Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2013

Open Access 01-12-2013 | Research

Joint-specific changes in locomotor complexity in the absence of muscle atrophy following incomplete spinal cord injury

Authors: Brian K Hillen, Gary T Yamaguchi, James J Abbas, Ranu Jung

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2013

Login to get access

Abstract

Background

Following incomplete spinal cord injury (iSCI), descending drive is impaired, possibly leading to a decrease in the complexity of gait. To test the hypothesis that iSCI impairs gait coordination and decreases locomotor complexity, we collected 3D joint angle kinematics and muscle parameters of rats with a sham or an incomplete spinal cord injury.

Methods

12 adult, female, Long-Evans rats, 6 sham and 6 mild-moderate T8 iSCI, were tested 4 weeks following injury. The Basso Beattie Bresnahan locomotor score was used to verify injury severity. Animals had reflective markers placed on the bony prominences of their limb joints and were filmed in 3D while walking on a treadmill. Joint angles and segment motion were analyzed quantitatively, and complexity of joint angle trajectory and overall gait were calculated using permutation entropy and principal component analysis, respectively. Following treadmill testing, the animals were euthanized and hindlimb muscles removed. Excised muscles were tested for mass, density, fiber length, pennation angle, and relaxed sarcomere length.

Results

Muscle parameters were similar between groups with no evidence of muscle atrophy. The animals showed overextension of the ankle, which was compensated for by a decreased range of motion at the knee. Left-right coordination was altered, leading to left and right knee movements that are entirely out of phase, with one joint moving while the other is stationary. Movement patterns remained symmetric. Permutation entropy measures indicated changes in complexity on a joint specific basis, with the largest changes at the ankle. No significant difference was seen using principal component analysis. Rats were able to achieve stable weight bearing locomotion at reasonable speeds on the treadmill despite these deficiencies.

Conclusions

Decrease in supraspinal control following iSCI causes a loss of complexity of ankle kinematics. This loss can be entirely due to loss of supraspinal control in the absence of muscle atrophy and may be quantified using permutation entropy. Joint-specific differences in kinematic complexity may be attributed to different sources of motor control. This work indicates the importance of the ankle for rehabilitation interventions following spinal cord injury.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bareyre FM, Schwab ME: Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends Neurosci 2003, 26: 555-563. 10.1016/j.tins.2003.08.004PubMed Bareyre FM, Schwab ME: Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends Neurosci 2003, 26: 555-563. 10.1016/j.tins.2003.08.004PubMed
2.
go back to reference Bradbury EJ, McMahon SB: Spinal cord repair strategies: why do they work? Nat Rev Neurosci 2006, 7: 644-653.PubMed Bradbury EJ, McMahon SB: Spinal cord repair strategies: why do they work? Nat Rev Neurosci 2006, 7: 644-653.PubMed
3.
go back to reference Thuret S, Moon LD, Gage FH: Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 2006, 7: 628-643.PubMed Thuret S, Moon LD, Gage FH: Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 2006, 7: 628-643.PubMed
4.
go back to reference Hutchinson KJ, Linderman JK, Basso DM: Skeletal muscle adaptations following spinal cord contusion injury in rat and the relationship to locomotor function: a time course study. J Neurotrauma 2001, 18: 1075-1089. 10.1089/08977150152693764PubMed Hutchinson KJ, Linderman JK, Basso DM: Skeletal muscle adaptations following spinal cord contusion injury in rat and the relationship to locomotor function: a time course study. J Neurotrauma 2001, 18: 1075-1089. 10.1089/08977150152693764PubMed
5.
go back to reference Talmadge RJ, Castro MJ, Apple DF Jr, Dudley GA: Phenotypic adaptations in human muscle fibers 6 and 24 wk after spinal cord injury. J Appl Physiol 2002, 92: 147-154.PubMed Talmadge RJ, Castro MJ, Apple DF Jr, Dudley GA: Phenotypic adaptations in human muscle fibers 6 and 24 wk after spinal cord injury. J Appl Physiol 2002, 92: 147-154.PubMed
6.
go back to reference Stein RB, Chong SL, James KB, Kido A, Bell GJ, Tubman LA, Belanger M: Electrical stimulation for therapy and mobility after spinal cord injury. Prog Brain Res 2002, 137: 27-34.PubMed Stein RB, Chong SL, James KB, Kido A, Bell GJ, Tubman LA, Belanger M: Electrical stimulation for therapy and mobility after spinal cord injury. Prog Brain Res 2002, 137: 27-34.PubMed
7.
go back to reference Shields RK: Muscular, skeletal, and neural adaptations following spinal cord injury. J Orthop Sports Phys Ther 2002, 32: 65-74.PubMed Shields RK: Muscular, skeletal, and neural adaptations following spinal cord injury. J Orthop Sports Phys Ther 2002, 32: 65-74.PubMed
8.
go back to reference Bloomfield SA: Changes in musculoskeletal structure and function with prolonged bed rest. Med Sci Sports Exerc 1997, 29: 197-206.PubMed Bloomfield SA: Changes in musculoskeletal structure and function with prolonged bed rest. Med Sci Sports Exerc 1997, 29: 197-206.PubMed
9.
go back to reference Bajotto G, Shimomura Y: Determinants of disuse-induced skeletal muscle atrophy: exercise and nutrition countermeasures to prevent protein loss. J Nutr Sci Vitaminol (Tokyo) 2006, 52: 233-247. 10.3177/jnsv.52.233 Bajotto G, Shimomura Y: Determinants of disuse-induced skeletal muscle atrophy: exercise and nutrition countermeasures to prevent protein loss. J Nutr Sci Vitaminol (Tokyo) 2006, 52: 233-247. 10.3177/jnsv.52.233
10.
go back to reference Cornachione A, Cacao-Benedini LO, Shimano MM, Volpon JB, Martinez EZ, Mattiello-Sverzut AC: Morphological comparison of different protocols of skeletal muscle remobilization in rats after hindlimb suspension. Scand J Med Sci Sports 2008, 18: 453-461.PubMed Cornachione A, Cacao-Benedini LO, Shimano MM, Volpon JB, Martinez EZ, Mattiello-Sverzut AC: Morphological comparison of different protocols of skeletal muscle remobilization in rats after hindlimb suspension. Scand J Med Sci Sports 2008, 18: 453-461.PubMed
11.
go back to reference Wirth B, van Hedel HJ, Curt A: Ankle dexterity is less impaired than muscle strength in incomplete spinal cord lesion. J Neurol 2008, 255: 273-279. 10.1007/s00415-008-0724-yPubMed Wirth B, van Hedel HJ, Curt A: Ankle dexterity is less impaired than muscle strength in incomplete spinal cord lesion. J Neurol 2008, 255: 273-279. 10.1007/s00415-008-0724-yPubMed
12.
go back to reference Wirth B, Van Hedel HJ, Curt A: Changes in corticospinal function and ankle motor control during recovery from incomplete spinal cord injury. J Neurotrauma 2008, 25: 467-478. 10.1089/neu.2007.0472PubMed Wirth B, Van Hedel HJ, Curt A: Changes in corticospinal function and ankle motor control during recovery from incomplete spinal cord injury. J Neurotrauma 2008, 25: 467-478. 10.1089/neu.2007.0472PubMed
13.
go back to reference Maegele M, Muller S, Wernig A, Edgerton VR, Harkema SJ: Recruitment of spinal motor pools during voluntary movements versus stepping after human spinal cord injury. J Neurotrauma 2002, 19: 1217-1229. 10.1089/08977150260338010PubMed Maegele M, Muller S, Wernig A, Edgerton VR, Harkema SJ: Recruitment of spinal motor pools during voluntary movements versus stepping after human spinal cord injury. J Neurotrauma 2002, 19: 1217-1229. 10.1089/08977150260338010PubMed
14.
go back to reference Ranganathan R, Krishnan C: Extracting synergies in gait: using EMG variability to evaluate control strategies. J Neurophysiol 2012, 108: 1537-1544. 10.1152/jn.01112.2011PubMedCentralPubMed Ranganathan R, Krishnan C: Extracting synergies in gait: using EMG variability to evaluate control strategies. J Neurophysiol 2012, 108: 1537-1544. 10.1152/jn.01112.2011PubMedCentralPubMed
15.
go back to reference Perry J: Gait analysis : normal and pathological function. Thorofare, NJ: SLACK; 1992. Perry J: Gait analysis : normal and pathological function. Thorofare, NJ: SLACK; 1992.
16.
go back to reference Clark DJ, Ting LH, Zajac FE, Neptune RR, Kautz SA: Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol 2010, 103: 844-857. 10.1152/jn.00825.2009PubMedCentralPubMed Clark DJ, Ting LH, Zajac FE, Neptune RR, Kautz SA: Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol 2010, 103: 844-857. 10.1152/jn.00825.2009PubMedCentralPubMed
17.
go back to reference Yang JF, Gorassini M: Spinal and brain control of human walking: implications for retraining of walking. Neuroscientist 2006, 12: 379-389. 10.1177/1073858406292151PubMed Yang JF, Gorassini M: Spinal and brain control of human walking: implications for retraining of walking. Neuroscientist 2006, 12: 379-389. 10.1177/1073858406292151PubMed
18.
go back to reference Tresch MC, Jarc A: The case for and against muscle synergies. Curr Opin Neurobiol 2009, 19: 601-607. 10.1016/j.conb.2009.09.002PubMedCentralPubMed Tresch MC, Jarc A: The case for and against muscle synergies. Curr Opin Neurobiol 2009, 19: 601-607. 10.1016/j.conb.2009.09.002PubMedCentralPubMed
19.
go back to reference Markin SN, Lemay MA, Prilutsky BI, Rybak IA: Motoneuronal and muscle synergies involved in cat hindlimb control during fictive and real locomotion: a comparison study. J Neurophysiol 2012, 107: 2057-2071. 10.1152/jn.00865.2011PubMedCentralPubMed Markin SN, Lemay MA, Prilutsky BI, Rybak IA: Motoneuronal and muscle synergies involved in cat hindlimb control during fictive and real locomotion: a comparison study. J Neurophysiol 2012, 107: 2057-2071. 10.1152/jn.00865.2011PubMedCentralPubMed
20.
go back to reference Giszter SF, Hart CB: Motor primitives and synergies in the spinal cord and after injury–the current state of play. Ann N Y Acad Sci 2013, 1279: 114-126. 10.1111/nyas.12065PubMedCentralPubMed Giszter SF, Hart CB: Motor primitives and synergies in the spinal cord and after injury–the current state of play. Ann N Y Acad Sci 2013, 1279: 114-126. 10.1111/nyas.12065PubMedCentralPubMed
21.
go back to reference Zariffa J, Steeves J, Pai DK: Changes in hand muscle synergies in subjects with spinal cord injury: characterization and functional implications. J Spinal Cord Med 2012, 35: 310-318. 10.1179/2045772312Y.0000000037PubMedCentralPubMed Zariffa J, Steeves J, Pai DK: Changes in hand muscle synergies in subjects with spinal cord injury: characterization and functional implications. J Spinal Cord Med 2012, 35: 310-318. 10.1179/2045772312Y.0000000037PubMedCentralPubMed
22.
go back to reference Shemmell J, Johansson J, Portra V, Gottlieb GL, Thomas JS, Corcos DM: Control of interjoint coordination during the swing phase of normal gait at different speeds. J Neuroeng Rehabil 2007, 4: 10. 10.1186/1743-0003-4-10PubMedCentralPubMed Shemmell J, Johansson J, Portra V, Gottlieb GL, Thomas JS, Corcos DM: Control of interjoint coordination during the swing phase of normal gait at different speeds. J Neuroeng Rehabil 2007, 4: 10. 10.1186/1743-0003-4-10PubMedCentralPubMed
23.
go back to reference Onifer SM, Rabchevsky AG, Scheff SW: Rat models of traumatic spinal cord injury to assess motor recovery. Ilar J 2007, 48: 385-395. 10.1093/ilar.48.4.385PubMed Onifer SM, Rabchevsky AG, Scheff SW: Rat models of traumatic spinal cord injury to assess motor recovery. Ilar J 2007, 48: 385-395. 10.1093/ilar.48.4.385PubMed
24.
go back to reference Kwon BK, Oxland TR, Tetzlaff W: Animal models used in spinal cord regeneration research. Spine (Phila Pa 1976) 2002, 27: 1504-1510. 10.1097/00007632-200207150-00005 Kwon BK, Oxland TR, Tetzlaff W: Animal models used in spinal cord regeneration research. Spine (Phila Pa 1976) 2002, 27: 1504-1510. 10.1097/00007632-200207150-00005
25.
go back to reference Sedy J, Urdzikova L, Jendelova P, Sykova E: Methods for behavioral testing of spinal cord injured rats. Neurosci Biobehav Rev 2008, 32: 550-580. 10.1016/j.neubiorev.2007.10.001PubMed Sedy J, Urdzikova L, Jendelova P, Sykova E: Methods for behavioral testing of spinal cord injured rats. Neurosci Biobehav Rev 2008, 32: 550-580. 10.1016/j.neubiorev.2007.10.001PubMed
26.
go back to reference Basso DM, Beattie MS, Bresnahan JC: A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 1995, 12: 1-21. 10.1089/neu.1995.12.1PubMed Basso DM, Beattie MS, Bresnahan JC: A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 1995, 12: 1-21. 10.1089/neu.1995.12.1PubMed
27.
go back to reference Thota AK, Watson SC, Knapp E, Thompson B, Jung R: Neuromechanical control of locomotion in the rat. J Neurotrauma 2005, 22: 442-465. 10.1089/neu.2005.22.442PubMed Thota AK, Watson SC, Knapp E, Thompson B, Jung R: Neuromechanical control of locomotion in the rat. J Neurotrauma 2005, 22: 442-465. 10.1089/neu.2005.22.442PubMed
28.
go back to reference Couto PA, Filipe VM, Magalhaes LG, Pereira JE, Costa LM, Melo-Pinto P, Bulas-Cruz J, Mauricio AC, Geuna S, Varejao AS: A comparison of two-dimensional and three-dimensional techniques for the determination of hindlimb kinematics during treadmill locomotion in rats following spinal cord injury. J Neurosci Methods 2008, 173: 193-200. 10.1016/j.jneumeth.2008.06.006PubMed Couto PA, Filipe VM, Magalhaes LG, Pereira JE, Costa LM, Melo-Pinto P, Bulas-Cruz J, Mauricio AC, Geuna S, Varejao AS: A comparison of two-dimensional and three-dimensional techniques for the determination of hindlimb kinematics during treadmill locomotion in rats following spinal cord injury. J Neurosci Methods 2008, 173: 193-200. 10.1016/j.jneumeth.2008.06.006PubMed
29.
go back to reference Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov I, et al.: Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 2009, 12: 1333-1342. 10.1038/nn.2401PubMedCentralPubMed Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov I, et al.: Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 2009, 12: 1333-1342. 10.1038/nn.2401PubMedCentralPubMed
30.
go back to reference Johnson WL, Jindrich DL, Roy RR, Edgerton VR: Quantitative metrics of spinal cord injury recovery in the rat using motion capture, electromyography and ground reaction force measurement. J Neurosci Methods 2012, 206: 65-72. 10.1016/j.jneumeth.2012.02.008PubMed Johnson WL, Jindrich DL, Roy RR, Edgerton VR: Quantitative metrics of spinal cord injury recovery in the rat using motion capture, electromyography and ground reaction force measurement. J Neurosci Methods 2012, 206: 65-72. 10.1016/j.jneumeth.2012.02.008PubMed
31.
go back to reference Negredo P, Rivero JL, Gonzalez B, Ramon-Cueto A, Manso R: Slow- and fast-twitch rat hind limb skeletal muscle phenotypes 8 months after spinal cord transection and olfactory ensheathing glia transplantation. J Physiol 2008, 586: 2593-2610. 10.1113/jphysiol.2007.149120PubMedCentralPubMed Negredo P, Rivero JL, Gonzalez B, Ramon-Cueto A, Manso R: Slow- and fast-twitch rat hind limb skeletal muscle phenotypes 8 months after spinal cord transection and olfactory ensheathing glia transplantation. J Physiol 2008, 586: 2593-2610. 10.1113/jphysiol.2007.149120PubMedCentralPubMed
32.
go back to reference Johnson WL, Jindrich DL, Zhong H, Roy RR, Edgerton VR: Application of a rat hindlimb model: a prediction of force spaces reachable through stimulation of nerve fascicles. IEEE Trans Biomed Eng 2011, 58: 3328-3338.PubMedCentralPubMed Johnson WL, Jindrich DL, Zhong H, Roy RR, Edgerton VR: Application of a rat hindlimb model: a prediction of force spaces reachable through stimulation of nerve fascicles. IEEE Trans Biomed Eng 2011, 58: 3328-3338.PubMedCentralPubMed
33.
go back to reference Scheff SW, Rabchevsky AG, Fugaccia I, Main JA, Lumpp JE Jr: Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J Neurotrauma 2003, 20: 179-193. 10.1089/08977150360547099PubMed Scheff SW, Rabchevsky AG, Fugaccia I, Main JA, Lumpp JE Jr: Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J Neurotrauma 2003, 20: 179-193. 10.1089/08977150360547099PubMed
34.
go back to reference Winstein CJ, Garfinkel A: Qualitative dynamics of disordered human locomotion: a preliminary investigation. J Mot Behav 1989, 21: 373-391. 10.1080/00222895.1989.10735490PubMed Winstein CJ, Garfinkel A: Qualitative dynamics of disordered human locomotion: a preliminary investigation. J Mot Behav 1989, 21: 373-391. 10.1080/00222895.1989.10735490PubMed
35.
go back to reference Jung R, Belanger A, Kanchiku T, Fairchild M, Abbas JJ: Neuromuscular stimulation therapy after incomplete spinal cord injury promotes recovery of interlimb coordination during locomotion. J Neural Eng 2009, 6: 55010. 10.1088/1741-2560/6/5/055010 Jung R, Belanger A, Kanchiku T, Fairchild M, Abbas JJ: Neuromuscular stimulation therapy after incomplete spinal cord injury promotes recovery of interlimb coordination during locomotion. J Neural Eng 2009, 6: 55010. 10.1088/1741-2560/6/5/055010
36.
go back to reference Jung R, Brauer EJ, Abbas JJ: Real-time interaction between a neuromorphic electronic circuit and the spinal cord. IEEE Trans Neural Syst Rehabil Eng 2001, 9: 319-326. 10.1109/7333.948461PubMed Jung R, Brauer EJ, Abbas JJ: Real-time interaction between a neuromorphic electronic circuit and the spinal cord. IEEE Trans Neural Syst Rehabil Eng 2001, 9: 319-326. 10.1109/7333.948461PubMed
37.
go back to reference Bandt C, Pompe B: Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 2002, 88: 174102.PubMed Bandt C, Pompe B: Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 2002, 88: 174102.PubMed
38.
go back to reference Han TS, Kobayashi K: Mathematics of information and coding. Providence, R.I.: American Mathematical Society; 2002. Han TS, Kobayashi K: Mathematics of information and coding. Providence, R.I.: American Mathematical Society; 2002.
39.
go back to reference Rathleff MS, Samani A, Olesen CG, Kersting UG, Madeleine P: Inverse relationship between the complexity of midfoot kinematics and muscle activation in patients with medial tibial stress syndrome. J Electromyogr Kinesiol 2011, 21: 638-644. 10.1016/j.jelekin.2011.03.001PubMed Rathleff MS, Samani A, Olesen CG, Kersting UG, Madeleine P: Inverse relationship between the complexity of midfoot kinematics and muscle activation in patients with medial tibial stress syndrome. J Electromyogr Kinesiol 2011, 21: 638-644. 10.1016/j.jelekin.2011.03.001PubMed
40.
go back to reference Olofsen E, Sleigh JW, Dahan A: Permutation entropy of the electroencephalogram: a measure of anaesthetic drug effect. Br J Anaesth 2008, 101: 810-821. 10.1093/bja/aen290PubMed Olofsen E, Sleigh JW, Dahan A: Permutation entropy of the electroencephalogram: a measure of anaesthetic drug effect. Br J Anaesth 2008, 101: 810-821. 10.1093/bja/aen290PubMed
41.
go back to reference Cao Y, Tung WW, Gao JB, Protopopescu VA, Hively LM: Detecting dynamical changes in time series using the permutation entropy. Phys Rev E Stat Nonlin Soft Matter Phys 2004, 70: 046217.PubMed Cao Y, Tung WW, Gao JB, Protopopescu VA, Hively LM: Detecting dynamical changes in time series using the permutation entropy. Phys Rev E Stat Nonlin Soft Matter Phys 2004, 70: 046217.PubMed
42.
go back to reference Lee M, Roan M, Smith B: An application of principal component analysis for lower body kinematics between loaded and unloaded walking. J Biomech 2009, 42: 2226-2230. 10.1016/j.jbiomech.2009.06.052PubMed Lee M, Roan M, Smith B: An application of principal component analysis for lower body kinematics between loaded and unloaded walking. J Biomech 2009, 42: 2226-2230. 10.1016/j.jbiomech.2009.06.052PubMed
43.
go back to reference Deluzio KJ, Astephen JL: Biomechanical features of gait waveform data associated with knee osteoarthritis: an application of principal component analysis. Gait Posture 2007, 25: 86-93. 10.1016/j.gaitpost.2006.01.007PubMed Deluzio KJ, Astephen JL: Biomechanical features of gait waveform data associated with knee osteoarthritis: an application of principal component analysis. Gait Posture 2007, 25: 86-93. 10.1016/j.gaitpost.2006.01.007PubMed
44.
go back to reference Sadeghi H, Prince F, Sadeghi S, Labelle H: Principal component analysis of the power developed in the flexion/extension muscles of the hip in able-bodied gait. Med Eng Phys 2000, 22: 703-710. 10.1016/S1350-4533(01)00010-8PubMed Sadeghi H, Prince F, Sadeghi S, Labelle H: Principal component analysis of the power developed in the flexion/extension muscles of the hip in able-bodied gait. Med Eng Phys 2000, 22: 703-710. 10.1016/S1350-4533(01)00010-8PubMed
45.
go back to reference Lieber RL, Yeh Y, Baskin RJ: Sarcomere length determination using laser diffraction. Effect of beam and fiber diameter. Biophys J 1984, 45: 1007-1016. 10.1016/S0006-3495(84)84246-0PubMedCentralPubMed Lieber RL, Yeh Y, Baskin RJ: Sarcomere length determination using laser diffraction. Effect of beam and fiber diameter. Biophys J 1984, 45: 1007-1016. 10.1016/S0006-3495(84)84246-0PubMedCentralPubMed
46.
go back to reference Pribe C, Grossberg S, Cohen MA: Neural control of interlimb oscillations. II. Biped and quadruped gaits and bifurcations. Biol Cybern 1997, 77: 141-152. 10.1007/s004220050375PubMed Pribe C, Grossberg S, Cohen MA: Neural control of interlimb oscillations. II. Biped and quadruped gaits and bifurcations. Biol Cybern 1997, 77: 141-152. 10.1007/s004220050375PubMed
47.
go back to reference Gregory CM, Vandenborne K, Castro MJ, Dudley GA: Human and rat skeletal muscle adaptations to spinal cord injury. Can J Appl Physiol 2003, 28: 491-500. 10.1139/h03-036PubMed Gregory CM, Vandenborne K, Castro MJ, Dudley GA: Human and rat skeletal muscle adaptations to spinal cord injury. Can J Appl Physiol 2003, 28: 491-500. 10.1139/h03-036PubMed
48.
go back to reference Liu M, Bose P, Walter GA, Thompson FJ, Vandenborne K: A longitudinal study of skeletal muscle following spinal cord injury and locomotor training. Spinal Cord 2008, 46: 488-493. 10.1038/sj.sc.3102169PubMed Liu M, Bose P, Walter GA, Thompson FJ, Vandenborne K: A longitudinal study of skeletal muscle following spinal cord injury and locomotor training. Spinal Cord 2008, 46: 488-493. 10.1038/sj.sc.3102169PubMed
49.
go back to reference Thomason DB, Biggs RB, Booth FW: Protein metabolism and beta-myosin heavy-chain mRNA in unweighted soleus muscle. Am J Physiol 1989, 257: R300-305.PubMed Thomason DB, Biggs RB, Booth FW: Protein metabolism and beta-myosin heavy-chain mRNA in unweighted soleus muscle. Am J Physiol 1989, 257: R300-305.PubMed
50.
go back to reference Thota A, Carlson S, Jung R: Recovery of locomotor function after treadmill training of incomplete spinal cord injured rats. Biomed Sci Instrum 2001, 37: 63-67.PubMed Thota A, Carlson S, Jung R: Recovery of locomotor function after treadmill training of incomplete spinal cord injured rats. Biomed Sci Instrum 2001, 37: 63-67.PubMed
51.
go back to reference Ivanenko YP, Grasso R, Zago M, Molinari M, Scivoletto G, Castellano V, Macellari V, Lacquaniti F: Temporal components of the motor patterns expressed by the human spinal cord reflect foot kinematics. J Neurophysiol 2003, 90: 3555-3565. 10.1152/jn.00223.2003PubMed Ivanenko YP, Grasso R, Zago M, Molinari M, Scivoletto G, Castellano V, Macellari V, Lacquaniti F: Temporal components of the motor patterns expressed by the human spinal cord reflect foot kinematics. J Neurophysiol 2003, 90: 3555-3565. 10.1152/jn.00223.2003PubMed
52.
go back to reference Jung R, Ichihara K, Venkatasubramanian G, Abbas JJ: Chronic neuromuscular electrical stimulation of paralyzed hindlimbs in a rodent model. J Neurosci Methods 2009, 183: 241-254. 10.1016/j.jneumeth.2009.06.043PubMedCentralPubMed Jung R, Ichihara K, Venkatasubramanian G, Abbas JJ: Chronic neuromuscular electrical stimulation of paralyzed hindlimbs in a rodent model. J Neurosci Methods 2009, 183: 241-254. 10.1016/j.jneumeth.2009.06.043PubMedCentralPubMed
53.
go back to reference Yakovenko S, Gritsenko V, Prochazka A: Contribution of stretch reflexes to locomotor control: a modeling study. Biol Cybern 2004, 90: 146-155. 10.1007/s00422-003-0449-zPubMed Yakovenko S, Gritsenko V, Prochazka A: Contribution of stretch reflexes to locomotor control: a modeling study. Biol Cybern 2004, 90: 146-155. 10.1007/s00422-003-0449-zPubMed
54.
go back to reference Gordon KE, Wu M, Kahn JH, Schmit BD: Feedback and feedforward locomotor adaptations to ankle-foot load in people with incomplete spinal cord injury. J Neurophysiol 2010, 104: 1325-1338. 10.1152/jn.00604.2009PubMed Gordon KE, Wu M, Kahn JH, Schmit BD: Feedback and feedforward locomotor adaptations to ankle-foot load in people with incomplete spinal cord injury. J Neurophysiol 2010, 104: 1325-1338. 10.1152/jn.00604.2009PubMed
55.
go back to reference Daley MA, Felix G, Biewener AA: Running stability is enhanced by a proximo-distal gradient in joint neuromechanical control. J Exp Biol 2007, 210: 383-394. 10.1242/jeb.02668PubMedCentralPubMed Daley MA, Felix G, Biewener AA: Running stability is enhanced by a proximo-distal gradient in joint neuromechanical control. J Exp Biol 2007, 210: 383-394. 10.1242/jeb.02668PubMedCentralPubMed
56.
go back to reference Pearson KG: Role of sensory feedback in the control of stance duration in walking cats. Brain Res Rev 2008, 57: 222-227. 10.1016/j.brainresrev.2007.06.014PubMed Pearson KG: Role of sensory feedback in the control of stance duration in walking cats. Brain Res Rev 2008, 57: 222-227. 10.1016/j.brainresrev.2007.06.014PubMed
57.
go back to reference Drew T, Jiang W, Widajewicz W: Contributions of the motor cortex to the control of the hindlimbs during locomotion in the cat. Brain Res Brain Res Rev 2002, 40: 178-191. 10.1016/S0165-0173(02)00200-XPubMed Drew T, Jiang W, Widajewicz W: Contributions of the motor cortex to the control of the hindlimbs during locomotion in the cat. Brain Res Brain Res Rev 2002, 40: 178-191. 10.1016/S0165-0173(02)00200-XPubMed
58.
go back to reference Drew T, Kalaska J, Krouchev N: Muscle synergies during locomotion in the cat: a model for motor cortex control. J Physiol 2008, 586: 1239-1245. 10.1113/jphysiol.2007.146605PubMedCentralPubMed Drew T, Kalaska J, Krouchev N: Muscle synergies during locomotion in the cat: a model for motor cortex control. J Physiol 2008, 586: 1239-1245. 10.1113/jphysiol.2007.146605PubMedCentralPubMed
59.
go back to reference McCrea DA, Rybak IA: Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev 2008, 57: 134-146. 10.1016/j.brainresrev.2007.08.006PubMedCentralPubMed McCrea DA, Rybak IA: Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev 2008, 57: 134-146. 10.1016/j.brainresrev.2007.08.006PubMedCentralPubMed
60.
go back to reference Lam T, Pearson KG: The role of proprioceptive feedback in the regulation and adaptation of locomotor activity. Adv Exp Med Biol 2002, 508: 343-355. 10.1007/978-1-4615-0713-0_40PubMed Lam T, Pearson KG: The role of proprioceptive feedback in the regulation and adaptation of locomotor activity. Adv Exp Med Biol 2002, 508: 343-355. 10.1007/978-1-4615-0713-0_40PubMed
61.
go back to reference Hiebert GW, Pearson KG: Contribution of sensory feedback to the generation of extensor activity during walking in the decerebrate Cat. J Neurophysiol 1999, 81: 758-770.PubMed Hiebert GW, Pearson KG: Contribution of sensory feedback to the generation of extensor activity during walking in the decerebrate Cat. J Neurophysiol 1999, 81: 758-770.PubMed
62.
go back to reference Prochazka A, Gritsenko V, Yakovenko S: Sensory control of locomotion: reflexes versus higher-level control. Adv Exp Med Biol 2002, 508: 357-367. 10.1007/978-1-4615-0713-0_41PubMed Prochazka A, Gritsenko V, Yakovenko S: Sensory control of locomotion: reflexes versus higher-level control. Adv Exp Med Biol 2002, 508: 357-367. 10.1007/978-1-4615-0713-0_41PubMed
63.
go back to reference Pearson KG, Misiaszek JE: Use-dependent gain change in the reflex contribution to extensor activity in walking cats. Brain Res 2000, 883: 131-134. 10.1016/S0006-8993(00)02880-8PubMed Pearson KG, Misiaszek JE: Use-dependent gain change in the reflex contribution to extensor activity in walking cats. Brain Res 2000, 883: 131-134. 10.1016/S0006-8993(00)02880-8PubMed
64.
go back to reference Donelan JM, Pearson KG: Contribution of force feedback to ankle extensor activity in decerebrate walking cats. J Neurophysiol 2004, 92: 2093-2104. 10.1152/jn.00325.2004PubMed Donelan JM, Pearson KG: Contribution of force feedback to ankle extensor activity in decerebrate walking cats. J Neurophysiol 2004, 92: 2093-2104. 10.1152/jn.00325.2004PubMed
65.
go back to reference Schwartz ED, Cooper ET, Chin CL, Wehrli S, Tessler A, Hackney DB: Ex vivo evaluation of ADC values within spinal cord white matter tracts. AJNR Am J Neuroradiol 2005, 26: 390-397.PubMed Schwartz ED, Cooper ET, Chin CL, Wehrli S, Tessler A, Hackney DB: Ex vivo evaluation of ADC values within spinal cord white matter tracts. AJNR Am J Neuroradiol 2005, 26: 390-397.PubMed
66.
go back to reference Gullapalli J, Krejza J, Schwartz ED: In vivo DTI evaluation of white matter tracts in rat spinal cord. J Magn Reson Imaging 2006, 24: 231-234.PubMed Gullapalli J, Krejza J, Schwartz ED: In vivo DTI evaluation of white matter tracts in rat spinal cord. J Magn Reson Imaging 2006, 24: 231-234.PubMed
67.
go back to reference Chen XY, Wolpaw JR: Probable corticospinal tract control of spinal cord plasticity in the rat. J Neurophysiol 2002, 87: 645-652.PubMed Chen XY, Wolpaw JR: Probable corticospinal tract control of spinal cord plasticity in the rat. J Neurophysiol 2002, 87: 645-652.PubMed
68.
go back to reference Cheney PD, Fetz EE, Mewes K: Neural mechanisms underlying corticospinal and rubrospinal control of limb movements. Prog Brain Res 1991, 87: 213-252.PubMed Cheney PD, Fetz EE, Mewes K: Neural mechanisms underlying corticospinal and rubrospinal control of limb movements. Prog Brain Res 1991, 87: 213-252.PubMed
69.
go back to reference Gordon KE, Wu M, Kahn JH, Dhaher YY, Schmit BD: Ankle load modulates hip kinetics and EMG during human locomotion. J Neurophysiol 2009, 101: 2062-2076. 10.1152/jn.90949.2008PubMedCentralPubMed Gordon KE, Wu M, Kahn JH, Dhaher YY, Schmit BD: Ankle load modulates hip kinetics and EMG during human locomotion. J Neurophysiol 2009, 101: 2062-2076. 10.1152/jn.90949.2008PubMedCentralPubMed
70.
go back to reference Daley MA, Usherwood JR, Felix G, Biewener AA: Running over rough terrain: guinea fowl maintain dynamic stability despite a large unexpected change in substrate height. J Exp Biol 2006, 209: 171-187. 10.1242/jeb.01986PubMed Daley MA, Usherwood JR, Felix G, Biewener AA: Running over rough terrain: guinea fowl maintain dynamic stability despite a large unexpected change in substrate height. J Exp Biol 2006, 209: 171-187. 10.1242/jeb.01986PubMed
71.
go back to reference Lamy JC, Iglesias C, Lackmy A, Nielsen JB, Katz R, Marchand-Pauvert V: Modulation of recurrent inhibition from knee extensors to ankle motoneurones during human walking. J Physiol 2008, 586: 5931-5946. 10.1113/jphysiol.2008.160630PubMedCentralPubMed Lamy JC, Iglesias C, Lackmy A, Nielsen JB, Katz R, Marchand-Pauvert V: Modulation of recurrent inhibition from knee extensors to ankle motoneurones during human walking. J Physiol 2008, 586: 5931-5946. 10.1113/jphysiol.2008.160630PubMedCentralPubMed
72.
go back to reference Finley JM, Perreault EJ, Dhaher YY: Stretch reflex coupling between the hip and knee: implications for impaired gait following stroke. Exp Brain Res 2008, 188: 529-540. 10.1007/s00221-008-1383-zPubMedCentralPubMed Finley JM, Perreault EJ, Dhaher YY: Stretch reflex coupling between the hip and knee: implications for impaired gait following stroke. Exp Brain Res 2008, 188: 529-540. 10.1007/s00221-008-1383-zPubMedCentralPubMed
73.
go back to reference Daley MA, Biewener AA: Running over rough terrain reveals limb control for intrinsic stability. Proc Natl Acad Sci USA 2006, 103: 15681-15686. 10.1073/pnas.0601473103PubMedCentralPubMed Daley MA, Biewener AA: Running over rough terrain reveals limb control for intrinsic stability. Proc Natl Acad Sci USA 2006, 103: 15681-15686. 10.1073/pnas.0601473103PubMedCentralPubMed
Metadata
Title
Joint-specific changes in locomotor complexity in the absence of muscle atrophy following incomplete spinal cord injury
Authors
Brian K Hillen
Gary T Yamaguchi
James J Abbas
Ranu Jung
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2013
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-10-97

Other articles of this Issue 1/2013

Journal of NeuroEngineering and Rehabilitation 1/2013 Go to the issue