Skip to main content
Top
Published in: Clinical Pharmacokinetics 12/2019

01-12-2019 | Isoniazid | Commentary

Clinical Significance of the Plasma Protein Binding of Rifampicin in the Treatment of Tuberculosis Patients

Authors: Roger K. Verbeeck, Bonifasius S. Singu, Dan Kibuule

Published in: Clinical Pharmacokinetics | Issue 12/2019

Login to get access

Excerpt

The standard dose regimen for active pulmonary tuberculosis (TB) consists of an initial 2-month intensive treatment phase with rifampicin, isoniazid, pyrazinamide, and ethambutol, followed by a 4-month continuation phase with rifampicin, isoniazid, and ethambutol [1]. Despite the use of standard dose regimens, weight-banding, and directly observed treatment, the pharmacokinetics (PK) of rifampicin show very high interindividual variability, which may be explained by various factors, including variable oral absorption, pharmacogenetic differences in drug-metabolizing/transporter activities, nutritional status, sex differences, drug–drug interactions, comorbidities such as diabetes, and HIV co-infection [24]. The high interindividual variability in the PK of rifampicin leads to highly variable systemic exposure, with supratherapeutic plasma concentrations potentially leading to adverse reactions such as liver toxicity, and subtherapeutic plasma concentrations resulting in slow response to treatment and development of drug resistance [5, 6]. Consequently, therapeutic drug monitoring of first-line anti-TB drugs has been proposed to improve treatment outcomes in certain patient groups, such as slow responders, patients with diabetes, and those with HIV co-infection [7, 8]. This commentary focuses on the potential consequences of interpatient variability in plasma binding of rifampicin on its PK and pharmacodynamics (PD). …
Literature
2.
go back to reference Devaleenal DB, Ramachandran G, Swaminathan S. The challenges of pharmacokinetic variability of first-line anti-TB drugs. Expert Rev Clin Pharmacol. 2017;10(1):47–58.CrossRef Devaleenal DB, Ramachandran G, Swaminathan S. The challenges of pharmacokinetic variability of first-line anti-TB drugs. Expert Rev Clin Pharmacol. 2017;10(1):47–58.CrossRef
3.
go back to reference Daskapan A, Idrus LR, Postma MJ, Wilffert B, Kosterink JGW, Stienstra Y, et al. A systematic review of the effect of HIV infection on the pharmacokinetics of first-line tuberculosis drugs. Clin Pharmacokinet. 2019;58(6):747–66.CrossRef Daskapan A, Idrus LR, Postma MJ, Wilffert B, Kosterink JGW, Stienstra Y, et al. A systematic review of the effect of HIV infection on the pharmacokinetics of first-line tuberculosis drugs. Clin Pharmacokinet. 2019;58(6):747–66.CrossRef
4.
go back to reference Stott KE, Pertinez H, Sturkenboom MGG, Boeree MJ, Aarnoutse R, Ramachandran G, et al. Pharmacokinetics of rifampicin in adult TB patients and healthy volunteers: a systematic review and meta-analysis. J Antimicrob Chemother. 2018;73(9):2305–13.CrossRef Stott KE, Pertinez H, Sturkenboom MGG, Boeree MJ, Aarnoutse R, Ramachandran G, et al. Pharmacokinetics of rifampicin in adult TB patients and healthy volunteers: a systematic review and meta-analysis. J Antimicrob Chemother. 2018;73(9):2305–13.CrossRef
5.
go back to reference Pasipanodya JG, McIlleron H, Burger A, Wash PA, Smith P, Gumbo T. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis. 2013;208(9):1464–73.CrossRef Pasipanodya JG, McIlleron H, Burger A, Wash PA, Smith P, Gumbo T. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis. 2013;208(9):1464–73.CrossRef
6.
go back to reference Satyaraddi A, Velpandian T, Sharma SK, Vishnubhatla S, Sharma A, Sirohiwal A, et al. Correlation of plasma anti-tuberculosis drug levels with subsequent development of hepatotoxicity. Int J Tuberc Lung Dis. 2014;18(2):188–95.CrossRef Satyaraddi A, Velpandian T, Sharma SK, Vishnubhatla S, Sharma A, Sirohiwal A, et al. Correlation of plasma anti-tuberculosis drug levels with subsequent development of hepatotoxicity. Int J Tuberc Lung Dis. 2014;18(2):188–95.CrossRef
7.
go back to reference Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs. 2014;74(8):839–54.CrossRef Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs. 2014;74(8):839–54.CrossRef
8.
go back to reference Verbeeck RK, Günther G, Kibuule D, Hunter C, Rennie TW. Optimizing treatment outcome of first-line anti-tuberculosis drugs: the role of therapeutic drug monitoring. Eur J Clin Pharmacol. 2016;72(8):905–16.CrossRef Verbeeck RK, Günther G, Kibuule D, Hunter C, Rennie TW. Optimizing treatment outcome of first-line anti-tuberculosis drugs: the role of therapeutic drug monitoring. Eur J Clin Pharmacol. 2016;72(8):905–16.CrossRef
9.
go back to reference Boman G, Ringberger VA. Binding of rifampicin by human plasma proteins. Eur J Clin Pharmacol. 1974;7(5):369–73.CrossRef Boman G, Ringberger VA. Binding of rifampicin by human plasma proteins. Eur J Clin Pharmacol. 1974;7(5):369–73.CrossRef
10.
go back to reference Acocella G. Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet. 1978;3(2):108–27.CrossRef Acocella G. Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet. 1978;3(2):108–27.CrossRef
11.
go back to reference Kenny MT, Strates B. Metabolism and pharmacokinetics of the antibiotic rifampin. Drug Metab Rev. 1981;12(1):159–218.CrossRef Kenny MT, Strates B. Metabolism and pharmacokinetics of the antibiotic rifampin. Drug Metab Rev. 1981;12(1):159–218.CrossRef
12.
go back to reference Woo J, Cheung W, Chan R, Chan HS, Cheng A, Chan K. In vitro protein binding characteristics of isoniazid, rifampicin, and pyrazinamide to whole plasma, albumin, and α-1-acid glycoprotein. Clin Biochem. 1996;29(2):175–7.CrossRef Woo J, Cheung W, Chan R, Chan HS, Cheng A, Chan K. In vitro protein binding characteristics of isoniazid, rifampicin, and pyrazinamide to whole plasma, albumin, and α-1-acid glycoprotein. Clin Biochem. 1996;29(2):175–7.CrossRef
13.
go back to reference te Brake LHM, Ruslami R, Later-Nijland H, Mooren F, Teulen M, Apriani L, et al. Exposure to total and protein-unbound rifampin is not affected by malnutrition in Indonesian tuberculosis patients. Antimicrob Agents Chemother. 2015;59(6):3233–9.CrossRef te Brake LHM, Ruslami R, Later-Nijland H, Mooren F, Teulen M, Apriani L, et al. Exposure to total and protein-unbound rifampin is not affected by malnutrition in Indonesian tuberculosis patients. Antimicrob Agents Chemother. 2015;59(6):3233–9.CrossRef
14.
go back to reference Alghamdi WA, Al-Shaer MH, Peloquin CA. Protein binding of first-line antituberculosis drugs. Antimicrob Agents Chemother. 2018;61(7):e00641–718. Alghamdi WA, Al-Shaer MH, Peloquin CA. Protein binding of first-line antituberculosis drugs. Antimicrob Agents Chemother. 2018;61(7):e00641–718.
15.
go back to reference Litjens CHC, Aarnoutse RA, van Ewijk-Beneken Kolmer EWJ, Svensson EM, Colbers A, Burger DM, et al. Protein binding of rifampicin is not saturated when using high-dose rifampicin. J Antimicrob Chemother. 2019;74(4):986–90.CrossRef Litjens CHC, Aarnoutse RA, van Ewijk-Beneken Kolmer EWJ, Svensson EM, Colbers A, Burger DM, et al. Protein binding of rifampicin is not saturated when using high-dose rifampicin. J Antimicrob Chemother. 2019;74(4):986–90.CrossRef
16.
go back to reference Buchanan N, Van Der Walt NA. The binding of antituberculous drugs to normal and Kwashiorkor serum. S Afr Med J. 1977;52(13):522–5.PubMed Buchanan N, Van Der Walt NA. The binding of antituberculous drugs to normal and Kwashiorkor serum. S Afr Med J. 1977;52(13):522–5.PubMed
17.
go back to reference Johnson DA, Smith KD. The efficacy of certain anti-tuberculosis drugs is affected by binding to α-1-acid glycoprotein. Biomed Chromatogr. 2006;20(6–7):551–60.CrossRef Johnson DA, Smith KD. The efficacy of certain anti-tuberculosis drugs is affected by binding to α-1-acid glycoprotein. Biomed Chromatogr. 2006;20(6–7):551–60.CrossRef
18.
go back to reference Bohnert T, Gan LS. Plasma protein binding: from discovery to development. J Pharm Sci. 2013;102(9):2953–94.CrossRef Bohnert T, Gan LS. Plasma protein binding: from discovery to development. J Pharm Sci. 2013;102(9):2953–94.CrossRef
19.
go back to reference Smith SA, Waters NJ. Pharmacokinetic and pharmacodynamic considerations for drugs binding to alpha-1-acid glycoprotein. Pharm Res. 2018;36(2):30.CrossRef Smith SA, Waters NJ. Pharmacokinetic and pharmacodynamic considerations for drugs binding to alpha-1-acid glycoprotein. Pharm Res. 2018;36(2):30.CrossRef
20.
go back to reference Almeida MLD, Barbieri MA, Gurgel RQ, Abdurrahman ST, Baba UA, Hart CA, et al. α1-Acid glycoprotein and α1-antitrypsin as early markers of treatment response in patients receiving the intensive phase of tuberculosis therapy. Trans R Soc Trop Hyg. 2009;103(6):575–80.CrossRef Almeida MLD, Barbieri MA, Gurgel RQ, Abdurrahman ST, Baba UA, Hart CA, et al. α1-Acid glycoprotein and α1-antitrypsin as early markers of treatment response in patients receiving the intensive phase of tuberculosis therapy. Trans R Soc Trop Hyg. 2009;103(6):575–80.CrossRef
21.
go back to reference Dickinson JM, Aber VR, Allen BW, Ellard GA, Mitchison DA. Assay of rifampicin in serum. J Clin Pathol. 1974;27(2):457–62.CrossRef Dickinson JM, Aber VR, Allen BW, Ellard GA, Mitchison DA. Assay of rifampicin in serum. J Clin Pathol. 1974;27(2):457–62.CrossRef
22.
go back to reference Furesz S. Chemical and biological properties of rifampicin. Antibiot Chemother. 1970;16:316–51.CrossRef Furesz S. Chemical and biological properties of rifampicin. Antibiot Chemother. 1970;16:316–51.CrossRef
23.
go back to reference Ellard GA, Fourie PB. Rifampicin bioavailability: a review of its pharmacology and the chemotherapeutic necessity for ensuring optimal absorption. Int J Tuberc Lung Dis. 1999;3(11):S301–8.PubMed Ellard GA, Fourie PB. Rifampicin bioavailability: a review of its pharmacology and the chemotherapeutic necessity for ensuring optimal absorption. Int J Tuberc Lung Dis. 1999;3(11):S301–8.PubMed
24.
go back to reference Loos U, Musch E, Jensen JC, Mikus G, Schwabe HK, Eichelbaum M. Pharmacokinetics of oral and intravenous rifampicin during chronic administration. Klin Wochenschr. 1985;63(23):1205–11.CrossRef Loos U, Musch E, Jensen JC, Mikus G, Schwabe HK, Eichelbaum M. Pharmacokinetics of oral and intravenous rifampicin during chronic administration. Klin Wochenschr. 1985;63(23):1205–11.CrossRef
25.
go back to reference Wilkinson GR, Shand DG. A physiological approach to hepatic drug clearance. Clin Pharmacol Ther. 1975;18(4):377–90.CrossRef Wilkinson GR, Shand DG. A physiological approach to hepatic drug clearance. Clin Pharmacol Ther. 1975;18(4):377–90.CrossRef
26.
go back to reference Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71(3):115–21.CrossRef Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71(3):115–21.CrossRef
27.
go back to reference Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs. 2002;62(15):2169–83.CrossRef Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs. 2002;62(15):2169–83.CrossRef
28.
go back to reference Antwi S, Yanh H, Enimil A, Sarfo AM, Gillani FS, Anong D, et al. Pharmacokinetics of the first-line antituberculosis drugs in Ghanaian children with tuberculosis with or without HIV coinfection. Antimicrob Agents Chemother. 2017;61(2):e01701–16.PubMedPubMedCentral Antwi S, Yanh H, Enimil A, Sarfo AM, Gillani FS, Anong D, et al. Pharmacokinetics of the first-line antituberculosis drugs in Ghanaian children with tuberculosis with or without HIV coinfection. Antimicrob Agents Chemother. 2017;61(2):e01701–16.PubMedPubMedCentral
29.
go back to reference Bekker A, Schaaf HS, Draper HR, van der Laan L, Murray S, Wiesner L, et al. Pharmacokineics of rifampin, isoniazid, pyrazinamide, and ethambutol in infants dosed according to revised WHO-recommended treatment guielines. Antimicrob Agents Chemother. 2016;60(4):2171–9.CrossRef Bekker A, Schaaf HS, Draper HR, van der Laan L, Murray S, Wiesner L, et al. Pharmacokineics of rifampin, isoniazid, pyrazinamide, and ethambutol in infants dosed according to revised WHO-recommended treatment guielines. Antimicrob Agents Chemother. 2016;60(4):2171–9.CrossRef
30.
go back to reference McIlleron H, Wash P, Burger A, Norman J, Folb PI, Smith P. Determinants of rifampin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrob Agents Chemother. 2006;50(4):1170–7.CrossRef McIlleron H, Wash P, Burger A, Norman J, Folb PI, Smith P. Determinants of rifampin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrob Agents Chemother. 2006;50(4):1170–7.CrossRef
31.
go back to reference Chideya S, Winston CA, Peloquin CA, Bradford WZ, Hopewell PC, Wells CD, et al. Isoniazid, rifampin, ethambutol, and pyrazinamide pharmacokinetics and treatment outcomes among a predominantly HIV-infected cohort of adults with tuberculosis from Botswana. Clin Infect Dis. 2009;48(12):1685–94.CrossRef Chideya S, Winston CA, Peloquin CA, Bradford WZ, Hopewell PC, Wells CD, et al. Isoniazid, rifampin, ethambutol, and pyrazinamide pharmacokinetics and treatment outcomes among a predominantly HIV-infected cohort of adults with tuberculosis from Botswana. Clin Infect Dis. 2009;48(12):1685–94.CrossRef
32.
go back to reference Ramachandran G, Kumar AK, Bhavani PK, Kannan T, Kumar SR, Gangadevi NP, et al. Pharmacokinetics of first-line antituberculosis drugs in HIV-infected children with tuberculosis treated with intermittent regimens in india. Antimicrob Agents Chemother. 2015;59(2):1162–7.CrossRef Ramachandran G, Kumar AK, Bhavani PK, Kannan T, Kumar SR, Gangadevi NP, et al. Pharmacokinetics of first-line antituberculosis drugs in HIV-infected children with tuberculosis treated with intermittent regimens in india. Antimicrob Agents Chemother. 2015;59(2):1162–7.CrossRef
33.
go back to reference Ramachandran G, Kumar AK, Kannan T, Bhavani PK, Kumar SR, Gangadevi NP, et al. Low serum concentrations of rifampicin and pyrazinamide associated with poor treatment outcomes in children with tuberculosis related to HIV status. Pediatr Infect Dis J. 2016;35(5):530–4.CrossRef Ramachandran G, Kumar AK, Kannan T, Bhavani PK, Kumar SR, Gangadevi NP, et al. Low serum concentrations of rifampicin and pyrazinamide associated with poor treatment outcomes in children with tuberculosis related to HIV status. Pediatr Infect Dis J. 2016;35(5):530–4.CrossRef
34.
go back to reference Polasa K, Murthy KJR, Krishnaswamy K. Rifampicin kinetics in undernutrition. Br J Clin Pharmacol. 1984;17(4):481–4.CrossRef Polasa K, Murthy KJR, Krishnaswamy K. Rifampicin kinetics in undernutrition. Br J Clin Pharmacol. 1984;17(4):481–4.CrossRef
35.
go back to reference Gumbo T, Louie A, Deziel MR, Liu W, Parson LM, Salfinger M, et al. Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob Agents Chemother. 2007;51(11):3781–8.CrossRef Gumbo T, Louie A, Deziel MR, Liu W, Parson LM, Salfinger M, et al. Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob Agents Chemother. 2007;51(11):3781–8.CrossRef
36.
go back to reference Pasipanodya J, Gumbo T. An oracle: antituberculosis pharmacokinetics–pharmacodynamics, clinical correlation, and clinical trial simulations to predict the future. Antimicrob Agents Chemother. 2011;55(1):24–34.CrossRef Pasipanodya J, Gumbo T. An oracle: antituberculosis pharmacokinetics–pharmacodynamics, clinical correlation, and clinical trial simulations to predict the future. Antimicrob Agents Chemother. 2011;55(1):24–34.CrossRef
37.
go back to reference Gonzalez D, Schmidt S, Derendorf H. Importance of relating efficacy measures to unbound drug concentrations for anti-infective agents. Clin Microbiol Rev. 2013;26(2):274–88.CrossRef Gonzalez D, Schmidt S, Derendorf H. Importance of relating efficacy measures to unbound drug concentrations for anti-infective agents. Clin Microbiol Rev. 2013;26(2):274–88.CrossRef
38.
go back to reference Leroux S, van den Anker JN, Smits A, Pfister M, Allegaert K. Maturational changes in vancomycin protein binding affect vancomycin dosing in neonates. Br J Clin Pharmacol. 2019;85(5):865–7.CrossRef Leroux S, van den Anker JN, Smits A, Pfister M, Allegaert K. Maturational changes in vancomycin protein binding affect vancomycin dosing in neonates. Br J Clin Pharmacol. 2019;85(5):865–7.CrossRef
39.
go back to reference Ruslami R, Nijland HMJ, Adhiarta IGN, Kariadi SHKS, Alisjahbana B, Aernoutse RE, et al. Pharmacokinetics of antituberculosis drugs in pulmonary tuberculosis patients with type 2 diabetes. Antimicrob Agents Chemother. 2010;54(3):1068–74.CrossRef Ruslami R, Nijland HMJ, Adhiarta IGN, Kariadi SHKS, Alisjahbana B, Aernoutse RE, et al. Pharmacokinetics of antituberculosis drugs in pulmonary tuberculosis patients with type 2 diabetes. Antimicrob Agents Chemother. 2010;54(3):1068–74.CrossRef
40.
go back to reference Egelund EF, Weiner M, Singh RP, Prihoda TJ, Gelfond JAL, Derendorf H, et al. Protein binding of rifapentine and its 25-desacetyl metabolite in patients with pulmonary tuberculosis. Antimicrob Agents Chemother. 2014;58(8):4904–10.CrossRef Egelund EF, Weiner M, Singh RP, Prihoda TJ, Gelfond JAL, Derendorf H, et al. Protein binding of rifapentine and its 25-desacetyl metabolite in patients with pulmonary tuberculosis. Antimicrob Agents Chemother. 2014;58(8):4904–10.CrossRef
Metadata
Title
Clinical Significance of the Plasma Protein Binding of Rifampicin in the Treatment of Tuberculosis Patients
Authors
Roger K. Verbeeck
Bonifasius S. Singu
Dan Kibuule
Publication date
01-12-2019
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 12/2019
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-019-00800-1

Other articles of this Issue 12/2019

Clinical Pharmacokinetics 12/2019 Go to the issue

Acknowledgement to Referees

Acknowledgement to Referees