Skip to main content
Top
Published in: BMC Infectious Diseases 1/2020

01-12-2020 | Isoniazid | Research article

Detection of Beijing strains of MDR M. tuberculosis and their association with drug resistance mutations in katG, rpoB, and embB genes

Authors: Anamika Gupta, Pallavi Sinha, Vijay Nema, Pramod K. Gupta, Pampi Chakraborty, Savita Kulkarni, Nalin Rastogi, Shampa Anupurba

Published in: BMC Infectious Diseases | Issue 1/2020

Login to get access

Abstract

Background

Molecular epidemiological studies of Mycobacterium tuberculosis (MTB) are the core of current research to find out the association of the M. tuberculosis genotypes with its outbreak and transmission. The high prevalence of the Beijing genotype strain among multidrug resistance (MDR) TB has already been reported in various studies around India. The overall objective of this study was to detect the prevalence of Beijing genotype strains of MDR M. tuberculosis and their association with the clinical characteristics of TB patients.

Methods

In this study 381 M. tuberculosis clinical isolates were obtained from sputum samples from 2008 to 2014. The multiplex-PCR and Spoligotyping (n = 131) methods were used to investigate the prevalence of the Beijing genotype strain by targeting the Rv2820 gene and their association with drug resistance and clinical characteristics of TB patients. The drug susceptibility testing of first-line anti-TB drugs was performed by using the proportion method and MGIT960. A collection of isolates having Beijing and non-Beijing strains were also characterized to see if Beijing genotype strains had a higher rate of mutations at codons 516, 526 and 531 of the 81-bp region of the rpoB gene, codon 315 of the katG gene, and codon 306 of the embB gene.

Results

The sensitivities and specificities of multiplex-PCR assay compared to that of standard Spoligotyping was detected to be 100%. Further, we observe that the multi drug-resistance was significantly associated with Beijing genotype strains (p = 0.03) and a strong correlation between Beijing genotype strains and specific resistance mutations at the katG315, rpoB531, and embB306 codons (p = < 0.0001, < 0.0001 & 0.0014 respectively) was also found.

Conclusions

This rapid, simple, and cost-effective multiplex PCR assay can effectively be used for monitoring the prevalence of Beijing genotype strains in low resource settings. Findings of this study may provide a scientific basis for the development of new diagnostic tools for detection and effective management of DR-TB in countries with a higher incidence rate of Beijing genotype strains.
Appendix
Available only for authorised users
Literature
1.
go back to reference Venkataraman P, Paramasivan CN. Drug resistance in tuberculosis and issues related to multidrug resistance in planning for TB control in India. Health Adm Spec Issue Tuberc. 2002;15:127–36. Venkataraman P, Paramasivan CN. Drug resistance in tuberculosis and issues related to multidrug resistance in planning for TB control in India. Health Adm Spec Issue Tuberc. 2002;15:127–36.
2.
go back to reference Glynn JR, Whiteley J, Bifani PJ, Kremer K, van Soolingen D. Worldwide occurrence of Beijing/W strains of mycobacterium tuberculosis: a systematic review. Emerg Infect Dis. 2002;8:843–9.CrossRefPubMedPubMedCentral Glynn JR, Whiteley J, Bifani PJ, Kremer K, van Soolingen D. Worldwide occurrence of Beijing/W strains of mycobacterium tuberculosis: a systematic review. Emerg Infect Dis. 2002;8:843–9.CrossRefPubMedPubMedCentral
3.
go back to reference Tracevska T, Jansone I, Baumanis V, Marga O, Lillebaek T. Prevalence of Beijing genotype in Latvian multidrug-resistant mycobacterium tuberculosis isolates. Int J Tuberc Lung Dis. 2003;7:1097–103.PubMed Tracevska T, Jansone I, Baumanis V, Marga O, Lillebaek T. Prevalence of Beijing genotype in Latvian multidrug-resistant mycobacterium tuberculosis isolates. Int J Tuberc Lung Dis. 2003;7:1097–103.PubMed
4.
go back to reference Pang Y, Song Y, Xia H, Zhou Y, Zhao B, Zhao Y. Risk factors and clinical phenotypes of Beijing genotype strains in tuberculosis patients in China. BMC Infect Dis. 2012;12:354.CrossRefPubMedPubMedCentral Pang Y, Song Y, Xia H, Zhou Y, Zhao B, Zhao Y. Risk factors and clinical phenotypes of Beijing genotype strains in tuberculosis patients in China. BMC Infect Dis. 2012;12:354.CrossRefPubMedPubMedCentral
5.
go back to reference Parwati I, van Crevel R, van Soolingen D. Possible underlying mechanisms for successful emergence of the Mycobacterium tuberculosis Beijing genotype strains. Lancet Infect Dis. 2010;10:103–11.CrossRefPubMed Parwati I, van Crevel R, van Soolingen D. Possible underlying mechanisms for successful emergence of the Mycobacterium tuberculosis Beijing genotype strains. Lancet Infect Dis. 2010;10:103–11.CrossRefPubMed
6.
go back to reference San LL, Aye KS, Oo NAT, Shwe MM, Fukushima Y, Gordon SV, Suzuki Y, Nakajima C. Insight into multidrug-resistant Beijing genotype Mycobacterium tuberculosis isolates in Myanmar. Int J Infect Dis. 2018;76:109–19.CrossRefPubMed San LL, Aye KS, Oo NAT, Shwe MM, Fukushima Y, Gordon SV, Suzuki Y, Nakajima C. Insight into multidrug-resistant Beijing genotype Mycobacterium tuberculosis isolates in Myanmar. Int J Infect Dis. 2018;76:109–19.CrossRefPubMed
7.
go back to reference Hazbon MH. Bobadilla del Valle M, Guerrero MI et al. role of embB codon 306 mutations in Mycobacterium tuberculosis revisited: a novel association with broad drug resistance and IS6110 clustering rather than ethambutol resistance. Antimicrob Agents Chemother. 2005;49:3794–802.CrossRefPubMedPubMedCentral Hazbon MH. Bobadilla del Valle M, Guerrero MI et al. role of embB codon 306 mutations in Mycobacterium tuberculosis revisited: a novel association with broad drug resistance and IS6110 clustering rather than ethambutol resistance. Antimicrob Agents Chemother. 2005;49:3794–802.CrossRefPubMedPubMedCentral
8.
go back to reference Gupta A, Singh SK, Anupurba S. Mutations at embB306 codon and their association with multidrug-resistance. tuberculosis clinical isolates. Ind J Med Microbiol. 2015;33:387–92.CrossRef Gupta A, Singh SK, Anupurba S. Mutations at embB306 codon and their association with multidrug-resistance. tuberculosis clinical isolates. Ind J Med Microbiol. 2015;33:387–92.CrossRef
9.
go back to reference Arora VK, Gupta R. Dots strategy in India - the challenges. Curr Med J North Zone. 2002;VIII:4. Arora VK, Gupta R. Dots strategy in India - the challenges. Curr Med J North Zone. 2002;VIII:4.
10.
go back to reference Canetti G, Fox W, Khomenko A, et al. Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programs. Bull World Health Organ. 1969;41:21–43.PubMedPubMedCentral Canetti G, Fox W, Khomenko A, et al. Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programs. Bull World Health Organ. 1969;41:21–43.PubMedPubMedCentral
12.
go back to reference Van Embden JDA, Cave MD, Crawford JT, et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol. 1993;1:406–9.CrossRef Van Embden JDA, Cave MD, Crawford JT, et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol. 1993;1:406–9.CrossRef
13.
go back to reference Gupta A, Prakash P, Singh SK, et al. Rapid genotypic detection of rpoB and katG gene mutations in Mycobacterium tuberculosis clinical isolates from northern India as determined by MAS-PCR. J Clin Lab Anal. 2013;27:31–7.CrossRefPubMedPubMedCentral Gupta A, Prakash P, Singh SK, et al. Rapid genotypic detection of rpoB and katG gene mutations in Mycobacterium tuberculosis clinical isolates from northern India as determined by MAS-PCR. J Clin Lab Anal. 2013;27:31–7.CrossRefPubMedPubMedCentral
14.
go back to reference Mokrousov I, Narvskaya O, Limeschenko E. Detection of ethambutol-resistant Mycobacterium tuberculosis strains by multiplex allele-specific PCR assay targeting embB306 mutations. J Clin Microbiol. 2002;40:1617–20.CrossRefPubMedPubMedCentral Mokrousov I, Narvskaya O, Limeschenko E. Detection of ethambutol-resistant Mycobacterium tuberculosis strains by multiplex allele-specific PCR assay targeting embB306 mutations. J Clin Microbiol. 2002;40:1617–20.CrossRefPubMedPubMedCentral
15.
go back to reference Kamerbeek J, Schouls L, Kolk A, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35:907–14.CrossRefPubMedPubMedCentral Kamerbeek J, Schouls L, Kolk A, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35:907–14.CrossRefPubMedPubMedCentral
16.
go back to reference Brudey K, Driscoll JR, Rigouts L, et al. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics, and epidemiology. BMC Microbiol. 2006;6:23.CrossRefPubMedPubMedCentral Brudey K, Driscoll JR, Rigouts L, et al. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics, and epidemiology. BMC Microbiol. 2006;6:23.CrossRefPubMedPubMedCentral
17.
go back to reference Hillemann D, Warren R, Kubica T, et al. Rapid detection of Mycobacterium tuberculosis Beijing genotype strains by real-time PCR. J Clin Microbiol. 2006;44:302–6.CrossRefPubMedPubMedCentral Hillemann D, Warren R, Kubica T, et al. Rapid detection of Mycobacterium tuberculosis Beijing genotype strains by real-time PCR. J Clin Microbiol. 2006;44:302–6.CrossRefPubMedPubMedCentral
18.
go back to reference Plikaytis BB, Marden JL, Crawford JT. Multiplex PCR assay specific for the multidrug-resistant strain W of Mycobacterium tuberculosis. J Clin Microbiol. 1994;32:1542–6.CrossRefPubMedPubMedCentral Plikaytis BB, Marden JL, Crawford JT. Multiplex PCR assay specific for the multidrug-resistant strain W of Mycobacterium tuberculosis. J Clin Microbiol. 1994;32:1542–6.CrossRefPubMedPubMedCentral
19.
go back to reference Warren RM, Victor TC, Streicher EM, et al. Patients with active tuberculosis often have different strains in the same sputum specimen. Am J Respir Crit Care Med. 2004;169:610–4.CrossRefPubMed Warren RM, Victor TC, Streicher EM, et al. Patients with active tuberculosis often have different strains in the same sputum specimen. Am J Respir Crit Care Med. 2004;169:610–4.CrossRefPubMed
20.
go back to reference Van Soolingen D, Qian L, de Haas PE, Douglas JT, Traore H, Portaels F, et al. Predominance of a single genotype of Mycobacterium tuberculosis in countries of East Asia. J Clin Microbiol. 1995;33:3234–8.CrossRefPubMedPubMedCentral Van Soolingen D, Qian L, de Haas PE, Douglas JT, Traore H, Portaels F, et al. Predominance of a single genotype of Mycobacterium tuberculosis in countries of East Asia. J Clin Microbiol. 1995;33:3234–8.CrossRefPubMedPubMedCentral
21.
go back to reference Liu Q, Wang D, Martinez L, Lu P, Zhu L, Lu W, Wang J. Mycobacterium tuberculosis Beijing genotype strains and unfavourable treatment outcomes: a systematic review and meta-analysis. Clin Microbiol Infect. 2020;26(2):180–8.CrossRefPubMed Liu Q, Wang D, Martinez L, Lu P, Zhu L, Lu W, Wang J. Mycobacterium tuberculosis Beijing genotype strains and unfavourable treatment outcomes: a systematic review and meta-analysis. Clin Microbiol Infect. 2020;26(2):180–8.CrossRefPubMed
22.
go back to reference Ramazanzadeh R, Sayhemiri K. Prevalence of Beijing family in Mycobacterium tuberculosis in world population: systematic review and meta-analysis. Inter J Mycobact. 2014;2:109–13. Ramazanzadeh R, Sayhemiri K. Prevalence of Beijing family in Mycobacterium tuberculosis in world population: systematic review and meta-analysis. Inter J Mycobact. 2014;2:109–13.
23.
go back to reference Sharma P, Chauhan DS, Upadhyay P, et al. Molecular typing of Mycobacterium tuberculosis isolates from a rural area of Kanpur by spoligotyping and mycobacterial interspersed repetitive units (MIRUs) typing. Infect Genet Evol. 2008;8:621–6.CrossRefPubMed Sharma P, Chauhan DS, Upadhyay P, et al. Molecular typing of Mycobacterium tuberculosis isolates from a rural area of Kanpur by spoligotyping and mycobacterial interspersed repetitive units (MIRUs) typing. Infect Genet Evol. 2008;8:621–6.CrossRefPubMed
24.
go back to reference Stavrum R, Myneedu VP, Arora VK, et al. In-depth molecular characterization of Mycobacterium tuberculosis from New Delhi predominance of drug-resistant isolates of the ‘modern’ (TbD1) type. PLoS One. 2009;4:4540.CrossRef Stavrum R, Myneedu VP, Arora VK, et al. In-depth molecular characterization of Mycobacterium tuberculosis from New Delhi predominance of drug-resistant isolates of the ‘modern’ (TbD1) type. PLoS One. 2009;4:4540.CrossRef
25.
go back to reference Mathuria JP, Srivastava GN, Sharma P, Mathuria BL, Ojha S, Katoch VM, Anupurba S. Prevalence of mycobacterium tuberculosis Beijing genotype and its association with drug resistance in North India. J Infect Pub Heal. 2017;10:409–14.CrossRef Mathuria JP, Srivastava GN, Sharma P, Mathuria BL, Ojha S, Katoch VM, Anupurba S. Prevalence of mycobacterium tuberculosis Beijing genotype and its association with drug resistance in North India. J Infect Pub Heal. 2017;10:409–14.CrossRef
26.
go back to reference Sun JR, Lee SY, Dou HY. Using a multiplex polymerase chain reaction for the identification of Beijing strains of Mycobacterium tuberculosis. Eur J Clin Microbiol Infect Dis. 2009;28:105–7.CrossRefPubMed Sun JR, Lee SY, Dou HY. Using a multiplex polymerase chain reaction for the identification of Beijing strains of Mycobacterium tuberculosis. Eur J Clin Microbiol Infect Dis. 2009;28:105–7.CrossRefPubMed
27.
go back to reference Sherafat SJ, Goudarzi H, Farnia P. Evaluation of two molecular methods for the detection of Beijing strains of Mycobacterium tuberculosis in pulmonary tuberculosis patients. HealthMED. 2013;7(1):12–6. Sherafat SJ, Goudarzi H, Farnia P. Evaluation of two molecular methods for the detection of Beijing strains of Mycobacterium tuberculosis in pulmonary tuberculosis patients. HealthMED. 2013;7(1):12–6.
28.
go back to reference European Concerted Action on New Generation Genetic Markers and Techniques for the Epidemiology and Control of Tuberculosis. Beijing/W genotype Mycobacterium tuberculosis and drug resistance. Emerg Infect Dis. 2006;12:736–43.CrossRefPubMedCentral European Concerted Action on New Generation Genetic Markers and Techniques for the Epidemiology and Control of Tuberculosis. Beijing/W genotype Mycobacterium tuberculosis and drug resistance. Emerg Infect Dis. 2006;12:736–43.CrossRefPubMedCentral
29.
go back to reference Jiao W, Liu Z, Han R, et al. A country-wide study of spoligotype and drug resistance characteristics of Mycobacterium tuberculosis isolates from children in China. PLoS One. 2013;30(8):12–e84315. Jiao W, Liu Z, Han R, et al. A country-wide study of spoligotype and drug resistance characteristics of Mycobacterium tuberculosis isolates from children in China. PLoS One. 2013;30(8):12–e84315.
30.
go back to reference Ioerger TR, Feng Y, Chen X, et al. The non-clonality of drug resistance in Beijing-genotype isolates of Mycobacterium tuberculosis from the Western cape of South Africa. BMC Genomics. 2010;11:670.CrossRefPubMedPubMedCentral Ioerger TR, Feng Y, Chen X, et al. The non-clonality of drug resistance in Beijing-genotype isolates of Mycobacterium tuberculosis from the Western cape of South Africa. BMC Genomics. 2010;11:670.CrossRefPubMedPubMedCentral
31.
go back to reference Lipin MY, Stepanshina VN, Shemyakin IG, et al. Association of specific mutations in katG, rpoB, rpsL, and rrs genes with spoligotypes of multidrug-resistant Mycobacterium tuberculosis isolates in Russia. Clin Microbiol Infect. 2007;13:620–6.CrossRefPubMed Lipin MY, Stepanshina VN, Shemyakin IG, et al. Association of specific mutations in katG, rpoB, rpsL, and rrs genes with spoligotypes of multidrug-resistant Mycobacterium tuberculosis isolates in Russia. Clin Microbiol Infect. 2007;13:620–6.CrossRefPubMed
32.
go back to reference Park YK, Shin S, Ryu S, et al. Comparison of drug resistance genotypes between Beijing and non-Beijing family strains of Mycobacterium tuberculosis in Korea. J Microbiol Methods. 2005;63(2):165–72.CrossRefPubMed Park YK, Shin S, Ryu S, et al. Comparison of drug resistance genotypes between Beijing and non-Beijing family strains of Mycobacterium tuberculosis in Korea. J Microbiol Methods. 2005;63(2):165–72.CrossRefPubMed
34.
go back to reference Safi H, Sayers B, Hazbón MH. Transfer of embB codon 306 mutations into clinical Mycobacterium tuberculosis strains alters susceptibility to ethambutol, isoniazid, and rifampin. Antimicrob Agents Chemother. 2008;52:2027–34.CrossRefPubMedPubMedCentral Safi H, Sayers B, Hazbón MH. Transfer of embB codon 306 mutations into clinical Mycobacterium tuberculosis strains alters susceptibility to ethambutol, isoniazid, and rifampin. Antimicrob Agents Chemother. 2008;52:2027–34.CrossRefPubMedPubMedCentral
Metadata
Title
Detection of Beijing strains of MDR M. tuberculosis and their association with drug resistance mutations in katG, rpoB, and embB genes
Authors
Anamika Gupta
Pallavi Sinha
Vijay Nema
Pramod K. Gupta
Pampi Chakraborty
Savita Kulkarni
Nalin Rastogi
Shampa Anupurba
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2020
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-05479-5

Other articles of this Issue 1/2020

BMC Infectious Diseases 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.