Skip to main content
Top
Published in: Diabetologia 8/2016

01-08-2016 | Review

Islet biology, the CDKN2A/B locus and type 2 diabetes risk

Authors: Yahui Kong, Rohit B. Sharma, Benjamin U. Nwosu, Laura C. Alonso

Published in: Diabetologia | Issue 8/2016

Login to get access

Abstract

Type 2 diabetes, fuelled by the obesity epidemic, is an escalating worldwide cause of personal hardship and public cost. Diabetes incidence increases with age, and many studies link the classic senescence and ageing protein p16INK4A to diabetes pathophysiology via pancreatic islet biology. Genome-wide association studies (GWASs) have unequivocally linked the CDKN2A/B locus, which encodes p16 inhibitor of cyclin-dependent kinase (p16INK4A) and three other gene products, p14 alternate reading frame (p14ARF), p15INK4B and antisense non-coding RNA in the INK4 locus (ANRIL), with human diabetes risk. However, the mechanism by which the CDKN2A/B locus influences diabetes risk remains uncertain. Here, we weigh the evidence that CDKN2A/B polymorphisms impact metabolic health via islet biology vs effects in other tissues. Structured in a bedside-to-bench-to-bedside approach, we begin with a summary of the evidence that the CDKN2A/B locus impacts diabetes risk and a brief review of the basic biology of CDKN2A/B gene products. The main emphasis of this work is an in-depth look at the nuanced roles that CDKN2A/B gene products and related proteins play in the regulation of beta cell mass, proliferation and insulin secretory function, as well as roles in other metabolic tissues. We finish with a synthesis of basic biology and clinical observations, incorporating human physiology data. We conclude that it is likely that the CDKN2A/B locus influences diabetes risk through both islet and non-islet mechanisms.
Literature
1.
go back to reference Hannou SA, Wouters K, Paumelle R, Staels B (2015) Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs? Trends Endocrinol Metab 26:176–184PubMedCrossRef Hannou SA, Wouters K, Paumelle R, Staels B (2015) Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs? Trends Endocrinol Metab 26:176–184PubMedCrossRef
2.
go back to reference Rutter GA (2014) Dorothy Hodgkin Lecture 2014. Understanding genes identified by genome-wide association studies for type 2 diabetes. Diabet Med 31:1480–1487PubMedCrossRef Rutter GA (2014) Dorothy Hodgkin Lecture 2014. Understanding genes identified by genome-wide association studies for type 2 diabetes. Diabet Med 31:1480–1487PubMedCrossRef
4.
go back to reference Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research, Saxena R, Voight BF et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336CrossRef Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research, Saxena R, Voight BF et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336CrossRef
5.
go back to reference Scott LJ, Mohlke KL, Bonnycastle LL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345PubMedPubMedCentralCrossRef Scott LJ, Mohlke KL, Bonnycastle LL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345PubMedPubMedCentralCrossRef
6.
go back to reference Zeggini E, Weedon MN, Lindgren CM et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316:1336–1341PubMedPubMedCentralCrossRef Zeggini E, Weedon MN, Lindgren CM et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316:1336–1341PubMedPubMedCentralCrossRef
7.
go back to reference Duesing K, Fatemifar G, Charpentier G et al (2008) Strong association of common variants in the CDKN2A/CDKN2B region with type 2 diabetes in French Europids. Diabetologia 51:821–826PubMedCrossRef Duesing K, Fatemifar G, Charpentier G et al (2008) Strong association of common variants in the CDKN2A/CDKN2B region with type 2 diabetes in French Europids. Diabetologia 51:821–826PubMedCrossRef
8.
go back to reference Gori F, Specchia C, Pietri S et al (2010) Common genetic variants on chromosome 9p21 are associated with myocardial infarction and type 2 diabetes in an Italian population. BMC Med Genet 11:60PubMedPubMedCentralCrossRef Gori F, Specchia C, Pietri S et al (2010) Common genetic variants on chromosome 9p21 are associated with myocardial infarction and type 2 diabetes in an Italian population. BMC Med Genet 11:60PubMedPubMedCentralCrossRef
9.
go back to reference Voight BF, Scott LJ, Steinthorsdottir V et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42:579–589PubMedPubMedCentralCrossRef Voight BF, Scott LJ, Steinthorsdottir V et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42:579–589PubMedPubMedCentralCrossRef
10.
go back to reference Ng MCY, Park KS, Oh B et al (2008) Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6,719 Asians. Diabetes 57:2226–2233PubMedPubMedCentralCrossRef Ng MCY, Park KS, Oh B et al (2008) Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6,719 Asians. Diabetes 57:2226–2233PubMedPubMedCentralCrossRef
11.
go back to reference Omori S, Tanaka Y, Takahashi A et al (2008) Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. Diabetes 57:791–795PubMedCrossRef Omori S, Tanaka Y, Takahashi A et al (2008) Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. Diabetes 57:791–795PubMedCrossRef
12.
go back to reference Lee Y-H, Kang ES, Kim SH et al (2008) Association between polymorphisms in SLC30A8, HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1, KCNQ1 and type 2 diabetes in the Korean population. J Hum Genet 53:991–998PubMedCrossRef Lee Y-H, Kang ES, Kim SH et al (2008) Association between polymorphisms in SLC30A8, HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1, KCNQ1 and type 2 diabetes in the Korean population. J Hum Genet 53:991–998PubMedCrossRef
13.
go back to reference Tabara Y, Osawa H, Kawamoto R et al (2009) Replication study of candidate genes associated with type 2 diabetes based on genome-wide screening. Diabetes 58:493–498PubMedPubMedCentralCrossRef Tabara Y, Osawa H, Kawamoto R et al (2009) Replication study of candidate genes associated with type 2 diabetes based on genome-wide screening. Diabetes 58:493–498PubMedPubMedCentralCrossRef
14.
go back to reference Takeuchi F, Serizawa M, Yamamoto K et al (2009) Confirmation of multiple risk Loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes 58:1690–1699PubMedPubMedCentralCrossRef Takeuchi F, Serizawa M, Yamamoto K et al (2009) Confirmation of multiple risk Loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes 58:1690–1699PubMedPubMedCentralCrossRef
15.
go back to reference Hu C, Zhang R, Wang C et al (2009) PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population. PLoS One 4:e7643PubMedPubMedCentralCrossRef Hu C, Zhang R, Wang C et al (2009) PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population. PLoS One 4:e7643PubMedPubMedCentralCrossRef
16.
go back to reference Tan JT, Ng DPK, Nurbaya S et al (2010) Polymorphisms identified through genome-wide association studies and their associations with type 2 diabetes in Chinese, Malays, and Asian-Indians in Singapore. J Clin Endocrinol Metab 95:390–397PubMedCrossRef Tan JT, Ng DPK, Nurbaya S et al (2010) Polymorphisms identified through genome-wide association studies and their associations with type 2 diabetes in Chinese, Malays, and Asian-Indians in Singapore. J Clin Endocrinol Metab 95:390–397PubMedCrossRef
17.
go back to reference Wen J, Rönn T, Olsson A et al (2010) Investigation of type 2 diabetes risk alleles support CDKN2A/B, CDKAL1, and TCF7L2 as susceptibility genes in a Han Chinese cohort. PLoS One 5:e9153PubMedPubMedCentralCrossRef Wen J, Rönn T, Olsson A et al (2010) Investigation of type 2 diabetes risk alleles support CDKN2A/B, CDKAL1, and TCF7L2 as susceptibility genes in a Han Chinese cohort. PLoS One 5:e9153PubMedPubMedCentralCrossRef
18.
go back to reference Han X, Luo Y, Ren Q et al (2010) Implication of genetic variants near SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, FTO, TCF2, KCNQ1, and WFS1 in type 2 diabetes in a Chinese population. BMC Med Genet 11:81PubMedPubMedCentralCrossRef Han X, Luo Y, Ren Q et al (2010) Implication of genetic variants near SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, FTO, TCF2, KCNQ1, and WFS1 in type 2 diabetes in a Chinese population. BMC Med Genet 11:81PubMedPubMedCentralCrossRef
19.
go back to reference Chidambaram M, Radha V, Mohan V (2010) Replication of recently described type 2 diabetes gene variants in a South Indian population. Metabolism 59:1760–1766PubMedCrossRef Chidambaram M, Radha V, Mohan V (2010) Replication of recently described type 2 diabetes gene variants in a South Indian population. Metabolism 59:1760–1766PubMedCrossRef
20.
go back to reference Xu M, Bi Y, Xu Y et al (2010) Combined effects of 19 common variations on type 2 diabetes in Chinese: results from two community-based studies. PLoS One 5:e14022PubMedPubMedCentralCrossRef Xu M, Bi Y, Xu Y et al (2010) Combined effects of 19 common variations on type 2 diabetes in Chinese: results from two community-based studies. PLoS One 5:e14022PubMedPubMedCentralCrossRef
21.
go back to reference Li H, Gan W, Lu L et al (2013) A genome-wide association study identifies GRK5 and RASGRP1 as type 2 diabetes loci in Chinese Hans. Diabetes 62:291–298PubMedCrossRef Li H, Gan W, Lu L et al (2013) A genome-wide association study identifies GRK5 and RASGRP1 as type 2 diabetes loci in Chinese Hans. Diabetes 62:291–298PubMedCrossRef
22.
go back to reference Kuo JZ, Sheu WH-H, Assimes TL et al (2013) Trans-ethnic fine mapping identifies a novel independent locus at the 3′ end of CDKAL1 and novel variants of several susceptibility loci for type 2 diabetes in a Han Chinese population. Diabetologia 56:2619–2628PubMedPubMedCentralCrossRef Kuo JZ, Sheu WH-H, Assimes TL et al (2013) Trans-ethnic fine mapping identifies a novel independent locus at the 3′ end of CDKAL1 and novel variants of several susceptibility loci for type 2 diabetes in a Han Chinese population. Diabetologia 56:2619–2628PubMedPubMedCentralCrossRef
24.
go back to reference Qian Y, Lu F, Dong M et al (2015) Cumulative effect and predictive value of genetic variants associated with type 2 diabetes in Han Chinese: a case-control study. PLoS One 10:e0116537PubMedPubMedCentralCrossRef Qian Y, Lu F, Dong M et al (2015) Cumulative effect and predictive value of genetic variants associated with type 2 diabetes in Han Chinese: a case-control study. PLoS One 10:e0116537PubMedPubMedCentralCrossRef
25.
go back to reference Chauhan G, Spurgeon CJ, Tabassum R et al (2010) Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians. Diabetes 59:2068–2074PubMedPubMedCentralCrossRef Chauhan G, Spurgeon CJ, Tabassum R et al (2010) Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians. Diabetes 59:2068–2074PubMedPubMedCentralCrossRef
26.
go back to reference Rees SD, Hydrie MZI, Shera AS et al (2011) Replication of 13 genome-wide association (GWA)-validated risk variants for type 2 diabetes in Pakistani populations. Diabetologia 54:1368–1374PubMedCrossRef Rees SD, Hydrie MZI, Shera AS et al (2011) Replication of 13 genome-wide association (GWA)-validated risk variants for type 2 diabetes in Pakistani populations. Diabetologia 54:1368–1374PubMedCrossRef
27.
go back to reference Parra EJ, Below JE, Krithika S et al (2011) Genome-wide association study of type 2 diabetes in a sample from Mexico City and a meta-analysis of a Mexican-American sample from Starr County, Texas. Diabetologia 54:2038–2046PubMedCrossRef Parra EJ, Below JE, Krithika S et al (2011) Genome-wide association study of type 2 diabetes in a sample from Mexico City and a meta-analysis of a Mexican-American sample from Starr County, Texas. Diabetologia 54:2038–2046PubMedCrossRef
28.
go back to reference Gamboa-Meléndez MA, Huerta-Chagoya A, Moreno-Macías H et al (2012) Contribution of common genetic variation to the risk of type 2 diabetes in the Mexican Mestizo population. Diabetes 61:3314–3321PubMedPubMedCentralCrossRef Gamboa-Meléndez MA, Huerta-Chagoya A, Moreno-Macías H et al (2012) Contribution of common genetic variation to the risk of type 2 diabetes in the Mexican Mestizo population. Diabetes 61:3314–3321PubMedPubMedCentralCrossRef
29.
go back to reference Lara-Riegos JC, Ortiz-López MG, Peña-Espinoza BI et al (2015) Diabetes susceptibility in Mayas: evidence for the involvement of polymorphisms in HHEX, HNF4α, KCNJ11, PPARγ, CDKN2A/2B, SLC30A8, CDC123/CAMK1D, TCF7L2, ABCA1 and SLC16A11 genes. Gene 565:68–75PubMedCrossRef Lara-Riegos JC, Ortiz-López MG, Peña-Espinoza BI et al (2015) Diabetes susceptibility in Mayas: evidence for the involvement of polymorphisms in HHEX, HNF4α, KCNJ11, PPARγ, CDKN2A/2B, SLC30A8, CDC123/CAMK1D, TCF7L2, ABCA1 and SLC16A11 genes. Gene 565:68–75PubMedCrossRef
30.
go back to reference Cauchi S, Ezzidi I, El Achhab Y et al (2012) European genetic variants associated with type 2 diabetes in North African Arabs. Diabetes Metab 38:316–323PubMedCrossRef Cauchi S, Ezzidi I, El Achhab Y et al (2012) European genetic variants associated with type 2 diabetes in North African Arabs. Diabetes Metab 38:316–323PubMedCrossRef
31.
go back to reference Al-Sinani S, Woodhouse N, Al-Mamari A et al (2015) Association of gene variants with susceptibility to type 2 diabetes among Omanis. World J Diabetes 6:358–366PubMedPubMedCentralCrossRef Al-Sinani S, Woodhouse N, Al-Mamari A et al (2015) Association of gene variants with susceptibility to type 2 diabetes among Omanis. World J Diabetes 6:358–366PubMedPubMedCentralCrossRef
32.
go back to reference Turki A, Al-Zaben GS, Khirallah M, Marmouch H, Mahjoub T, Almawi WY (2014) Gender-dependent associations of CDKN2A/2B, KCNJ11, POLI, SLC30A8, and TCF7L2 variants with type 2 diabetes in (North African) Tunisian Arabs. Diabetes Res Clin Pract 103:e40–e43PubMedCrossRef Turki A, Al-Zaben GS, Khirallah M, Marmouch H, Mahjoub T, Almawi WY (2014) Gender-dependent associations of CDKN2A/2B, KCNJ11, POLI, SLC30A8, and TCF7L2 variants with type 2 diabetes in (North African) Tunisian Arabs. Diabetes Res Clin Pract 103:e40–e43PubMedCrossRef
33.
go back to reference Lauenborg J, Grarup N, Damm P et al (2009) Common type 2 diabetes risk gene variants associate with gestational diabetes. J Clin Endocrinol Metab 94:145–150PubMedCrossRef Lauenborg J, Grarup N, Damm P et al (2009) Common type 2 diabetes risk gene variants associate with gestational diabetes. J Clin Endocrinol Metab 94:145–150PubMedCrossRef
34.
go back to reference Cho YM, Kim TH, Lim S et al (2009) Type 2 diabetes-associated genetic variants discovered in the recent genome-wide association studies are related to gestational diabetes mellitus in the Korean population. Diabetologia 52:253–261PubMedCrossRef Cho YM, Kim TH, Lim S et al (2009) Type 2 diabetes-associated genetic variants discovered in the recent genome-wide association studies are related to gestational diabetes mellitus in the Korean population. Diabetologia 52:253–261PubMedCrossRef
35.
go back to reference Wang Y, Nie M, Li W et al (2011) Association of six single nucleotide polymorphisms with gestational diabetes mellitus in a Chinese population. PLoS One 6:e26953PubMedPubMedCentralCrossRef Wang Y, Nie M, Li W et al (2011) Association of six single nucleotide polymorphisms with gestational diabetes mellitus in a Chinese population. PLoS One 6:e26953PubMedPubMedCentralCrossRef
36.
go back to reference Kwak SH, Choi SH, Jung HS et al (2013) Clinical and genetic risk factors for type 2 diabetes at early or late post partum after gestational diabetes mellitus. J Clin Endocrinol Metab 98:E744–E752PubMedCrossRef Kwak SH, Choi SH, Jung HS et al (2013) Clinical and genetic risk factors for type 2 diabetes at early or late post partum after gestational diabetes mellitus. J Clin Endocrinol Metab 98:E744–E752PubMedCrossRef
37.
go back to reference Kang ES, Kim MS, Kim CH et al (2009) Association of common type 2 diabetes risk gene variants and posttransplantation diabetes mellitus in renal allograft recipients in Korea. Transplantation 88:693–698PubMedCrossRef Kang ES, Kim MS, Kim CH et al (2009) Association of common type 2 diabetes risk gene variants and posttransplantation diabetes mellitus in renal allograft recipients in Korea. Transplantation 88:693–698PubMedCrossRef
38.
go back to reference Kurzawski M, Dziewanowski K, Łapczuk J, Wajda A, Droździk M (2012) Analysis of common type 2 diabetes mellitus genetic risk factors in new-onset diabetes after transplantation in kidney transplant patients medicated with tacrolimus. Eur J Clin Pharmacol 68:1587–1594PubMedPubMedCentralCrossRef Kurzawski M, Dziewanowski K, Łapczuk J, Wajda A, Droździk M (2012) Analysis of common type 2 diabetes mellitus genetic risk factors in new-onset diabetes after transplantation in kidney transplant patients medicated with tacrolimus. Eur J Clin Pharmacol 68:1587–1594PubMedPubMedCentralCrossRef
41.
42.
go back to reference Winkler C, Raab J, Grallert H, Ziegler A-G (2012) Lack of association of type 2 diabetes susceptibility genotypes and body weight on the development of islet autoimmunity and type 1 diabetes. PLoS One 7:e35410PubMedPubMedCentralCrossRef Winkler C, Raab J, Grallert H, Ziegler A-G (2012) Lack of association of type 2 diabetes susceptibility genotypes and body weight on the development of islet autoimmunity and type 1 diabetes. PLoS One 7:e35410PubMedPubMedCentralCrossRef
43.
go back to reference Andersen MLM, Rasmussen MA, Pörksen S et al (2013) Complex multi-block analysis identifies new immunologic and genetic disease progression patterns associated with the residual β-cell function 1 year after diagnosis of type 1 diabetes. PLoS One 8:e64632PubMedPubMedCentralCrossRef Andersen MLM, Rasmussen MA, Pörksen S et al (2013) Complex multi-block analysis identifies new immunologic and genetic disease progression patterns associated with the residual β-cell function 1 year after diagnosis of type 1 diabetes. PLoS One 8:e64632PubMedPubMedCentralCrossRef
44.
go back to reference Fagerholm E, Ahlqvist E, Forsblom C et al (2012) SNP in the genome-wide association study hotspot on chromosome 9p21 confers susceptibility to diabetic nephropathy in type 1 diabetes. Diabetologia 55:2386–2393PubMedCrossRef Fagerholm E, Ahlqvist E, Forsblom C et al (2012) SNP in the genome-wide association study hotspot on chromosome 9p21 confers susceptibility to diabetic nephropathy in type 1 diabetes. Diabetologia 55:2386–2393PubMedCrossRef
45.
go back to reference Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678CrossRef Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678CrossRef
47.
go back to reference Broadbent HM, Peden JF, Lorkowski S et al (2008) Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet 17:806–814PubMedCrossRef Broadbent HM, Peden JF, Lorkowski S et al (2008) Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet 17:806–814PubMedCrossRef
48.
go back to reference Helgadottir A, Thorleifsson G, Manolescu A et al (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316:1491–1493PubMedCrossRef Helgadottir A, Thorleifsson G, Manolescu A et al (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316:1491–1493PubMedCrossRef
49.
go back to reference Pasmant E, Sabbagh A, Vidaud M, Bièche I (2011) ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J 25:444–448PubMedCrossRef Pasmant E, Sabbagh A, Vidaud M, Bièche I (2011) ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J 25:444–448PubMedCrossRef
50.
go back to reference Matarin M, Brown WM, Singleton A, Hardy JA, Meschia JF, ISGS investigators (2008) Whole genome analyses suggest ischemic stroke and heart disease share an association with polymorphisms on chromosome 9p21. Stroke J Cereb Circ 39:1586–1589CrossRef Matarin M, Brown WM, Singleton A, Hardy JA, Meschia JF, ISGS investigators (2008) Whole genome analyses suggest ischemic stroke and heart disease share an association with polymorphisms on chromosome 9p21. Stroke J Cereb Circ 39:1586–1589CrossRef
51.
52.
go back to reference Burdon KP, Macgregor S, Hewitt AW et al (2011) Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet 43:574–578PubMedCrossRef Burdon KP, Macgregor S, Hewitt AW et al (2011) Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet 43:574–578PubMedCrossRef
53.
go back to reference Ramdas WD, van Koolwijk LME, Lemij HG et al (2011) Common genetic variants associated with open-angle glaucoma. Hum Mol Genet 20:2464–2471PubMedCrossRef Ramdas WD, van Koolwijk LME, Lemij HG et al (2011) Common genetic variants associated with open-angle glaucoma. Hum Mol Genet 20:2464–2471PubMedCrossRef
54.
go back to reference Emanuele E, Lista S, Ghidoni R et al (2011) Chromosome 9p21.3 genotype is associated with vascular dementia and Alzheimer’s disease. Neurobiol Aging 32:1231–1235PubMedCrossRef Emanuele E, Lista S, Ghidoni R et al (2011) Chromosome 9p21.3 genotype is associated with vascular dementia and Alzheimer’s disease. Neurobiol Aging 32:1231–1235PubMedCrossRef
55.
go back to reference Uno S, Zembutsu H, Hirasawa A et al (2010) A genome-wide association study identifies genetic variants in the CDKN2BAS locus associated with endometriosis in Japanese. Nat Genet 42:707–710PubMedCrossRef Uno S, Zembutsu H, Hirasawa A et al (2010) A genome-wide association study identifies genetic variants in the CDKN2BAS locus associated with endometriosis in Japanese. Nat Genet 42:707–710PubMedCrossRef
56.
go back to reference Schaefer AS, Richter GM, Groessner-Schreiber B et al (2009) Identification of a shared genetic susceptibility locus for coronary heart disease and periodontitis. PLoS Genet 5:e1000378PubMedPubMedCentralCrossRef Schaefer AS, Richter GM, Groessner-Schreiber B et al (2009) Identification of a shared genetic susceptibility locus for coronary heart disease and periodontitis. PLoS Genet 5:e1000378PubMedPubMedCentralCrossRef
57.
go back to reference Melzer D, Frayling TM, Murray A et al (2007) A common variant of the p16(INK4A) genetic region is associated with physical function in older people. Mech Ageing Dev 128:370–377PubMedPubMedCentralCrossRef Melzer D, Frayling TM, Murray A et al (2007) A common variant of the p16(INK4A) genetic region is associated with physical function in older people. Mech Ageing Dev 128:370–377PubMedPubMedCentralCrossRef
58.
go back to reference Li W-Q, Pfeiffer RM, Hyland PL et al (2014) Genetic polymorphisms in the 9p21 region associated with risk of multiple cancers. Carcinogenesis 35:2698–2705PubMedPubMedCentralCrossRef Li W-Q, Pfeiffer RM, Hyland PL et al (2014) Genetic polymorphisms in the 9p21 region associated with risk of multiple cancers. Carcinogenesis 35:2698–2705PubMedPubMedCentralCrossRef
59.
go back to reference Zhang L, Li J, Duan F et al (2014) Interaction of type 2 diabetes mellitus with chromosome 9p21 rs10757274 polymorphism on the risk of myocardial infarction: a case-control study in Chinese population. BMC Cardiovasc Disord 14:170PubMedPubMedCentralCrossRef Zhang L, Li J, Duan F et al (2014) Interaction of type 2 diabetes mellitus with chromosome 9p21 rs10757274 polymorphism on the risk of myocardial infarction: a case-control study in Chinese population. BMC Cardiovasc Disord 14:170PubMedPubMedCentralCrossRef
60.
go back to reference Ma RCW, So WY, Tam CHT et al (2014) Genetic variants for type 2 diabetes and new-onset cancer in Chinese with type 2 diabetes. Diabetes Res Clin Pract 103:328–337PubMedCrossRef Ma RCW, So WY, Tam CHT et al (2014) Genetic variants for type 2 diabetes and new-onset cancer in Chinese with type 2 diabetes. Diabetes Res Clin Pract 103:328–337PubMedCrossRef
61.
go back to reference Shea J, Agarwala V, Philippakis AA et al (2011) Comparing strategies to fine-map the association of common SNPs at chromosome 9p21 with type 2 diabetes and myocardial infarction. Nat Genet 43:801–805PubMedPubMedCentralCrossRef Shea J, Agarwala V, Philippakis AA et al (2011) Comparing strategies to fine-map the association of common SNPs at chromosome 9p21 with type 2 diabetes and myocardial infarction. Nat Genet 43:801–805PubMedPubMedCentralCrossRef
62.
63.
go back to reference Sharpless NE, Sherr CJ (2015) Forging a signature of in vivo senescence. Nat Rev Cancer 15:397–408PubMedCrossRef Sharpless NE, Sherr CJ (2015) Forging a signature of in vivo senescence. Nat Rev Cancer 15:397–408PubMedCrossRef
64.
go back to reference Robertson KD, Jones PA (1999) Tissue-specific alternative splicing in the human INK4A/ARF cell cycle regulatory locus. Oncogene 18:3810–3820PubMedCrossRef Robertson KD, Jones PA (1999) Tissue-specific alternative splicing in the human INK4A/ARF cell cycle regulatory locus. Oncogene 18:3810–3820PubMedCrossRef
65.
go back to reference Hannon GJ, Beach D (1994) p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 371:257–261PubMedCrossRef Hannon GJ, Beach D (1994) p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 371:257–261PubMedCrossRef
66.
go back to reference Quelle DE, Ashmun RA, Hannon GJ et al (1995) Cloning and characterization of murine p16INK4A and p15INK4B genes. Oncogene 11:635–645PubMed Quelle DE, Ashmun RA, Hannon GJ et al (1995) Cloning and characterization of murine p16INK4A and p15INK4B genes. Oncogene 11:635–645PubMed
67.
go back to reference Poi MJ, Knobloch TJ, Yuan C, Tsai M-D, Weghorst CM, Li J (2013) Evidence that P12, a specific variant of P16(INK4A), plays a suppressive role in human pancreatic carcinogenesis. Biochem Biophys Res Commun 436:217–222PubMedPubMedCentralCrossRef Poi MJ, Knobloch TJ, Yuan C, Tsai M-D, Weghorst CM, Li J (2013) Evidence that P12, a specific variant of P16(INK4A), plays a suppressive role in human pancreatic carcinogenesis. Biochem Biophys Res Commun 436:217–222PubMedPubMedCentralCrossRef
68.
go back to reference Pérez de Castro I, Benet M, Jiménez M, Alzabin S, Malumbres M, Pellicer A (2005) Mouse p10, an alternative spliced form of p15INK4B, inhibits cell cycle progression and malignant transformation. Cancer Res 65:3249–3256PubMed Pérez de Castro I, Benet M, Jiménez M, Alzabin S, Malumbres M, Pellicer A (2005) Mouse p10, an alternative spliced form of p15INK4B, inhibits cell cycle progression and malignant transformation. Cancer Res 65:3249–3256PubMed
69.
go back to reference Pasmant E, Laurendeau I, Héron D, Vidaud M, Vidaud D, Bièche I (2007) Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res 67:3963–3969PubMedCrossRef Pasmant E, Laurendeau I, Héron D, Vidaud M, Vidaud D, Bièche I (2007) Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res 67:3963–3969PubMedCrossRef
70.
go back to reference Yap KL, Li S, Muñoz-Cabello AM et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4A. Mol Cell 38:662–674PubMedPubMedCentralCrossRef Yap KL, Li S, Muñoz-Cabello AM et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4A. Mol Cell 38:662–674PubMedPubMedCentralCrossRef
71.
go back to reference Folkersen L, Kyriakou T, Goel A et al (2009) Relationship between CAD risk genotype in the chromosome 9p21 locus and gene expression. Identification of eight new ANRIL splice variants. PLoS One 4:e7677PubMedPubMedCentralCrossRef Folkersen L, Kyriakou T, Goel A et al (2009) Relationship between CAD risk genotype in the chromosome 9p21 locus and gene expression. Identification of eight new ANRIL splice variants. PLoS One 4:e7677PubMedPubMedCentralCrossRef
72.
go back to reference Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6:e1001233PubMedPubMedCentralCrossRef Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6:e1001233PubMedPubMedCentralCrossRef
73.
74.
go back to reference Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707PubMedCrossRef Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707PubMedCrossRef
75.
76.
go back to reference Gil J, Peters G (2006) Regulation of the INK4B-ARF-INK4A tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol 7:667–677PubMedCrossRef Gil J, Peters G (2006) Regulation of the INK4B-ARF-INK4A tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol 7:667–677PubMedCrossRef
77.
go back to reference Singh SK, Ellenrieder V (2013) Senescence in pancreatic carcinogenesis: from signalling to chromatin remodelling and epigenetics. Gut 62:1364–1372PubMedCrossRef Singh SK, Ellenrieder V (2013) Senescence in pancreatic carcinogenesis: from signalling to chromatin remodelling and epigenetics. Gut 62:1364–1372PubMedCrossRef
78.
go back to reference Hussussian CJ, Struewing JP, Goldstein AM et al (1994) Germline p16 mutations in familial melanoma. Nat Genet 8:15–21PubMedCrossRef Hussussian CJ, Struewing JP, Goldstein AM et al (1994) Germline p16 mutations in familial melanoma. Nat Genet 8:15–21PubMedCrossRef
79.
go back to reference Goldstein AM, Chan M, Harland M et al (2007) Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. J Med Genet 44:99–106PubMedCrossRef Goldstein AM, Chan M, Harland M et al (2007) Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. J Med Genet 44:99–106PubMedCrossRef
80.
go back to reference Walker GJ, Hayward NK (2002) p16INK4A and p14ARF tumour suppressors in melanoma: lessons from the mouse. Lancet 359:7–8PubMedCrossRef Walker GJ, Hayward NK (2002) p16INK4A and p14ARF tumour suppressors in melanoma: lessons from the mouse. Lancet 359:7–8PubMedCrossRef
81.
go back to reference Muscarella P, Melvin WS, Fisher WE et al (1998) Genetic alterations in gastrinomas and nonfunctioning pancreatic neuroendocrine tumors: an analysis of p16/MTS1 tumor suppressor gene inactivation. Cancer Res 58:237–240PubMed Muscarella P, Melvin WS, Fisher WE et al (1998) Genetic alterations in gastrinomas and nonfunctioning pancreatic neuroendocrine tumors: an analysis of p16/MTS1 tumor suppressor gene inactivation. Cancer Res 58:237–240PubMed
82.
go back to reference Serrano J, Goebel SU, Peghini PL, Lubensky IA, Gibril F, Jensen RT (2000) Alterations in the p16INK4A/CDKN2A tumor suppressor gene in gastrinomas. J Clin Endocrinol Metab 85:4146–4156PubMedCrossRef Serrano J, Goebel SU, Peghini PL, Lubensky IA, Gibril F, Jensen RT (2000) Alterations in the p16INK4A/CDKN2A tumor suppressor gene in gastrinomas. J Clin Endocrinol Metab 85:4146–4156PubMedCrossRef
83.
go back to reference House MG, Herman JG, Guo MZ et al (2003) Aberrant hypermethylation of tumor suppressor genes in pancreatic endocrine neoplasms. Ann Surg 238:423–431PubMedPubMedCentral House MG, Herman JG, Guo MZ et al (2003) Aberrant hypermethylation of tumor suppressor genes in pancreatic endocrine neoplasms. Ann Surg 238:423–431PubMedPubMedCentral
84.
go back to reference Lopez JR, Claessen SMH, Macville MVE, Albrechts JCM, Skogseid B, Speel E-JM (2010) Spectral karyotypic and comparative genomic analysis of the endocrine pancreatic tumor cell line BON-1. Neuroendocrinology 91:131–141PubMedCrossRef Lopez JR, Claessen SMH, Macville MVE, Albrechts JCM, Skogseid B, Speel E-JM (2010) Spectral karyotypic and comparative genomic analysis of the endocrine pancreatic tumor cell line BON-1. Neuroendocrinology 91:131–141PubMedCrossRef
85.
go back to reference Speisky D, Duces A, Bièche I et al (2012) Molecular profiling of pancreatic neuroendocrine tumors in sporadic and Von Hippel-Lindau patients. Clin Cancer Res 18:2838–2849PubMedCrossRef Speisky D, Duces A, Bièche I et al (2012) Molecular profiling of pancreatic neuroendocrine tumors in sporadic and Von Hippel-Lindau patients. Clin Cancer Res 18:2838–2849PubMedCrossRef
86.
go back to reference Cozar-Castellano I, Harb G, Selk K et al (2008) Lessons from the first comprehensive molecular characterization of cell cycle control in rodent insulinoma cell lines. Diabetes 57:3056–3068PubMedPubMedCentralCrossRef Cozar-Castellano I, Harb G, Selk K et al (2008) Lessons from the first comprehensive molecular characterization of cell cycle control in rodent insulinoma cell lines. Diabetes 57:3056–3068PubMedPubMedCentralCrossRef
87.
go back to reference Romagosa C, Simonetti S, López-Vicente L et al (2011) p16Ink4a overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene 30:2087–2097PubMedCrossRef Romagosa C, Simonetti S, López-Vicente L et al (2011) p16Ink4a overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene 30:2087–2097PubMedCrossRef
88.
go back to reference Villanueva A, García C, Paules AB et al (1998) Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells. Oncogene 17:1969–1978PubMedCrossRef Villanueva A, García C, Paules AB et al (1998) Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells. Oncogene 17:1969–1978PubMedCrossRef
89.
go back to reference Morisset J, Aliaga JC, Calvo EL, Bourassa J, Rivard N (1999) Expression and modulation of p42/p44 MAPKs and cell cycle regulatory proteins in rat pancreas regeneration. Am J Physiol 277:G953–G959PubMed Morisset J, Aliaga JC, Calvo EL, Bourassa J, Rivard N (1999) Expression and modulation of p42/p44 MAPKs and cell cycle regulatory proteins in rat pancreas regeneration. Am J Physiol 277:G953–G959PubMed
90.
go back to reference Kotake Y, Nakagawa T, Kitagawa K et al (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30:1956–1962PubMedCrossRef Kotake Y, Nakagawa T, Kitagawa K et al (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30:1956–1962PubMedCrossRef
91.
go back to reference Huang M, Chen W, Qi F et al (2015) Long non-coding RNA ANRIL is upregulated in hepatocellular carcinoma and regulates cell apoptosis by epigenetic silencing of KLF2. J Hematol Oncol 8:50PubMedPubMedCentralCrossRef Huang M, Chen W, Qi F et al (2015) Long non-coding RNA ANRIL is upregulated in hepatocellular carcinoma and regulates cell apoptosis by epigenetic silencing of KLF2. J Hematol Oncol 8:50PubMedPubMedCentralCrossRef
92.
go back to reference Kang Y-H, Kim D, Jin E-J (2015) Down-regulation of phospholipase D stimulates death of lung cancer cells involving up-regulation of the long ncRNA ANRIL. Anticancer Res 35:2795–2803PubMed Kang Y-H, Kim D, Jin E-J (2015) Down-regulation of phospholipase D stimulates death of lung cancer cells involving up-regulation of the long ncRNA ANRIL. Anticancer Res 35:2795–2803PubMed
93.
go back to reference Nie F, Sun M, Yang J et al (2015) Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression. Mol Cancer Ther 14:268–277PubMedCrossRef Nie F, Sun M, Yang J et al (2015) Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression. Mol Cancer Ther 14:268–277PubMedCrossRef
94.
go back to reference Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621PubMedCrossRef Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621PubMedCrossRef
96.
go back to reference Avrahami D, Li C, Zhang J et al (2015) Aging-dependent demethylation of regulatory elements correlates with chromatin state and improved β cell function. Cell Metab 22:619–632PubMedCrossRef Avrahami D, Li C, Zhang J et al (2015) Aging-dependent demethylation of regulatory elements correlates with chromatin state and improved β cell function. Cell Metab 22:619–632PubMedCrossRef
97.
go back to reference Rane SG, Cosenza SC, Mettus RV, Reddy EP (2002) Germ line transmission of the Cdk4(R24C) mutation facilitates tumorigenesis and escape from cellular senescence. Mol Cell Biol 22:644–656PubMedPubMedCentralCrossRef Rane SG, Cosenza SC, Mettus RV, Reddy EP (2002) Germ line transmission of the Cdk4(R24C) mutation facilitates tumorigenesis and escape from cellular senescence. Mol Cell Biol 22:644–656PubMedPubMedCentralCrossRef
98.
go back to reference Baker DJ, Childs BG, Durik M et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189PubMedCrossRef Baker DJ, Childs BG, Durik M et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189PubMedCrossRef
99.
go back to reference Kamijo T, Zindy F, Roussel MF et al (1997) Tumor suppression at the mouse INK4A locus mediated by the alternative reading frame product p19ARF. Cell 91:649–659PubMedCrossRef Kamijo T, Zindy F, Roussel MF et al (1997) Tumor suppression at the mouse INK4A locus mediated by the alternative reading frame product p19ARF. Cell 91:649–659PubMedCrossRef
100.
go back to reference Salas E, Rabhi N, Froguel P et al (2014) Role of Ink4a/Arf locus in beta cell mass expansion under physiological and pathological conditions. J Diabetes Res 2014:e873679CrossRef Salas E, Rabhi N, Froguel P et al (2014) Role of Ink4a/Arf locus in beta cell mass expansion under physiological and pathological conditions. J Diabetes Res 2014:e873679CrossRef
101.
go back to reference Krishnamurthy J, Ramsey MR, Ligon KL et al (2006) p16INK4A induces an age-dependent decline in islet regenerative potential. Nature 443:453–457PubMedCrossRef Krishnamurthy J, Ramsey MR, Ligon KL et al (2006) p16INK4A induces an age-dependent decline in islet regenerative potential. Nature 443:453–457PubMedCrossRef
103.
go back to reference Perl S, Kushner JA, Buchholz BA et al (2010) Significant human beta-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating. J Clin Endocrinol Metab 95:E234–E239PubMedPubMedCentralCrossRef Perl S, Kushner JA, Buchholz BA et al (2010) Significant human beta-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating. J Clin Endocrinol Metab 95:E234–E239PubMedPubMedCentralCrossRef
105.
go back to reference Teta M, Long SY, Wartschow LM, Rankin MM, Kushner JA (2005) Very slow turnover of beta-cells in aged adult mice. Diabetes 54:2557–2567PubMedCrossRef Teta M, Long SY, Wartschow LM, Rankin MM, Kushner JA (2005) Very slow turnover of beta-cells in aged adult mice. Diabetes 54:2557–2567PubMedCrossRef
106.
go back to reference Gregg BE, Moore PC, Demozay D et al (2012) Formation of a human β-cell population within pancreatic islets is set early in life. J Clin Endocrinol Metab 97:3197–3206PubMedPubMedCentralCrossRef Gregg BE, Moore PC, Demozay D et al (2012) Formation of a human β-cell population within pancreatic islets is set early in life. J Clin Endocrinol Metab 97:3197–3206PubMedPubMedCentralCrossRef
107.
go back to reference Meier JJ, Butler AE, Saisho Y et al (2008) Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes 57:1584–1594PubMedPubMedCentralCrossRef Meier JJ, Butler AE, Saisho Y et al (2008) Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes 57:1584–1594PubMedPubMedCentralCrossRef
108.
go back to reference Saisho Y, Butler AE, Manesso E, Elashoff D, Rizza RA, Butler PC (2013) β-cell mass and turnover in humans: effects of obesity and ageing. Diabetes Care 36:111–117PubMedCrossRef Saisho Y, Butler AE, Manesso E, Elashoff D, Rizza RA, Butler PC (2013) β-cell mass and turnover in humans: effects of obesity and ageing. Diabetes Care 36:111–117PubMedCrossRef
109.
go back to reference Sullivan BA, Hollister-Lock J, Bonner-Weir S, Weir GC (2015) Reduced Ki67 staining in the postmortem state calls into question past conclusions about the lack of turnover of adult human β-cells. Diabetes 64:1698–1702PubMedCrossRef Sullivan BA, Hollister-Lock J, Bonner-Weir S, Weir GC (2015) Reduced Ki67 staining in the postmortem state calls into question past conclusions about the lack of turnover of adult human β-cells. Diabetes 64:1698–1702PubMedCrossRef
110.
go back to reference Mizukami H, Takahashi K, Inaba W et al (2014) Age-associated changes of islet endocrine cells and the effects of body mass index in Japanese. J Diabetes Investig 5:38–47PubMedCrossRef Mizukami H, Takahashi K, Inaba W et al (2014) Age-associated changes of islet endocrine cells and the effects of body mass index in Japanese. J Diabetes Investig 5:38–47PubMedCrossRef
111.
go back to reference Salpeter SJ, Khalaileh A, Weinberg-Corem N, Ziv O, Glaser B, Dor Y (2013) Systemic regulation of the age-related decline of pancreatic β-cell replication. Diabetes 62:2843–2848PubMedPubMedCentralCrossRef Salpeter SJ, Khalaileh A, Weinberg-Corem N, Ziv O, Glaser B, Dor Y (2013) Systemic regulation of the age-related decline of pancreatic β-cell replication. Diabetes 62:2843–2848PubMedPubMedCentralCrossRef
112.
go back to reference Levitt HE, Cyphert TJ, Pascoe JL et al (2011) Glucose stimulates human beta cell replication in vivo in islets transplanted into NOD-severe combined immunodeficiency (SCID) mice. Diabetologia 54:572–582PubMedCrossRef Levitt HE, Cyphert TJ, Pascoe JL et al (2011) Glucose stimulates human beta cell replication in vivo in islets transplanted into NOD-severe combined immunodeficiency (SCID) mice. Diabetologia 54:572–582PubMedCrossRef
113.
go back to reference Diiorio P, Jurczyk A, Yang C et al (2011) Hyperglycemia-induced proliferation of adult human beta cells engrafted into spontaneously diabetic immunodeficient NOD-Rag1null IL2rγnull Ins2Akita mice. Pancreas 40:1147–1149PubMedPubMedCentralCrossRef Diiorio P, Jurczyk A, Yang C et al (2011) Hyperglycemia-induced proliferation of adult human beta cells engrafted into spontaneously diabetic immunodeficient NOD-Rag1null IL2rγnull Ins2Akita mice. Pancreas 40:1147–1149PubMedPubMedCentralCrossRef
114.
go back to reference Cozar-Castellano I, Weinstock M, Haught M, Velázquez-Garcia S, Sipula D, Stewart AF (2006) Evaluation of beta-cell replication in mice transgenic for hepatocyte growth factor and placental lactogen: comprehensive characterization of the G1/S regulatory proteins reveals unique involvement of p21cip. Diabetes 55:70–77PubMedCrossRef Cozar-Castellano I, Weinstock M, Haught M, Velázquez-Garcia S, Sipula D, Stewart AF (2006) Evaluation of beta-cell replication in mice transgenic for hepatocyte growth factor and placental lactogen: comprehensive characterization of the G1/S regulatory proteins reveals unique involvement of p21cip. Diabetes 55:70–77PubMedCrossRef
115.
go back to reference Kluth O, Matzke D, Schulze G, Schwenk RW, Joost H-G, Schürmann A (2014) Differential transcriptome analysis of diabetes-resistant and -sensitive mouse islets reveals significant overlap with human diabetes susceptibility genes. Diabetes 63:4230–4238PubMedCrossRef Kluth O, Matzke D, Schulze G, Schwenk RW, Joost H-G, Schürmann A (2014) Differential transcriptome analysis of diabetes-resistant and -sensitive mouse islets reveals significant overlap with human diabetes susceptibility genes. Diabetes 63:4230–4238PubMedCrossRef
116.
117.
go back to reference Tschen S-I, Dhawan S, Gurlo T, Bhushan A (2009) Age-dependent decline in β-cell proliferation restricts the capacity of β-cell regeneration in mice. Diabetes 58:1312–1320PubMedPubMedCentralCrossRef Tschen S-I, Dhawan S, Gurlo T, Bhushan A (2009) Age-dependent decline in β-cell proliferation restricts the capacity of β-cell regeneration in mice. Diabetes 58:1312–1320PubMedPubMedCentralCrossRef
118.
go back to reference Alonso-Magdalena P, García-Arévalo M, Quesada I, Nadal Á (2015) Bisphenol-A treatment during pregnancy in mice: a new window of susceptibility for the development of diabetes in mothers later in life. Endocrinology 156:1659–1670PubMedCrossRef Alonso-Magdalena P, García-Arévalo M, Quesada I, Nadal Á (2015) Bisphenol-A treatment during pregnancy in mice: a new window of susceptibility for the development of diabetes in mothers later in life. Endocrinology 156:1659–1670PubMedCrossRef
119.
go back to reference Chen H, Gu X, Su IH et al (2009) Polycomb protein Ezh2 regulates pancreatic β-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev 23:975–985PubMedPubMedCentralCrossRef Chen H, Gu X, Su IH et al (2009) Polycomb protein Ezh2 regulates pancreatic β-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev 23:975–985PubMedPubMedCentralCrossRef
120.
go back to reference Elghazi L, Balcazar N, Blandino-Rosano M et al (2010) Decreased IRS signaling impairs β-cell cycle progression and survival in transgenic mice overexpressing S6K in β-Cells. Diabetes 59:2390–2399PubMedPubMedCentralCrossRef Elghazi L, Balcazar N, Blandino-Rosano M et al (2010) Decreased IRS signaling impairs β-cell cycle progression and survival in transgenic mice overexpressing S6K in β-Cells. Diabetes 59:2390–2399PubMedPubMedCentralCrossRef
122.
go back to reference Williams K, Abanquah D, Joshi-Gokhale S et al (2011) Systemic and acute administration of parathyroid hormone-related peptide(1–36) stimulates endogenous beta cell proliferation while preserving function in adult mice. Diabetologia 54:2867–2877PubMedCrossRef Williams K, Abanquah D, Joshi-Gokhale S et al (2011) Systemic and acute administration of parathyroid hormone-related peptide(1–36) stimulates endogenous beta cell proliferation while preserving function in adult mice. Diabetologia 54:2867–2877PubMedCrossRef
123.
go back to reference Pascoe J, Hollern D, Stamateris R et al (2012) Free fatty acids block glucose-induced β-cell proliferation in mice by inducing cell cycle inhibitors p16 and p18. Diabetes 61:632–641PubMedPubMedCentralCrossRef Pascoe J, Hollern D, Stamateris R et al (2012) Free fatty acids block glucose-induced β-cell proliferation in mice by inducing cell cycle inhibitors p16 and p18. Diabetes 61:632–641PubMedPubMedCentralCrossRef
124.
go back to reference Zeng N, Yang K-T, Bayan J-A et al (2013) PTEN controls β-cell regeneration in aged mice by regulating cell cycle inhibitor p16ink4a. Aging Cell 12:1000–1011PubMedCrossRef Zeng N, Yang K-T, Bayan J-A et al (2013) PTEN controls β-cell regeneration in aged mice by regulating cell cycle inhibitor p16ink4a. Aging Cell 12:1000–1011PubMedCrossRef
125.
go back to reference Yang K-T, Bayan J-A, Zeng N et al (2014) Adult-onset deletion of Pten increases islet mass and beta cell proliferation in mice. Diabetologia 57:352–361PubMedCrossRef Yang K-T, Bayan J-A, Zeng N et al (2014) Adult-onset deletion of Pten increases islet mass and beta cell proliferation in mice. Diabetologia 57:352–361PubMedCrossRef
127.
go back to reference Köhler CU, Olewinski M, Tannapfel A, Schmidt WE, Fritsch H, Meier JJ (2011) Cell cycle control of β-cell replication in the prenatal and postnatal human pancreas. Am J Physiol Endocrinol Metab 300:E221–E230PubMedCrossRef Köhler CU, Olewinski M, Tannapfel A, Schmidt WE, Fritsch H, Meier JJ (2011) Cell cycle control of β-cell replication in the prenatal and postnatal human pancreas. Am J Physiol Endocrinol Metab 300:E221–E230PubMedCrossRef
128.
go back to reference Taneera J, Fadista J, Ahlqvist E et al (2013) Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. Mol Cell Endocrinol 375:35–42PubMedCrossRef Taneera J, Fadista J, Ahlqvist E et al (2013) Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. Mol Cell Endocrinol 375:35–42PubMedCrossRef
129.
go back to reference Davalli AM, Perego L, Bertuzzi F et al (2008) Disproportionate hyperproinsulinemia, beta-cell restricted prohormone convertase 2 deficiency, and cell cycle inhibitors expression by human islets transplanted into athymic nude mice: insights into nonimmune-mediated mechanisms of delayed islet graft failure. Cell Transplant 17:1323–1336PubMedCrossRef Davalli AM, Perego L, Bertuzzi F et al (2008) Disproportionate hyperproinsulinemia, beta-cell restricted prohormone convertase 2 deficiency, and cell cycle inhibitors expression by human islets transplanted into athymic nude mice: insights into nonimmune-mediated mechanisms of delayed islet graft failure. Cell Transplant 17:1323–1336PubMedCrossRef
130.
go back to reference Fiaschi-Taesch NM, Kleinberger JW, Salim FG et al (2013) Cytoplasmic-nuclear trafficking of G1/s cell cycle molecules and adult human β-cell replication: a revised model of human β-cell G1/S control. Diabetes 62:2460–2470PubMedPubMedCentralCrossRef Fiaschi-Taesch NM, Kleinberger JW, Salim FG et al (2013) Cytoplasmic-nuclear trafficking of G1/s cell cycle molecules and adult human β-cell replication: a revised model of human β-cell G1/S control. Diabetes 62:2460–2470PubMedPubMedCentralCrossRef
131.
132.
go back to reference Fiaschi-Taesch N, Bigatel TA, Sicari B et al (2009) Survey of the human pancreatic β-cell g1/s proteome reveals a potential therapeutic role for CDK-6 and cyclin D1 in enhancing human β-cell replication and function in vivo. Diabetes 58:882–893PubMedPubMedCentralCrossRef Fiaschi-Taesch N, Bigatel TA, Sicari B et al (2009) Survey of the human pancreatic β-cell g1/s proteome reveals a potential therapeutic role for CDK-6 and cyclin D1 in enhancing human β-cell replication and function in vivo. Diabetes 58:882–893PubMedPubMedCentralCrossRef
133.
go back to reference Zhou JX, Dhawan S, Fu H et al (2013) Combined modulation of polycomb and trithorax genes rejuvenates β cell replication. J Clin Invest 123:4849–4858PubMedPubMedCentralCrossRef Zhou JX, Dhawan S, Fu H et al (2013) Combined modulation of polycomb and trithorax genes rejuvenates β cell replication. J Clin Invest 123:4849–4858PubMedPubMedCentralCrossRef
134.
go back to reference Wong ESM, Le Guezennec X, Demidov ON et al (2009) p38MAPK controls expression of multiple cell cycle inhibitors and islet proliferation with advancing age. Dev Cell 17:142–149PubMedCrossRef Wong ESM, Le Guezennec X, Demidov ON et al (2009) p38MAPK controls expression of multiple cell cycle inhibitors and islet proliferation with advancing age. Dev Cell 17:142–149PubMedCrossRef
135.
go back to reference Halvorsen TL, Beattie GM, Lopez AD, Hayek A, Levine F (2000) Accelerated telomere shortening and senescence in human pancreatic islet cells stimulated to divide in vitro. J Endocrinol 166:103–109PubMedCrossRef Halvorsen TL, Beattie GM, Lopez AD, Hayek A, Levine F (2000) Accelerated telomere shortening and senescence in human pancreatic islet cells stimulated to divide in vitro. J Endocrinol 166:103–109PubMedCrossRef
136.
go back to reference Ramsey MR, Krishnamurthy J, Pei X-H et al (2007) Expression of p16Ink4a compensates for p18Ink4c loss in cyclin-dependent kinase 4/6–dependent tumors and tissues. Cancer Res 67:4732–4741PubMedCrossRef Ramsey MR, Krishnamurthy J, Pei X-H et al (2007) Expression of p16Ink4a compensates for p18Ink4c loss in cyclin-dependent kinase 4/6–dependent tumors and tissues. Cancer Res 67:4732–4741PubMedCrossRef
137.
go back to reference Moritani M, Yamasaki S, Kagami M et al (2005) Hypoplasia of endocrine and exocrine pancreas in homozygous transgenic TGF-β1. Mol Cell Endocrinol 229:175–184PubMedCrossRef Moritani M, Yamasaki S, Kagami M et al (2005) Hypoplasia of endocrine and exocrine pancreas in homozygous transgenic TGF-β1. Mol Cell Endocrinol 229:175–184PubMedCrossRef
138.
go back to reference Stolovich-Rain M, Hija A, Grimsby J, Glaser B, Dor Y (2012) Pancreatic beta cells in very old mice retain capacity for compensatory proliferation. J Biol Chem 287:27407–27414PubMedPubMedCentralCrossRef Stolovich-Rain M, Hija A, Grimsby J, Glaser B, Dor Y (2012) Pancreatic beta cells in very old mice retain capacity for compensatory proliferation. J Biol Chem 287:27407–27414PubMedPubMedCentralCrossRef
139.
go back to reference Sangiorgi E, Capecchi MR (2009) Bmi1 lineage tracing identifies a self-renewing pancreatic acinar cell subpopulation capable of maintaining pancreatic organ homeostasis. Proc Natl Acad Sci U S A 106:7101–7106PubMedPubMedCentralCrossRef Sangiorgi E, Capecchi MR (2009) Bmi1 lineage tracing identifies a self-renewing pancreatic acinar cell subpopulation capable of maintaining pancreatic organ homeostasis. Proc Natl Acad Sci U S A 106:7101–7106PubMedPubMedCentralCrossRef
140.
141.
go back to reference Lee S-H, Piran R, Keinan E, Pinkerton A, Levine F (2013) Induction of β-cell replication by a synthetic HNF4α antagonist. Stem Cells 31:2396–2407PubMedCrossRef Lee S-H, Piran R, Keinan E, Pinkerton A, Levine F (2013) Induction of β-cell replication by a synthetic HNF4α antagonist. Stem Cells 31:2396–2407PubMedCrossRef
142.
go back to reference Rane SG, Dubus P, Mettus RV et al (1999) Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia. Nat Genet 22:44–52PubMedCrossRef Rane SG, Dubus P, Mettus RV et al (1999) Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia. Nat Genet 22:44–52PubMedCrossRef
143.
go back to reference Marzo N, Mora C, Fabregat ME et al (2004) Pancreatic islets from cyclin-dependent kinase 4/R24C (Cdk4) knockin mice have significantly increased beta cell mass and are physiologically functional, indicating that Cdk4 is a potential target for pancreatic beta cell mass regeneration in type 1 diabetes. Diabetologia 47:686–694PubMedCrossRef Marzo N, Mora C, Fabregat ME et al (2004) Pancreatic islets from cyclin-dependent kinase 4/R24C (Cdk4) knockin mice have significantly increased beta cell mass and are physiologically functional, indicating that Cdk4 is a potential target for pancreatic beta cell mass regeneration in type 1 diabetes. Diabetologia 47:686–694PubMedCrossRef
144.
go back to reference Coleman KG, Wautlet BS, Morrissey D et al (1997) Identification of CDK4 sequences involved in cyclin D1 and p16 binding. J Biol Chem 272:18869–18874PubMedCrossRef Coleman KG, Wautlet BS, Morrissey D et al (1997) Identification of CDK4 sequences involved in cyclin D1 and p16 binding. J Biol Chem 272:18869–18874PubMedCrossRef
145.
go back to reference Kushner JA, Ciemerych MA, Sicinska E et al (2005) Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Mol Cell Biol 25:3752–3762PubMedPubMedCentralCrossRef Kushner JA, Ciemerych MA, Sicinska E et al (2005) Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Mol Cell Biol 25:3752–3762PubMedPubMedCentralCrossRef
146.
go back to reference Georgia S, Hinault C, Kawamori D et al (2010) Cyclin D2 Is essential for the compensatory β-cell hyperplastic response to insulin resistance in rodents. Diabetes 59:987–996PubMedPubMedCentralCrossRef Georgia S, Hinault C, Kawamori D et al (2010) Cyclin D2 Is essential for the compensatory β-cell hyperplastic response to insulin resistance in rodents. Diabetes 59:987–996PubMedPubMedCentralCrossRef
148.
go back to reference Stamateris RE, Sharma RB, Hollern DA, Alonso LC (2013) Adaptive β-cell proliferation increases early in high-fat feeding in mice, concurrent with metabolic changes, with induction of islet cyclin D2 expression. Am J Physiol Endocrinol Metab 305:E149–E159PubMedPubMedCentralCrossRef Stamateris RE, Sharma RB, Hollern DA, Alonso LC (2013) Adaptive β-cell proliferation increases early in high-fat feeding in mice, concurrent with metabolic changes, with induction of islet cyclin D2 expression. Am J Physiol Endocrinol Metab 305:E149–E159PubMedPubMedCentralCrossRef
149.
go back to reference Balcazar N, Sathyamurthy A, Elghazi L et al (2009) mTORC1 activation regulates β-cell mass and proliferation by modulation of cyclin D2 synthesis and stability. J Biol Chem 284:7832–7842PubMedPubMedCentralCrossRef Balcazar N, Sathyamurthy A, Elghazi L et al (2009) mTORC1 activation regulates β-cell mass and proliferation by modulation of cyclin D2 synthesis and stability. J Biol Chem 284:7832–7842PubMedPubMedCentralCrossRef
150.
go back to reference Fatrai S, Elghazi L, Balcazar N et al (2006) Akt induces β-cell proliferation by regulating cyclin D1, cyclin D2, and p21 levels and cyclin-dependent kinase-4 activity. Diabetes 55:318–325PubMedCrossRef Fatrai S, Elghazi L, Balcazar N et al (2006) Akt induces β-cell proliferation by regulating cyclin D1, cyclin D2, and p21 levels and cyclin-dependent kinase-4 activity. Diabetes 55:318–325PubMedCrossRef
152.
go back to reference Salpeter SJ, Klochendler A, Weinberg-Corem N et al (2011) Glucose regulates cyclin d2 expression in quiescent and replicating pancreatic β-cells through glycolysis and calcium channels. Endocrinology 152:2589–2598PubMedPubMedCentralCrossRef Salpeter SJ, Klochendler A, Weinberg-Corem N et al (2011) Glucose regulates cyclin d2 expression in quiescent and replicating pancreatic β-cells through glycolysis and calcium channels. Endocrinology 152:2589–2598PubMedPubMedCentralCrossRef
153.
154.
go back to reference Velazquez-Garcia S, Valle S, Rosa TC et al (2011) Activation of protein kinase C-ζ in pancreatic β-cells in vivo improves glucose tolerance and induces β-cell expansion via mTOR activation. Diabetes 60:2546–2559PubMedPubMedCentralCrossRef Velazquez-Garcia S, Valle S, Rosa TC et al (2011) Activation of protein kinase C-ζ in pancreatic β-cells in vivo improves glucose tolerance and induces β-cell expansion via mTOR activation. Diabetes 60:2546–2559PubMedPubMedCentralCrossRef
155.
go back to reference Takamoto I, Kubota N, Nakaya K et al (2014) TCF7L2 in mouse pancreatic beta cells plays a crucial role in glucose homeostasis by regulating beta cell mass. Diabetologia 57:542–553PubMedCrossRef Takamoto I, Kubota N, Nakaya K et al (2014) TCF7L2 in mouse pancreatic beta cells plays a crucial role in glucose homeostasis by regulating beta cell mass. Diabetologia 57:542–553PubMedCrossRef
156.
go back to reference Tarry-Adkins JL, Chen JH, Smith NS, Jones RH, Cherif H, Ozanne SE (2009) Poor maternal nutrition followed by accelerated postnatal growth leads to telomere shortening and increased markers of cell senescence in rat islets. FASEB J 23:1521–1528PubMedCrossRef Tarry-Adkins JL, Chen JH, Smith NS, Jones RH, Cherif H, Ozanne SE (2009) Poor maternal nutrition followed by accelerated postnatal growth leads to telomere shortening and increased markers of cell senescence in rat islets. FASEB J 23:1521–1528PubMedCrossRef
157.
158.
go back to reference Fontés G, Zarrouki B, Hagman DK et al (2010) Glucolipotoxicity age-dependently impairs beta cell function in rats despite a marked increase in beta cell mass. Diabetologia 53:2369–2379PubMedPubMedCentralCrossRef Fontés G, Zarrouki B, Hagman DK et al (2010) Glucolipotoxicity age-dependently impairs beta cell function in rats despite a marked increase in beta cell mass. Diabetologia 53:2369–2379PubMedPubMedCentralCrossRef
159.
go back to reference Sone H, Kagawa Y (2005) Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Diabetologia 48:58–67PubMedCrossRef Sone H, Kagawa Y (2005) Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Diabetologia 48:58–67PubMedCrossRef
160.
go back to reference Cozar-Castellano I, Fiaschi-Taesch N, Bigatel TA et al (2006) Molecular control of cell cycle progression in the pancreatic beta-cell. Endocr Rev 27:356–370PubMedCrossRef Cozar-Castellano I, Fiaschi-Taesch N, Bigatel TA et al (2006) Molecular control of cell cycle progression in the pancreatic beta-cell. Endocr Rev 27:356–370PubMedCrossRef
161.
go back to reference Martín J, Hunt SL, Dubus P et al (2003) Genetic rescue of Cdk4 null mice restores pancreatic beta-cell proliferation but not homeostatic cell number. Oncogene 22:5261–5269PubMedCrossRef Martín J, Hunt SL, Dubus P et al (2003) Genetic rescue of Cdk4 null mice restores pancreatic beta-cell proliferation but not homeostatic cell number. Oncogene 22:5261–5269PubMedCrossRef
162.
go back to reference Fiaschi-Taesch NM, Salim F, Kleinberger J et al (2010) Induction of human β-cell proliferation and engraftment using a single G1/S regulatory molecule, cdk6. Diabetes 59:1926–1936PubMedPubMedCentralCrossRef Fiaschi-Taesch NM, Salim F, Kleinberger J et al (2010) Induction of human β-cell proliferation and engraftment using a single G1/S regulatory molecule, cdk6. Diabetes 59:1926–1936PubMedPubMedCentralCrossRef
163.
go back to reference Perry JRB, McCarthy MI, Hattersley AT et al (2009) Interrogating type 2 diabetes genome-wide association data using a biological pathway-based approach. Diabetes 58:1463–1467PubMedPubMedCentralCrossRef Perry JRB, McCarthy MI, Hattersley AT et al (2009) Interrogating type 2 diabetes genome-wide association data using a biological pathway-based approach. Diabetes 58:1463–1467PubMedPubMedCentralCrossRef
164.
go back to reference Yaghootkar H, Stancáková A, Freathy RM et al (2015) Association analysis of 29,956 individuals confirms that a low frequency variant at CCND2 halves the risk of type 2 diabetes by enhancing insulin secretion. Diabetes 64:2279–2285PubMedCrossRef Yaghootkar H, Stancáková A, Freathy RM et al (2015) Association analysis of 29,956 individuals confirms that a low frequency variant at CCND2 halves the risk of type 2 diabetes by enhancing insulin secretion. Diabetes 64:2279–2285PubMedCrossRef
165.
go back to reference Steinthorsdottir V, Thorleifsson G, Sulem P et al (2014) Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat Genet 46:294–298PubMedCrossRef Steinthorsdottir V, Thorleifsson G, Sulem P et al (2014) Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat Genet 46:294–298PubMedCrossRef
166.
go back to reference Morris AP, Voight BF, Teslovich TM et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990PubMedPubMedCentralCrossRef Morris AP, Voight BF, Teslovich TM et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990PubMedPubMedCentralCrossRef
167.
go back to reference Stamateris RE, Sharma RB, Kong Y, et al (2016) Glucose induces mouse beta cell proliferation via IRS2, mTOR and cyclin D2 but not the insulin receptor. Diabetes. doi:10.2337/d615-0529 Stamateris RE, Sharma RB, Kong Y, et al (2016) Glucose induces mouse beta cell proliferation via IRS2, mTOR and cyclin D2 but not the insulin receptor. Diabetes. doi:10.​2337/​d615-0529
168.
go back to reference Pal A, Potjer TP, Thomsen SK et al (2015) Loss-of-function mutations in the cell-cycle control gene CDKN2A impact on glucose homeostasis in humans. Diabetes 65:527–533PubMedCrossRef Pal A, Potjer TP, Thomsen SK et al (2015) Loss-of-function mutations in the cell-cycle control gene CDKN2A impact on glucose homeostasis in humans. Diabetes 65:527–533PubMedCrossRef
169.
go back to reference Moreno-Asso A, Castaño C, Grilli A, Novials A, Servitja J-M (2013) Glucose regulation of a cell cycle gene module is selectively lost in mouse pancreatic islets during ageing. Diabetologia 56:1761–1772PubMedCrossRef Moreno-Asso A, Castaño C, Grilli A, Novials A, Servitja J-M (2013) Glucose regulation of a cell cycle gene module is selectively lost in mouse pancreatic islets during ageing. Diabetologia 56:1761–1772PubMedCrossRef
170.
go back to reference González-Navarro H, Vinué Á, Sanz MJ et al (2013) Increased dosage of Ink4/Arf protects against glucose intolerance and insulin resistance associated with ageing. Aging Cell 12:102–111PubMedCrossRef González-Navarro H, Vinué Á, Sanz MJ et al (2013) Increased dosage of Ink4/Arf protects against glucose intolerance and insulin resistance associated with ageing. Aging Cell 12:102–111PubMedCrossRef
172.
173.
go back to reference Bochenek G, Häsler R, El Mokhtari N-E et al (2013) The large non-coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Hum Mol Genet 22:4516–4527PubMedCrossRef Bochenek G, Häsler R, El Mokhtari N-E et al (2013) The large non-coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Hum Mol Genet 22:4516–4527PubMedCrossRef
174.
go back to reference Svensson P-A, Wahlstrand B, Olsson M et al (2014) CDKN2B expression and subcutaneous adipose tissue expandability: possible influence of the 9p21 atherosclerosis locus. Biochem Biophys Res Commun 446:1126–1131PubMedPubMedCentralCrossRef Svensson P-A, Wahlstrand B, Olsson M et al (2014) CDKN2B expression and subcutaneous adipose tissue expandability: possible influence of the 9p21 atherosclerosis locus. Biochem Biophys Res Commun 446:1126–1131PubMedPubMedCentralCrossRef
175.
go back to reference Horswell SD, Fryer LGD, Hutchison CE et al (2013) CDKN2B expression in adipose tissue of familial combined hyperlipidemia patients. J Lipid Res 54:3491–3505PubMedPubMedCentralCrossRef Horswell SD, Fryer LGD, Hutchison CE et al (2013) CDKN2B expression in adipose tissue of familial combined hyperlipidemia patients. J Lipid Res 54:3491–3505PubMedPubMedCentralCrossRef
176.
go back to reference Mettus RV, Rane SG (2003) Characterization of the abnormal pancreatic development, reduced growth and infertility in Cdk4 mutant mice. Oncogene 22:8413–8421PubMedCrossRef Mettus RV, Rane SG (2003) Characterization of the abnormal pancreatic development, reduced growth and infertility in Cdk4 mutant mice. Oncogene 22:8413–8421PubMedCrossRef
178.
go back to reference Abella A, Dubus P, Malumbres M et al (2005) Cdk4 promotes adipogenesis through PPARγ activation. Cell Metab 2:239–249PubMedCrossRef Abella A, Dubus P, Malumbres M et al (2005) Cdk4 promotes adipogenesis through PPARγ activation. Cell Metab 2:239–249PubMedCrossRef
179.
go back to reference Lagarrigue S, Lopez-Mejia IC, Denechaud P-D et al (2016) CDK4 is an essential insulin effector in adipocytes. J Clin Invest 126:335–348PubMedCrossRef Lagarrigue S, Lopez-Mejia IC, Denechaud P-D et al (2016) CDK4 is an essential insulin effector in adipocytes. J Clin Invest 126:335–348PubMedCrossRef
180.
go back to reference Fuentes L, Wouters K, Hannou SA et al (2011) Downregulation of the tumour suppressor p16INK4A contributes to the polarisation of human macrophages toward an adipose tissue macrophage (ATM)-like phenotype. Diabetologia 54:3150–3156PubMedPubMedCentralCrossRef Fuentes L, Wouters K, Hannou SA et al (2011) Downregulation of the tumour suppressor p16INK4A contributes to the polarisation of human macrophages toward an adipose tissue macrophage (ATM)-like phenotype. Diabetologia 54:3150–3156PubMedPubMedCentralCrossRef
181.
go back to reference Wouters K, Cudejko C, Gijbels MJJ et al (2012) Bone marrow p16INK4A-deficiency does not modulate obesity, glucose homeostasis or atherosclerosis development. PLoS One 7:e32440PubMedPubMedCentralCrossRef Wouters K, Cudejko C, Gijbels MJJ et al (2012) Bone marrow p16INK4A-deficiency does not modulate obesity, glucose homeostasis or atherosclerosis development. PLoS One 7:e32440PubMedPubMedCentralCrossRef
182.
go back to reference Bantubungi K, Hannou S-A, Caron-Houde S et al (2014) Cdkn2a/p16Ink4a regulates fasting-induced hepatic gluconeogenesis through the PKA-CREB-PGC1α pathway. Diabetes 63:3199–3209PubMedCrossRef Bantubungi K, Hannou S-A, Caron-Houde S et al (2014) Cdkn2a/p16Ink4a regulates fasting-induced hepatic gluconeogenesis through the PKA-CREB-PGC1α pathway. Diabetes 63:3199–3209PubMedCrossRef
183.
184.
go back to reference Blanchet E, Annicotte J-S, Lagarrigue S et al (2011) E2F transcription factor-1 regulates oxidative metabolism. Nat Cell Biol 13:1146–1152PubMedCrossRef Blanchet E, Annicotte J-S, Lagarrigue S et al (2011) E2F transcription factor-1 regulates oxidative metabolism. Nat Cell Biol 13:1146–1152PubMedCrossRef
186.
go back to reference Cotsapas C, Prokunina-Olsson L, Welch C et al (2010) Expression analysis of loci associated with type 2 diabetes in human tissues. Diabetologia 53:2334–2339PubMedCrossRef Cotsapas C, Prokunina-Olsson L, Welch C et al (2010) Expression analysis of loci associated with type 2 diabetes in human tissues. Diabetologia 53:2334–2339PubMedCrossRef
187.
go back to reference Fadista J, Vikman P, Laakso EO et al (2014) Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc Natl Acad Sci U S A 111:13924–13929PubMedPubMedCentralCrossRef Fadista J, Vikman P, Laakso EO et al (2014) Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc Natl Acad Sci U S A 111:13924–13929PubMedPubMedCentralCrossRef
188.
go back to reference Jarinova O, Stewart AFR, Roberts R et al (2009) Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler Thromb Vasc Biol 29:1671–1677PubMedCrossRef Jarinova O, Stewart AFR, Roberts R et al (2009) Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler Thromb Vasc Biol 29:1671–1677PubMedCrossRef
189.
go back to reference Cunnington MS, Santibanez Koref M, Mayosi BM, Burn J, Keavney B (2010) Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression. PLoS Genet 6:e1000899PubMedPubMedCentralCrossRef Cunnington MS, Santibanez Koref M, Mayosi BM, Burn J, Keavney B (2010) Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression. PLoS Genet 6:e1000899PubMedPubMedCentralCrossRef
190.
go back to reference Liu Y, Sanoff HK, Cho H et al (2009) INK4/ARF transcript expression is associated with chromosome 9p21 variants linked to atherosclerosis. PLoS One 4:e5027PubMedPubMedCentralCrossRef Liu Y, Sanoff HK, Cho H et al (2009) INK4/ARF transcript expression is associated with chromosome 9p21 variants linked to atherosclerosis. PLoS One 4:e5027PubMedPubMedCentralCrossRef
191.
go back to reference Holdt LM, Hoffmann S, Sass K et al (2013) Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet 9:e1003588PubMedPubMedCentralCrossRef Holdt LM, Hoffmann S, Sass K et al (2013) Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet 9:e1003588PubMedPubMedCentralCrossRef
192.
go back to reference Harismendy O, Notani D, Song X et al (2011) 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature 470:264–268PubMedPubMedCentralCrossRef Harismendy O, Notani D, Song X et al (2011) 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature 470:264–268PubMedPubMedCentralCrossRef
193.
go back to reference Parker SCJ, Stitzel ML, Taylor DL et al (2013) Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc Natl Acad Sci U S A 110:17921–17926PubMedPubMedCentralCrossRef Parker SCJ, Stitzel ML, Taylor DL et al (2013) Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc Natl Acad Sci U S A 110:17921–17926PubMedPubMedCentralCrossRef
194.
go back to reference Pasquali L, Gaulton KJ, Rodríguez-Seguí SA et al (2014) Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat Genet 46:136–143PubMedPubMedCentralCrossRef Pasquali L, Gaulton KJ, Rodríguez-Seguí SA et al (2014) Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat Genet 46:136–143PubMedPubMedCentralCrossRef
195.
go back to reference Wang X, Li W, Ma L et al (2015) Association study of the miRNA-binding site polymorphisms of CDKN2A/B genes with gestational diabetes mellitus susceptibility. Acta Diabetol 52:951–958PubMedCrossRef Wang X, Li W, Ma L et al (2015) Association study of the miRNA-binding site polymorphisms of CDKN2A/B genes with gestational diabetes mellitus susceptibility. Acta Diabetol 52:951–958PubMedCrossRef
196.
go back to reference Gonzalez S, Klatt P, Delgado S et al (2006) Oncogenic activity of Cdc6 through repression of the INK4/ARF locus. Nature 440:702–706PubMedCrossRef Gonzalez S, Klatt P, Delgado S et al (2006) Oncogenic activity of Cdc6 through repression of the INK4/ARF locus. Nature 440:702–706PubMedCrossRef
197.
go back to reference Agherbi H, Gaussmann-Wenger A, Verthuy C, Chasson L, Serrano M, Djabali M (2009) Polycomb mediated epigenetic silencing and replication timing at the INK4A/ARF locus during senescence. PLoS One 4:e5622PubMedPubMedCentralCrossRef Agherbi H, Gaussmann-Wenger A, Verthuy C, Chasson L, Serrano M, Djabali M (2009) Polycomb mediated epigenetic silencing and replication timing at the INK4A/ARF locus during senescence. PLoS One 4:e5622PubMedPubMedCentralCrossRef
198.
go back to reference Poi MJ, Drosdeck J, Frankel WL, Muscarella P, Li J (2014) Deletions of RDINK4/ARF enhancer in gastrinomas and nonfunctioning pancreatic neuroendocrine tumors. Pancreas 43:1009–1013PubMedCrossRef Poi MJ, Drosdeck J, Frankel WL, Muscarella P, Li J (2014) Deletions of RDINK4/ARF enhancer in gastrinomas and nonfunctioning pancreatic neuroendocrine tumors. Pancreas 43:1009–1013PubMedCrossRef
199.
go back to reference Dayeh TA, Olsson AH, Volkov P, Almgren P, Rönn T, Ling C (2013) Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets. Diabetologia 56:1036–1046PubMedPubMedCentralCrossRef Dayeh TA, Olsson AH, Volkov P, Almgren P, Rönn T, Ling C (2013) Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets. Diabetologia 56:1036–1046PubMedPubMedCentralCrossRef
201.
go back to reference Jacobsen SC, Brøns C, Bork-Jensen J et al (2012) Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia 55:3341–3349PubMedCrossRef Jacobsen SC, Brøns C, Bork-Jensen J et al (2012) Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia 55:3341–3349PubMedCrossRef
203.
go back to reference Perry JRB, Frayling TM (2008) New gene variants alter type 2 diabetes risk predominantly through reduced beta-cell function. Curr Opin Clin Nutr Metab Care 11:371–377PubMedCrossRef Perry JRB, Frayling TM (2008) New gene variants alter type 2 diabetes risk predominantly through reduced beta-cell function. Curr Opin Clin Nutr Metab Care 11:371–377PubMedCrossRef
204.
go back to reference Peng F, Hu D, Gu C et al (2013) The relationship between five widely-evaluated variants in CDKN2A/B and CDKAL1 genes and the risk of type 2 diabetes: a meta-analysis. Gene 531:435–443PubMedCrossRef Peng F, Hu D, Gu C et al (2013) The relationship between five widely-evaluated variants in CDKN2A/B and CDKAL1 genes and the risk of type 2 diabetes: a meta-analysis. Gene 531:435–443PubMedCrossRef
205.
go back to reference Grarup N, Rose CS, Andersson EA et al (2007) Studies of association of variants near the HHEX, CDKN2A/B, and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects: validation and extension of genome-wide association studies. Diabetes 56:3105–3111PubMedCrossRef Grarup N, Rose CS, Andersson EA et al (2007) Studies of association of variants near the HHEX, CDKN2A/B, and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects: validation and extension of genome-wide association studies. Diabetes 56:3105–3111PubMedCrossRef
206.
go back to reference Hribal ML, Presta I, Procopio T et al (2011) Glucose tolerance, insulin sensitivity and insulin release in European non-diabetic carriers of a polymorphism upstream of CDKN2A and CDKN2B. Diabetologia 54:795–802PubMedCrossRef Hribal ML, Presta I, Procopio T et al (2011) Glucose tolerance, insulin sensitivity and insulin release in European non-diabetic carriers of a polymorphism upstream of CDKN2A and CDKN2B. Diabetologia 54:795–802PubMedCrossRef
207.
go back to reference ‘t Hart LM, Simonis-Bik AM, Nijpels G et al (2010) Combined risk allele score of eight type 2 diabetes genes is associated with reduced first-phase glucose-stimulated insulin secretion during hyperglycemic clamps. Diabetes 59:287–292PubMedCrossRef ‘t Hart LM, Simonis-Bik AM, Nijpels G et al (2010) Combined risk allele score of eight type 2 diabetes genes is associated with reduced first-phase glucose-stimulated insulin secretion during hyperglycemic clamps. Diabetes 59:287–292PubMedCrossRef
208.
go back to reference Dimas AS, Lagou V, Barker A et al (2014) Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes 63:2158–2171PubMedPubMedCentralCrossRef Dimas AS, Lagou V, Barker A et al (2014) Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes 63:2158–2171PubMedPubMedCentralCrossRef
209.
go back to reference Jonsson A, Ladenvall C, Ahluwalia TS et al (2013) Effects of common genetic variants associated with type 2 diabetes and glycemic traits on α- and β-cell function and insulin action in humans. Diabetes 62:2978–2983PubMedPubMedCentralCrossRef Jonsson A, Ladenvall C, Ahluwalia TS et al (2013) Effects of common genetic variants associated with type 2 diabetes and glycemic traits on α- and β-cell function and insulin action in humans. Diabetes 62:2978–2983PubMedPubMedCentralCrossRef
210.
go back to reference Kirchhoff K, Machicao F, Haupt A et al (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51:597–601PubMedCrossRef Kirchhoff K, Machicao F, Haupt A et al (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51:597–601PubMedCrossRef
211.
212.
go back to reference Pascoe L, Tura A, Patel SK et al (2007) Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic β-cell function. Diabetes 56:3101–3104PubMedCrossRef Pascoe L, Tura A, Patel SK et al (2007) Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic β-cell function. Diabetes 56:3101–3104PubMedCrossRef
213.
go back to reference Groenewoud MJ, Dekker JM, Fritsche A et al (2008) Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. Diabetologia 51:1659–1663PubMedCrossRef Groenewoud MJ, Dekker JM, Fritsche A et al (2008) Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. Diabetologia 51:1659–1663PubMedCrossRef
214.
go back to reference Haupt A, Guthoff M, Schäfer SA et al (2009) The inhibitory effect of recent type 2 diabetes risk loci on insulin secretion is modulated by insulin sensitivity. J Clin Endocrinol Metab 94:1775–1780PubMedCrossRef Haupt A, Guthoff M, Schäfer SA et al (2009) The inhibitory effect of recent type 2 diabetes risk loci on insulin secretion is modulated by insulin sensitivity. J Clin Endocrinol Metab 94:1775–1780PubMedCrossRef
215.
go back to reference Moore AF, Jablonski KA, McAteer JB et al (2008) Extension of type 2 diabetes genome-wide association scan results in the Diabetes Prevention Program. Diabetes 57:2503–2510PubMedPubMedCentralCrossRef Moore AF, Jablonski KA, McAteer JB et al (2008) Extension of type 2 diabetes genome-wide association scan results in the Diabetes Prevention Program. Diabetes 57:2503–2510PubMedPubMedCentralCrossRef
216.
go back to reference Ren Q, Han X, Tang Y et al (2014) Search for genetic determinants of sulfonylurea efficacy in type 2 diabetic patients from China. Diabetologia 57:746–753PubMedCrossRef Ren Q, Han X, Tang Y et al (2014) Search for genetic determinants of sulfonylurea efficacy in type 2 diabetic patients from China. Diabetologia 57:746–753PubMedCrossRef
217.
go back to reference Brito EC, Lyssenko V, Renström F et al (2009) Previously associated type 2 diabetes variants may interact with physical activity to modify the risk of impaired glucose regulation and type 2 diabetes: a study of 16,003 Swedish adults. Diabetes 58:1411–1418PubMedPubMedCentralCrossRef Brito EC, Lyssenko V, Renström F et al (2009) Previously associated type 2 diabetes variants may interact with physical activity to modify the risk of impaired glucose regulation and type 2 diabetes: a study of 16,003 Swedish adults. Diabetes 58:1411–1418PubMedPubMedCentralCrossRef
218.
go back to reference Ruchat S-M, Rankinen T, Weisnagel SJ et al (2010) Improvements in glucose homeostasis in response to regular exercise are influenced by the PPARG Pro12Ala variant: results from the HERITAGE Family Study. Diabetologia 53:679–689PubMedCrossRef Ruchat S-M, Rankinen T, Weisnagel SJ et al (2010) Improvements in glucose homeostasis in response to regular exercise are influenced by the PPARG Pro12Ala variant: results from the HERITAGE Family Study. Diabetologia 53:679–689PubMedCrossRef
219.
go back to reference Hotta K, Kitamoto A, Kitamoto T et al (2012) Association between type 2 diabetes genetic susceptibility loci and visceral and subcutaneous fat area as determined by computed tomography. J Hum Genet 57:305–310PubMedCrossRef Hotta K, Kitamoto A, Kitamoto T et al (2012) Association between type 2 diabetes genetic susceptibility loci and visceral and subcutaneous fat area as determined by computed tomography. J Hum Genet 57:305–310PubMedCrossRef
220.
go back to reference Gupta V, Vinay DG, Rafiq S et al (2012) Association analysis of 31 common polymorphisms with type 2 diabetes and its related traits in Indian sib pairs. Diabetologia 55:349–357PubMedCrossRef Gupta V, Vinay DG, Rafiq S et al (2012) Association analysis of 31 common polymorphisms with type 2 diabetes and its related traits in Indian sib pairs. Diabetologia 55:349–357PubMedCrossRef
221.
go back to reference Pulizzi N, Lyssenko V, Jonsson A et al (2009) Interaction between prenatal growth and high-risk genotypes in the development of type 2 diabetes. Diabetologia 52:825–829PubMedCrossRef Pulizzi N, Lyssenko V, Jonsson A et al (2009) Interaction between prenatal growth and high-risk genotypes in the development of type 2 diabetes. Diabetologia 52:825–829PubMedCrossRef
222.
go back to reference van Hoek M, Dehghan A, Witteman JCM et al (2008) Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes 57:3122–3128PubMedPubMedCentralCrossRef van Hoek M, Dehghan A, Witteman JCM et al (2008) Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes 57:3122–3128PubMedPubMedCentralCrossRef
223.
go back to reference Tam CHT, Ho JSK, Wang Y et al (2013) Use of net reclassification improvement (NRI) method confirms the utility of combined genetic risk score to predict type 2 diabetes. PLoS One 8:e83093PubMedPubMedCentralCrossRef Tam CHT, Ho JSK, Wang Y et al (2013) Use of net reclassification improvement (NRI) method confirms the utility of combined genetic risk score to predict type 2 diabetes. PLoS One 8:e83093PubMedPubMedCentralCrossRef
224.
225.
go back to reference Congrains A, Kamide K, Hirose N et al (2015) Disease-associated polymorphisms in 9p21 are not associated with extreme longevity. Geriatr Gerontol Int 15:797–803PubMedCrossRef Congrains A, Kamide K, Hirose N et al (2015) Disease-associated polymorphisms in 9p21 are not associated with extreme longevity. Geriatr Gerontol Int 15:797–803PubMedCrossRef
226.
go back to reference Landman GWD, van Vliet-Ostaptchouk JV, Kleefstra N et al (2012) Association between 9p21 genetic variants and mortality risk in a prospective cohort of patients with type 2 diabetes (ZODIAC-15). Cardiovasc Diabetol 11:138PubMedPubMedCentralCrossRef Landman GWD, van Vliet-Ostaptchouk JV, Kleefstra N et al (2012) Association between 9p21 genetic variants and mortality risk in a prospective cohort of patients with type 2 diabetes (ZODIAC-15). Cardiovasc Diabetol 11:138PubMedPubMedCentralCrossRef
Metadata
Title
Islet biology, the CDKN2A/B locus and type 2 diabetes risk
Authors
Yahui Kong
Rohit B. Sharma
Benjamin U. Nwosu
Laura C. Alonso
Publication date
01-08-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 8/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-3967-7

Other articles of this Issue 8/2016

Diabetologia 8/2016 Go to the issue

Up front

Up Front

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.