubMedCentralCrossRef
28.
go back to reference Liu L, Xu Y, He M, Zhang M, Cui F, Lu L, et al. Transcriptional pause release is a rate-limiting step for somatic cell reprogramming. Cell Stem Cell. 2014;15(5):2335–43.CrossRef Liu L, Xu Y, He M, Zhang M, Cui F, Lu L, et al. Transcriptional pause release is a rate-limiting step for somatic cell reprogramming. Cell Stem Cell. 2014;15(5):2335–43.CrossRef
29.
go back to reference Rais Y, Zviran A, Geula S, Gafni O, Chomsky E, Viukov S, et al. Corrigendum: deterministic direct reprogramming of somatic cells to pluripotency. Nature. 2013;502(7469):65–70.PubMedCrossRef Rais Y, Zviran A, Geula S, Gafni O, Chomsky E, Viukov S, et al. Corrigendum: deterministic direct reprogramming of somatic cells to pluripotency. Nature. 2013;502(7469):65–70.PubMedCrossRef
30.
go back to reference Takahashi K, Yamanaka S. Induced pluripotent stem cells in medicine and biology. Development. 2013;140(12):2457–61.PubMedCrossRef Takahashi K, Yamanaka S. Induced pluripotent stem cells in medicine and biology. Development. 2013;140(12):2457–61.PubMedCrossRef
31.
go back to reference Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet. 2010;42(12):1113–7.PubMedPubMedCentralCrossRef Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet. 2010;42(12):1113–7.PubMedPubMedCentralCrossRef
32.
go back to reference Lin N, Chang KY, Li Z, Gates K, Rana Z, Dang J, et al. An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol Cell. 2014;53(6):1005–19.PubMedPubMedCentralCrossRef Lin N, Chang KY, Li Z, Gates K, Rana Z, Dang J, et al. An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol Cell. 2014;53(6):1005–19.PubMedPubMedCentralCrossRef
33.
go back to reference Bao X, Wu H, Zhu X, Guo X, Hutchins AP, Luo Z, et al. The p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promoters. Cell Res. 2014;25(1):80–92.PubMedPubMedCentralCrossRef Bao X, Wu H, Zhu X, Guo X, Hutchins AP, Luo Z, et al. The p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promoters. Cell Res. 2014;25(1):80–92.PubMedPubMedCentralCrossRef
34.
go back to reference Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci Robbins ES, et al. Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol. 1998;141(7):1659–73.PubMedPubMedCentralCrossRef Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci Robbins ES, et al. Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol. 1998;141(7):1659–73.PubMedPubMedCentralCrossRef
35.
go back to reference Spurlock CF, Tossberg JT, Matlock BK, Olsen NJ, Aune TM. Methotrexate inhibits NF-κB activity via long intergenic (noncoding) RNA-p21 induction. Arthritis Rheumatol. 2014;66(11):2947–57.PubMedPubMedCentralCrossRef Spurlock CF, Tossberg JT, Matlock BK, Olsen NJ, Aune TM. Methotrexate inhibits NF-κB activity via long intergenic (noncoding) RNA-p21 induction. Arthritis Rheumatol. 2014;66(11):2947–57.PubMedPubMedCentralCrossRef
36.
go back to reference Yang N, Fu Y, Zhang H, Hui S, Zhu N, Yang G. LincRNA-p21 activates endoplasmic reticulum stress and inhibits hepatocellular carcinoma. Oncotarget. 2015;6(29):28151–63.PubMedCrossRef Yang N, Fu Y, Zhang H, Hui S, Zhu N, Yang G. LincRNA-p21 activates endoplasmic reticulum stress and inhibits hepatocellular carcinoma. Oncotarget. 2015;6(29):28151–63.PubMedCrossRef
37.
go back to reference Işın M, Uysaler E, Özgür E, Yücel ÖB, Gezer U, Dalay N. Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease. Front Genet. 2015;6:168.PubMedPubMedCentral Işın M, Uysaler E, Özgür E, Yücel ÖB, Gezer U, Dalay N. Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease. Front Genet. 2015;6:168.PubMedPubMedCentral
38.
go back to reference Pihikova D, Kasak P, Kubanikova P, Sokol R, Tkac J. Aberrant sialylation of a prostate-specific antigen: electrochemical label-free glycoprofiling in prostate cancer serum samples. Anal Chim Acta. 2016;934:72–9.PubMedCrossRef Pihikova D, Kasak P, Kubanikova P, Sokol R, Tkac J. Aberrant sialylation of a prostate-specific antigen: electrochemical label-free glycoprofiling in prostate cancer serum samples. Anal Chim Acta. 2016;934:72–9.PubMedCrossRef
39.
go back to reference Zengle G, Xu B, Chen M. Long chain non-coding RNA in the progress of prostate cancer. J Southeast Univ (Med Sci Ed). 2016;35(3):431–6. Zengle G, Xu B, Chen M. Long chain non-coding RNA in the progress of prostate cancer. J Southeast Univ (Med Sci Ed). 2016;35(3):431–6.
40.
go back to reference Wang R, Zhang X, Wang C-X. Research advance on long non-coding RNA in cancer. J Pract Hosp. 2016;13(3):9–13. Wang R, Zhang X, Wang C-X. Research advance on long non-coding RNA in cancer. J Pract Hosp. 2016;13(3):9–13.
42.
go back to reference Castellazzi M, Spyrou G, La VN, Dangy JP, Piu F, Yaniv M, et al. Overexpression of c-jun, junB, or junD affects cell growth differently. Proc Natl Acad Sci USA. 1991;88(20):8890–4.PubMedPubMedCentralCrossRef Castellazzi M, Spyrou G, La VN, Dangy JP, Piu F, Yaniv M, et al. Overexpression of c-jun, junB, or junD affects cell growth differently. Proc Natl Acad Sci USA. 1991;88(20):8890–4.PubMedPubMedCentralCrossRef
43.
go back to reference Dong Z, Watts R, Sun Y, Zhan S, Colburn N. Progressive elevation of ap-1 activity during preneoplastic-to-neoplastic progression as modeled in mouse jb6 cell variants. Int J Oncol. 1995;7(2):359–64.PubMed Dong Z, Watts R, Sun Y, Zhan S, Colburn N. Progressive elevation of ap-1 activity during preneoplastic-to-neoplastic progression as modeled in mouse jb6 cell variants. Int J Oncol. 1995;7(2):359–64.PubMed
44.
go back to reference Wang G, Li Z, Zhao Q, Zhu Y, Zhao C, Li X, et al. LincRNA-p21 enhances the sensitivity of radiotherapy for human colorectal cancer by targeting the Wnt/β-catenin signaling pathway. Oncol Rep. 2014;31(4):1839–45.PubMed Wang G, Li Z, Zhao Q, Zhu Y, Zhao C, Li X, et al. LincRNA-p21 enhances the sensitivity of radiotherapy for human colorectal cancer by targeting the Wnt/β-catenin signaling pathway. Oncol Rep. 2014;31(4):1839–45.PubMed
45.
go back to reference White BD, Chien AJ, Dawson DW. Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers. Gastroenterology. 2012;142(2):219–32.PubMedCrossRef White BD, Chien AJ, Dawson DW. Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers. Gastroenterology. 2012;142(2):219–32.PubMedCrossRef
46.
go back to reference Kendziorra E, Ahlborn K, Spitzner M, Emons G, Gaedcke J, Kramer F, et al. Silencing of the Wnt transcription factor TCF4 sensitizes colorectal cancer cells to (chemo-) radiotherapy. Carcinogenesis. 2011;32(12):1824–31.PubMedPubMedCentralCrossRef Kendziorra E, Ahlborn K, Spitzner M, Emons G, Gaedcke J, Kramer F, et al. Silencing of the Wnt transcription factor TCF4 sensitizes colorectal cancer cells to (chemo-) radiotherapy. Carcinogenesis. 2011;32(12):1824–31.PubMedPubMedCentralCrossRef
47.
go back to reference Waaler J, Machon O, von Kries JP, Wilson SR, Lundenes E, Wedlich D, et al. Novel synthetic antagonists of canonical Wnt signaling inhibit colorectal cancer cell growth. Can Res. 2011;71(1):197–205.CrossRef Waaler J, Machon O, von Kries JP, Wilson SR, Lundenes E, Wedlich D, et al. Novel synthetic antagonists of canonical Wnt signaling inhibit colorectal cancer cell growth. Can Res. 2011;71(1):197–205.CrossRef
48.
go back to reference Michael B. Crosstalk between Wnt signaling and RNA processing in colorectal cancer. J Cancer. 2013;4(2):96–103.CrossRef Michael B. Crosstalk between Wnt signaling and RNA processing in colorectal cancer. J Cancer. 2013;4(2):96–103.CrossRef
49.
go back to reference Castellano JJ, Navarro A, Vinolas N, Marrades RM, Moises J, Cordeiro A, et al. LincRNA-p21 impacts prognosis in resected non-small-cell lung cancer patients through angiogenesis regulation. J Thorac Oncol. 2016;11(12):2173–82.PubMedCrossRef Castellano JJ, Navarro A, Vinolas N, Marrades RM, Moises J, Cordeiro A, et al. LincRNA-p21 impacts prognosis in resected non-small-cell lung cancer patients through angiogenesis regulation. J Thorac Oncol. 2016;11(12):2173–82.PubMedCrossRef
50.
go back to reference Battegay EJ. PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF & #946;-receptors. J Cell Biol. 1994;125(4):917–28.PubMedCrossRef Battegay EJ. PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF & #946;-receptors. J Cell Biol. 1994;125(4):917–28.PubMedCrossRef
51.
go back to reference Rojiani MV, Alidina J, Esposito N, Rojiani AM. Expression of MMP-2 correlates with increased angiogenesis in CNS metastasis of lung carcinoma. Int J Clin Exp Pathol. 2010;3(8):775–81.PubMedPubMedCentral Rojiani MV, Alidina J, Esposito N, Rojiani AM. Expression of MMP-2 correlates with increased angiogenesis in CNS metastasis of lung carcinoma. Int J Clin Exp Pathol. 2010;3(8):775–81.PubMedPubMedCentral
52.
go back to reference de Mello RA, Costa BM, Reis RM, Hespanhol V. Insights into angiogenesis in non-small cell lung cancer: molecular mechanisms, polymorphic genes, and targeted therapies. Recent patents on anti-cancer drug discovery. 2012;7(1):118–31(14). de Mello RA, Costa BM, Reis RM, Hespanhol V. Insights into angiogenesis in non-small cell lung cancer: molecular mechanisms, polymorphic genes, and targeted therapies. Recent patents on anti-cancer drug discovery. 2012;7(1):118–31(14).
53.
go back to reference Toh H, Cao M, Daniels E, Bateman A. Expression of the growth factor progranulin in endothelial cells influences growth and development of blood vessels: a novel mouse model. PLoS ONE. 2013;8(5):e64989.PubMedPubMedCentralCrossRef Toh H, Cao M, Daniels E, Bateman A. Expression of the growth factor progranulin in endothelial cells influences growth and development of blood vessels: a novel mouse model. PLoS ONE. 2013;8(5):e64989.PubMedPubMedCentralCrossRef
54.
go back to reference Beckham CJ, Olsen J, Yin PN, Wu CH, Ting HJ, Hagen FK, et al. Bladder cancer exosomes contain EDIL-3/Del1 and facilitate cancer progression. J Urol. 2014;192(2):583–92.PubMedCrossRef Beckham CJ, Olsen J, Yin PN, Wu CH, Ting HJ, Hagen FK, et al. Bladder cancer exosomes contain EDIL-3/Del1 and facilitate cancer progression. J Urol. 2014;192(2):583–92.PubMedCrossRef
55.
go back to reference Yang F, Zhang H, Mei Y, Wu M. Reciprocal regulation of HIF-1α and LincRNA-p21 modulates the Warburg effect. Mol Cell. 2014;53(1):88–100.PubMedCrossRef Yang F, Zhang H, Mei Y, Wu M. Reciprocal regulation of HIF-1α and LincRNA-p21 modulates the Warburg effect. Mol Cell. 2014;53(1):88–100.PubMedCrossRef
56.
go back to reference Blume CJ, Hotz-Wagenblatt A, Hullein J, Sellner L, Jethwa A, Stolz T, et al. p53-dependent non-coding RNA networks in chronic lymphocytic leukemia. Leukemia. 2015;29(10):2015–23.PubMedCrossRef Blume CJ, Hotz-Wagenblatt A, Hullein J, Sellner L, Jethwa A, Stolz T, et al. p53-dependent non-coding RNA networks in chronic lymphocytic leukemia. Leukemia. 2015;29(10):2015–23.PubMedCrossRef
57.
go back to reference Jiang YJ, Bikle DD. LncRNA profiling reveals new mechanism for VDR protection against skin cancer formation. J Steroid Biochem Mol Biol. 2014;144(part A):87–90.PubMed Jiang YJ, Bikle DD. LncRNA profiling reveals new mechanism for VDR protection against skin cancer formation. J Steroid Biochem Mol Biol. 2014;144(part A):87–90.PubMed
58.
go back to reference Hall JR, Messenger ZJ, Tam HW, Phillips SL, Recio L, Smart RC. Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death Disease. 2015;6(3):e1700.PubMedPubMedCentralCrossRef Hall JR, Messenger ZJ, Tam HW, Phillips SL, Recio L, Smart RC. Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death Disease. 2015;6(3):e1700.PubMedPubMedCentralCrossRef
Metadata
Title
LincRNa-p21: function and mechanism in cancer
Authors
Shaoyun Chen
Hairong Liang
Hui Yang
Kairu Zhou
Longmei Xu
Jiaxian Liu
Bei Lai
Li Song
Hao Luo
Jianming Peng
Zhidong Liu
Yongmei Xiao
Wen Chen
Huanwen Tang
Publication date
01-05-2017
Publisher
Springer US
Published in
Medical Oncology / Issue 5/2017
Print ISSN: 1357-0560
Electronic ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-017-0959-5

Other articles of this Issue 5/2017

Medical Oncology 5/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.