Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2013

Open Access 01-12-2013 | Research

Evaluation of an intelligent wheelchair system for older adults with cognitive impairments

Authors: Tuck-Voon How, Rosalie H Wang, Alex Mihailidis

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2013

Login to get access

Abstract

Background

Older adults are the most prevalent wheelchair users in Canada. Yet, cognitive impairments may prevent an older adult from being allowed to use a powered wheelchair due to safety and usability concerns. To address this issue, an add-on Intelligent Wheelchair System (IWS) was developed to help older adults with cognitive impairments drive a powered wheelchair safely and effectively. When attached to a powered wheelchair, the IWS adds a vision-based anti-collision feature that prevents the wheelchair from hitting obstacles and a navigation assistance feature that plays audio prompts to help users manoeuvre around obstacles.

Methods

A two stage evaluation was conducted to test the efficacy of the IWS. Stage One: Environment of Use – the IWS’s anti-collision and navigation features were evaluated against objects found in a long-term care facility. Six different collision scenarios (wall, walker, cane, no object, moving and stationary person) and three different navigation scenarios (object on left, object on right, and no object) were performed. Signal detection theory was used to categorize the response of the system in each scenario. Stage Two: User Trials – single-subject research design was used to evaluate the impact of the IWS on older adults with cognitive impairment. Participants were asked to drive a powered wheelchair through a structured obstacle course in two phases: 1) with the IWS and 2) without the IWS. Measurements of safety and usability were taken and compared between the two phases. Visual analysis and phase averages were used to analyze the single-subject data.

Results

Stage One: The IWS performed correctly for all environmental anti-collision and navigation scenarios. Stage Two: Two participants completed the trials. The IWS was able to limit the number of collisions that occurred with a powered wheelchair and lower the perceived workload for driving a powered wheelchair. However, the objective performance (time to complete course) of users navigating their environment did not improve with the IWS.

Conclusions

This study shows the efficacy of the IWS in performing with a potential environment of use, and benefiting members of its desired user population to increase safety and lower perceived demands of powered wheelchair driving.
Appendix
Available only for authorised users
Literature
1.
go back to reference Finlayson M, van Denend T: Experiencing the loss of mobility: perspectives of older adults with MS. Disabil Rehabil 2003,25(20):1168-1180. 10.1080/09638280310001596180CrossRefPubMed Finlayson M, van Denend T: Experiencing the loss of mobility: perspectives of older adults with MS. Disabil Rehabil 2003,25(20):1168-1180. 10.1080/09638280310001596180CrossRefPubMed
2.
go back to reference Shields M: Use of wheelchairs and other mobility support devices. Statistics Canada, Health Reports 2004,15(3):37-41. Shields M: Use of wheelchairs and other mobility support devices. Statistics Canada, Health Reports 2004,15(3):37-41.
3.
go back to reference Frank A, Neophytou C, Frank J, de Souza L: Electric-powered indoor/outdoor wheelchairs (EPIOCs): users’ views of influence on family, friends and carers. Disabil Rehabil Assist Technol 2010,5(5):327-338. 10.3109/17483101003746352CrossRefPubMed Frank A, Neophytou C, Frank J, de Souza L: Electric-powered indoor/outdoor wheelchairs (EPIOCs): users’ views of influence on family, friends and carers. Disabil Rehabil Assist Technol 2010,5(5):327-338. 10.3109/17483101003746352CrossRefPubMed
4.
go back to reference Hardy P: Powered wheelchair mobility: an occupational performance evaluation perspective. Aust Occup Ther J 2004,51(1):34-43. 10.1111/j.1440-1630.2004.00413.xCrossRef Hardy P: Powered wheelchair mobility: an occupational performance evaluation perspective. Aust Occup Ther J 2004,51(1):34-43. 10.1111/j.1440-1630.2004.00413.xCrossRef
5.
go back to reference Clarke P, Chan P, Santaguida PL, Colantonio A: The use of mobility devices among institutionalized older adults. J Aging Health 2009,21(4):611-626. 10.1177/0898264309333313CrossRefPubMed Clarke P, Chan P, Santaguida PL, Colantonio A: The use of mobility devices among institutionalized older adults. J Aging Health 2009,21(4):611-626. 10.1177/0898264309333313CrossRefPubMed
6.
go back to reference Simpson RC: How many people would benefit from a smart wheelchair? J Rehabil Res Dev 2008,45(1):53-72. 10.1682/JRRD.2007.01.0015CrossRefPubMed Simpson RC: How many people would benefit from a smart wheelchair? J Rehabil Res Dev 2008,45(1):53-72. 10.1682/JRRD.2007.01.0015CrossRefPubMed
7.
go back to reference Tenenbaum S, Partnoy J, Dunal L Presented at 2009 Healthcare Innovations Conference & Trade Show. In Contribution of a functional cognitive assessment in evaluating power mobility. Toronto, ON, Canada; 2009. Tenenbaum S, Partnoy J, Dunal L Presented at 2009 Healthcare Innovations Conference & Trade Show. In Contribution of a functional cognitive assessment in evaluating power mobility. Toronto, ON, Canada; 2009.
8.
go back to reference Simpson RC: Smart wheelchairs: a literature review. J Rehabil Res Dev 2005,42(4):423-436. 10.1682/JRRD.2004.08.0101CrossRefPubMed Simpson RC: Smart wheelchairs: a literature review. J Rehabil Res Dev 2005,42(4):423-436. 10.1682/JRRD.2004.08.0101CrossRefPubMed
9.
go back to reference Nisbet PD: Who’s intelligent? Wheelchair, driver or both? In Proceedings of the 2002 International Conference on Control Applications: 18–20 Sept 2002. 2nd edition. Glasgow, Scotland, UK: IEEE; 2002:760-765. Nisbet PD: Who’s intelligent? Wheelchair, driver or both? In Proceedings of the 2002 International Conference on Control Applications: 18–20 Sept 2002. 2nd edition. Glasgow, Scotland, UK: IEEE; 2002:760-765.
10.
go back to reference McGarry S, Moir L, Girdler S: The smart wheelchair: is it an appropriate mobility training tool for children with disabilities? Disabil Rehabil Assist Technol 2012,7(5):372-380. 10.3109/17483107.2011.637283CrossRefPubMed McGarry S, Moir L, Girdler S: The smart wheelchair: is it an appropriate mobility training tool for children with disabilities? Disabil Rehabil Assist Technol 2012,7(5):372-380. 10.3109/17483107.2011.637283CrossRefPubMed
11.
go back to reference Simpson RC, Poirot D, Baxter MF: The Hephaestus smart wheelchair system. IEEE Trans Neural Syst Rehabil Eng 2002,10(2):118-122. 10.1109/TNSRE.2002.1031980CrossRefPubMed Simpson RC, Poirot D, Baxter MF: The Hephaestus smart wheelchair system. IEEE Trans Neural Syst Rehabil Eng 2002,10(2):118-122. 10.1109/TNSRE.2002.1031980CrossRefPubMed
13.
go back to reference Ceres R, Pons JL, Calderon L, Jimenez AR, Azevedo L: A robotic vehicle for disabled children. IEEE Eng Med Biol Mag 2005,24(6):55-63.CrossRefPubMed Ceres R, Pons JL, Calderon L, Jimenez AR, Azevedo L: A robotic vehicle for disabled children. IEEE Eng Med Biol Mag 2005,24(6):55-63.CrossRefPubMed
14.
go back to reference Zeng Q, Burdet E, Teo CL: User evaluation of a collaborative wheelchair system. In Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vancouver, BC, Canada: IEEE; 2008:1956-1960. Zeng Q, Burdet E, Teo CL: User evaluation of a collaborative wheelchair system. In Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vancouver, BC, Canada: IEEE; 2008:1956-1960.
15.
go back to reference Montesano L, Diaz M, Bhaskar S, Minguez J: Towards an intelligent wheelchair system for users with cerebral palsy. IEEE Trans Neural Syst Rehabil Eng 2010,18(2):193-202.CrossRefPubMed Montesano L, Diaz M, Bhaskar S, Minguez J: Towards an intelligent wheelchair system for users with cerebral palsy. IEEE Trans Neural Syst Rehabil Eng 2010,18(2):193-202.CrossRefPubMed
16.
go back to reference Wang RH, Gorski SM, Holliday PJ, Fernie GR: Evaluation of a contact sensor skirt for an anti-collision power wheelchair for older adult nursing home residents with dementia: safety and mobility. Assist Technol 2011,23(3):117-134. 10.1080/10400435.2010.541406CrossRef Wang RH, Gorski SM, Holliday PJ, Fernie GR: Evaluation of a contact sensor skirt for an anti-collision power wheelchair for older adult nursing home residents with dementia: safety and mobility. Assist Technol 2011,23(3):117-134. 10.1080/10400435.2010.541406CrossRef
17.
go back to reference Urdiales C, Fernández-Carmona M, Peula JM, Cortés U, Annichairicco R, Caltagirone C, Sandoval F: Wheelchair collaborative control for disabled users navigating indoors. Artif Intell Med 2011,52(3):171-191. Urdiales C, Fernández-Carmona M, Peula JM, Cortés U, Annichairicco R, Caltagirone C, Sandoval F: Wheelchair collaborative control for disabled users navigating indoors. Artif Intell Med 2011,52(3):171-191.
18.
go back to reference How TV, Mihailidis A: Anti-collision and navigation system for powered wheelchairs [abstract]. Gerontechnology 2010,9(2):289.CrossRef How TV, Mihailidis A: Anti-collision and navigation system for powered wheelchairs [abstract]. Gerontechnology 2010,9(2):289.CrossRef
20.
go back to reference Mihailidis A, Elinas P, Boger J, Hoey J: An intelligent powered wheelchair to enable mobility of cognitively impaired older adults: an anticollision system. IEEE Trans Neural Syst Rehabil Eng 2007,15(1):136-143.CrossRefPubMed Mihailidis A, Elinas P, Boger J, Hoey J: An intelligent powered wheelchair to enable mobility of cognitively impaired older adults: an anticollision system. IEEE Trans Neural Syst Rehabil Eng 2007,15(1):136-143.CrossRefPubMed
21.
go back to reference Viswanathan P, Boger J, Hoey J, Mihailidis A: A comparison of stereovision and infrared as sensors for an anti-collision powered wheelchair for older adults with cognitive impairments. Technology and Aging - Selected Papers from the 2007 International Conference on Technology and Aging 2008, 21: 165-172. Viswanathan P, Boger J, Hoey J, Mihailidis A: A comparison of stereovision and infrared as sensors for an anti-collision powered wheelchair for older adults with cognitive impairments. Technology and Aging - Selected Papers from the 2007 International Conference on Technology and Aging 2008, 21: 165-172.
22.
go back to reference Murray D, Little JJ: Using real-time stereo vision for mobile robot navigation. Auton Robot 2000,8(2):161-171. 10.1023/A:1008987612352CrossRef Murray D, Little JJ: Using real-time stereo vision for mobile robot navigation. Auton Robot 2000,8(2):161-171. 10.1023/A:1008987612352CrossRef
23.
go back to reference Ottenbacher KJ: Evaluating Clinical Change: Strategies for Occupational and Physical Therapists. Baltimore, MD, USA: Williams & Wilkins; 1986. Ottenbacher KJ: Evaluating Clinical Change: Strategies for Occupational and Physical Therapists. Baltimore, MD, USA: Williams & Wilkins; 1986.
24.
go back to reference Kirby RL: Wheelchair Skills Test (WST)© Manual. Halifax, NS, Canada: Dalhousie University; 2008. Kirby RL: Wheelchair Skills Test (WST)© Manual. Halifax, NS, Canada: Dalhousie University; 2008.
25.
go back to reference Dawson DR, Kaiserman-Goldenstein E, Chan R, Gleason J: Power-Mobility Indoor Driving Assessment Manual (PIDA)©. Toronto, ON, Canada: Sunnybrook and Women's College Health Sciences Centre; 2006. Dawson DR, Kaiserman-Goldenstein E, Chan R, Gleason J: Power-Mobility Indoor Driving Assessment Manual (PIDA)©. Toronto, ON, Canada: Sunnybrook and Women's College Health Sciences Centre; 2006.
26.
go back to reference Folstein MF, Folstein SE, McHugh PR, Fanjiang G: Mini-Mental State Examination user’s guide. Odessa, FL: Psychological Assessment Resources; 2001. Folstein MF, Folstein SE, McHugh PR, Fanjiang G: Mini-Mental State Examination user’s guide. Odessa, FL: Psychological Assessment Resources; 2001.
27.
go back to reference Demers L, Weiss-lambrou R, Ska B: The quebec user evaluation of satisfaction with assistive technology ( QUEST 2.0 ): an overview and recent progress. PsycINFO Assist Technol 2002,14(2):101-105. Demers L, Weiss-lambrou R, Ska B: The quebec user evaluation of satisfaction with assistive technology ( QUEST 2.0 ): an overview and recent progress. PsycINFO Assist Technol 2002,14(2):101-105.
28.
go back to reference Hart S, Stavenland L: Development of NASA-TLX (task load index): results of empirical and theoretical research. In Human Mental Workload. Edited by: Hancock P, Meshkati N. Amsterdam: North Holland Press; 1988:139-183.CrossRef Hart S, Stavenland L: Development of NASA-TLX (task load index): results of empirical and theoretical research. In Human Mental Workload. Edited by: Hancock P, Meshkati N. Amsterdam: North Holland Press; 1988:139-183.CrossRef
29.
go back to reference Demers L, Weiss-Lambrou R, Ska B: Quebec User Evaluation of Satisfaction with Assistive Technology QUEST 2.0. Webster, NY: Institute for Matching Person and Technology; 2000. Demers L, Weiss-Lambrou R, Ska B: Quebec User Evaluation of Satisfaction with Assistive Technology QUEST 2.0. Webster, NY: Institute for Matching Person and Technology; 2000.
30.
go back to reference Nygren TE: Psychometric properties of subjective workload measurement techniques: implications for their use in the assessment of perceived mental workload. Hum Factors 1991,33(1):17-33. Nygren TE: Psychometric properties of subjective workload measurement techniques: implications for their use in the assessment of perceived mental workload. Hum Factors 1991,33(1):17-33.
31.
go back to reference Rubio S, Diaz E, Martin J: Evaluation of subjective mental workload: a comparison of SWAT, NASA-TLX, and workload profile methods. Appl Psychol: Int Rev 2004,53(1):61-86. 10.1111/j.1464-0597.2004.00161.xCrossRef Rubio S, Diaz E, Martin J: Evaluation of subjective mental workload: a comparison of SWAT, NASA-TLX, and workload profile methods. Appl Psychol: Int Rev 2004,53(1):61-86. 10.1111/j.1464-0597.2004.00161.xCrossRef
32.
go back to reference Matthews R, Legg S, Charlton S: The effect of cell phone type on drivers subjective workload during concurrent driving and conversing. Accid Anal Prev 2003,35(4):451-457. 10.1016/S0001-4575(02)00023-4CrossRefPubMed Matthews R, Legg S, Charlton S: The effect of cell phone type on drivers subjective workload during concurrent driving and conversing. Accid Anal Prev 2003,35(4):451-457. 10.1016/S0001-4575(02)00023-4CrossRefPubMed
33.
go back to reference Horberry T, Anderson J, Regan MA, Triggs TJ, Brown J: Driver distraction: the effects of concurrent in-vehicles tasks, road environment complexity and age on driving performance. Accid Anal Prev 2006,38(1):185-191. 10.1016/j.aap.2005.09.007CrossRefPubMed Horberry T, Anderson J, Regan MA, Triggs TJ, Brown J: Driver distraction: the effects of concurrent in-vehicles tasks, road environment complexity and age on driving performance. Accid Anal Prev 2006,38(1):185-191. 10.1016/j.aap.2005.09.007CrossRefPubMed
34.
go back to reference Hall S, Longhurst S, Higginson IJ: Challenges to conducting research with older people living in nursing homes. BMC Geriatr 2009,9(38):1-16. Hall S, Longhurst S, Higginson IJ: Challenges to conducting research with older people living in nursing homes. BMC Geriatr 2009,9(38):1-16.
35.
go back to reference Maas ML, Kelly LS, Park M, Specht JP: Issues in conducting research in nursing homes. West J Nurs Res 2002,24(4):373-389. 10.1177/01945902024004006CrossRefPubMed Maas ML, Kelly LS, Park M, Specht JP: Issues in conducting research in nursing homes. West J Nurs Res 2002,24(4):373-389. 10.1177/01945902024004006CrossRefPubMed
36.
go back to reference Pineau J, West R, Atrash A, Villemure J, Routhier F: Towards a standardized test for intelligent wheelchairs. In Proceedings of the 2010 Performance Metrics for Intelligent Systems Workshop (PerMIS’10). Baltimore, MD, USA: ACM; 2010:169-174. Pineau J, West R, Atrash A, Villemure J, Routhier F: Towards a standardized test for intelligent wheelchairs. In Proceedings of the 2010 Performance Metrics for Intelligent Systems Workshop (PerMIS’10). Baltimore, MD, USA: ACM; 2010:169-174.
37.
go back to reference Wang RH, Mihailidis A, Dutta T, Fernie GR: Usability testing of multimodal feedback interface and simulated collision-avoidance power wheelchair for long-term-care home residents with cognitive impairments. J Rehabil Res Dev 2011,48(7):801-822. 10.1682/JRRD.2010.08.0147CrossRefPubMed Wang RH, Mihailidis A, Dutta T, Fernie GR: Usability testing of multimodal feedback interface and simulated collision-avoidance power wheelchair for long-term-care home residents with cognitive impairments. J Rehabil Res Dev 2011,48(7):801-822. 10.1682/JRRD.2010.08.0147CrossRefPubMed
38.
go back to reference Mortenson WB, Miller WC, Boily J, Steele B, Odell L, Crawford EM, Desharnais G: Perceptions of power mobility use and safety within residential facilities. Can J Occup Ther 2005,72(3):142-152. 10.1177/000841740507200302PubMedCentralCrossRefPubMed Mortenson WB, Miller WC, Boily J, Steele B, Odell L, Crawford EM, Desharnais G: Perceptions of power mobility use and safety within residential facilities. Can J Occup Ther 2005,72(3):142-152. 10.1177/000841740507200302PubMedCentralCrossRefPubMed
Metadata
Title
Evaluation of an intelligent wheelchair system for older adults with cognitive impairments
Authors
Tuck-Voon How
Rosalie H Wang
Alex Mihailidis
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2013
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-10-90

Other articles of this Issue 1/2013

Journal of NeuroEngineering and Rehabilitation 1/2013 Go to the issue