Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2017

Open Access 01-12-2017 | Research article

Investigation of the pathophysiology of cardiopulmonary bypass using rodent extracorporeal life support model

Authors: Ru-Wen Chang, Chien-Ming Luo, Hsi-Yu Yu, Yih-Sharng Chen, Chih-Hsien Wang

Published in: BMC Cardiovascular Disorders | Issue 1/2017

Login to get access

Abstract

Background

Extracorporeal life support (ECLS) systems are life-saving devices used for treating patients with severe cardiopulmonary failure. In this study, we implemented a rat model of ECLS without the administration of inotropes or vasopressors.

Methods

The rats underwent 5 min of untreated asphyxial cardiac arrest and were resuscitated by ECLS for 30 min. The right external jugular vein and right femoral artery were separately cannulated to the ECLS outflow and inflow, respectively. Thereafter, ECLS was terminated, wounds were closed, and mechanical ventilation was provided for another 90 min. Subsequently, blood gas and hemodynamic analyses were performed. The plasma levels of C-reactive protein (CRP), interleukin (IL)-6, IL-10, and tumor necrosis factor-alpha (TNF-α) were measured 120 min after reperfusion.

Results

The metabolic rate of lactate in the group of asphyxial cardiac arrest rescued by ECLS was slow; therefore, the pH at 120 min after reperfusion was significantly lower in this group than that in the group of normal rats treated with ECLS. The hemodynamic data showed no between-group differences. The plasma levels of CRP, IL-6, IL-10, and TNF-α increased after ECLS treatment.

Conclusions

We successfully established a rodent ECLS model, which might be a useful approach for studying the pathophysiology induced by ECLS under clinical conditions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chen YS, Lin JW, Yu HY, Ko WJ, Jerng JS, Chang WT, Chen WJ, Huang SC, Chi NH, Wang CH, et al. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet. 2008;372(9638):554–61.CrossRefPubMed Chen YS, Lin JW, Yu HY, Ko WJ, Jerng JS, Chang WT, Chen WJ, Huang SC, Chi NH, Wang CH, et al. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet. 2008;372(9638):554–61.CrossRefPubMed
2.
go back to reference Shin TG, Choi JH, Jo IJ, Sim MS, Song HG, Jeong YK, Song YB, Hahn JY, Choi SH, Gwon HC, et al. Extracorporeal cardiopulmonary resuscitation in patients with inhospital cardiac arrest: a comparison with conventional cardiopulmonary resuscitation. Crit Care Med. 2011;39(1):1–7.CrossRefPubMed Shin TG, Choi JH, Jo IJ, Sim MS, Song HG, Jeong YK, Song YB, Hahn JY, Choi SH, Gwon HC, et al. Extracorporeal cardiopulmonary resuscitation in patients with inhospital cardiac arrest: a comparison with conventional cardiopulmonary resuscitation. Crit Care Med. 2011;39(1):1–7.CrossRefPubMed
3.
go back to reference Huang SC, Wu ET, Chen YS, Chang CI, Chiu IS, Wang SS, Lin FY, Ko WJ. Extracorporeal membrane oxygenation rescue for cardiopulmonary resuscitation in pediatric patients. Crit Care Med. 2008;36(5):1607–13.CrossRefPubMed Huang SC, Wu ET, Chen YS, Chang CI, Chiu IS, Wang SS, Lin FY, Ko WJ. Extracorporeal membrane oxygenation rescue for cardiopulmonary resuscitation in pediatric patients. Crit Care Med. 2008;36(5):1607–13.CrossRefPubMed
4.
go back to reference Topjian AA, Nadkarni VM, Berg RA. Cardiopulmonary resuscitation in children. Curr Opin Crit Care. 2009;15(3):203–8.CrossRefPubMed Topjian AA, Nadkarni VM, Berg RA. Cardiopulmonary resuscitation in children. Curr Opin Crit Care. 2009;15(3):203–8.CrossRefPubMed
5.
go back to reference Schaheen BW, Thiele RH, Isbell JM. Extracorporeal life support for adult cardiopulmonary failure. Best Pract Res Clin Anaesthesiol. 2015;29(2):229–39.CrossRefPubMed Schaheen BW, Thiele RH, Isbell JM. Extracorporeal life support for adult cardiopulmonary failure. Best Pract Res Clin Anaesthesiol. 2015;29(2):229–39.CrossRefPubMed
6.
go back to reference Salameh A, Dhein S. Strategies for pharmacological Organoprotection during extracorporeal circulation targeting ischemia-reperfusion injury. Front Pharmacol. 2015;6:296.CrossRefPubMedPubMedCentral Salameh A, Dhein S. Strategies for pharmacological Organoprotection during extracorporeal circulation targeting ischemia-reperfusion injury. Front Pharmacol. 2015;6:296.CrossRefPubMedPubMedCentral
7.
go back to reference Keschenau PR, Ribbe S, Tamm M, Hanssen SJ, Tolba R, Jacobs MJ, Kalder J. Extracorporeal circulation increases proliferation in the intestinal mucosa in a large animal model. J Vasc Surg. 2016;64(4):1121–33.CrossRefPubMed Keschenau PR, Ribbe S, Tamm M, Hanssen SJ, Tolba R, Jacobs MJ, Kalder J. Extracorporeal circulation increases proliferation in the intestinal mucosa in a large animal model. J Vasc Surg. 2016;64(4):1121–33.CrossRefPubMed
8.
go back to reference Fujii Y, Shirai M, Inamori S, Takewa Y, Tatsumi E. Investigation of the biological effects of artificial perfusion using rat extracorporeal circulation model. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:4483–6.PubMed Fujii Y, Shirai M, Inamori S, Takewa Y, Tatsumi E. Investigation of the biological effects of artificial perfusion using rat extracorporeal circulation model. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:4483–6.PubMed
9.
go back to reference Boller M, Jung SK, Odegaard S, Muehlmatt A, Katz JM, Becker LB. A combination of metabolic strategies plus cardiopulmonary bypass improves short-term resuscitation from prolonged lethal cardiac arrest. Resuscitation. 2011;82(Suppl 2):S27–34.CrossRefPubMed Boller M, Jung SK, Odegaard S, Muehlmatt A, Katz JM, Becker LB. A combination of metabolic strategies plus cardiopulmonary bypass improves short-term resuscitation from prolonged lethal cardiac arrest. Resuscitation. 2011;82(Suppl 2):S27–34.CrossRefPubMed
10.
go back to reference Kim J, Yin T, Yin M, Zhang W, Shinozaki K, Selak MA, Pappan KL, Lampe JW, Becker LB. Examination of physiological function and biochemical disorders in a rat model of prolonged asphyxia-induced cardiac arrest followed by cardio pulmonary bypass resuscitation. PLoS One. 2014;9(11):e112012.CrossRefPubMedPubMedCentral Kim J, Yin T, Yin M, Zhang W, Shinozaki K, Selak MA, Pappan KL, Lampe JW, Becker LB. Examination of physiological function and biochemical disorders in a rat model of prolonged asphyxia-induced cardiac arrest followed by cardio pulmonary bypass resuscitation. PLoS One. 2014;9(11):e112012.CrossRefPubMedPubMedCentral
11.
go back to reference Dong GH, Xu B, Wang CT, Qian JJ, Liu H, Huang G, Jing H. A rat model of cardiopulmonary bypass with excellent survival. J Surg Res. 2005;123(2):171–5.CrossRefPubMed Dong GH, Xu B, Wang CT, Qian JJ, Liu H, Huang G, Jing H. A rat model of cardiopulmonary bypass with excellent survival. J Surg Res. 2005;123(2):171–5.CrossRefPubMed
12.
go back to reference Funamoto M, Masumoto H, Takaori K, Taki T, Setozaki S, Yamazaki K, Minakata K, Ikeda T, Hyon SH, Sakata R. Green tea Polyphenol prevents diabetic rats from acute kidney injury after cardiopulmonary bypass. Ann Thorac Surg. 2016;101(4):1507–13.CrossRefPubMed Funamoto M, Masumoto H, Takaori K, Taki T, Setozaki S, Yamazaki K, Minakata K, Ikeda T, Hyon SH, Sakata R. Green tea Polyphenol prevents diabetic rats from acute kidney injury after cardiopulmonary bypass. Ann Thorac Surg. 2016;101(4):1507–13.CrossRefPubMed
13.
go back to reference Allen M. Lactate and acid base as a hemodynamic monitor and markers of cellular perfusion. Pediatr Crit Care Med. 2011;12(4 Suppl):S43–9.CrossRefPubMed Allen M. Lactate and acid base as a hemodynamic monitor and markers of cellular perfusion. Pediatr Crit Care Med. 2011;12(4 Suppl):S43–9.CrossRefPubMed
14.
go back to reference Ali AA, Downey P, Singh G, Qi W, George I, Takayama H, Kirtane A, Krishnan P, Zalewski A, Freed D, et al. Rat model of veno-arterial extracorporeal membrane oxygenation. J Transl Med. 2014;12:37.CrossRefPubMedPubMedCentral Ali AA, Downey P, Singh G, Qi W, George I, Takayama H, Kirtane A, Krishnan P, Zalewski A, Freed D, et al. Rat model of veno-arterial extracorporeal membrane oxygenation. J Transl Med. 2014;12:37.CrossRefPubMedPubMedCentral
15.
go back to reference Engels M, Bilgic E, Pinto A, Vasquez E, Wollschlager L, Steinbrenner H, Kellermann K, Akhyari P, Lichtenberg A, Boeken U. A cardiopulmonary bypass with deep hypothermic circulatory arrest rat model for the investigation of the systemic inflammation response and induced organ damage. J Inflamm (Lond). 2014;11:26.CrossRef Engels M, Bilgic E, Pinto A, Vasquez E, Wollschlager L, Steinbrenner H, Kellermann K, Akhyari P, Lichtenberg A, Boeken U. A cardiopulmonary bypass with deep hypothermic circulatory arrest rat model for the investigation of the systemic inflammation response and induced organ damage. J Inflamm (Lond). 2014;11:26.CrossRef
16.
go back to reference Zhu X, Ji B, Liu J, Sun Y, Wu S, Zheng Z, Long C, Tang Y. Establishment of a novel rat model without blood priming during normothermic cardiopulmonary bypass. Perfusion. 2014;29(1):63–9.CrossRefPubMed Zhu X, Ji B, Liu J, Sun Y, Wu S, Zheng Z, Long C, Tang Y. Establishment of a novel rat model without blood priming during normothermic cardiopulmonary bypass. Perfusion. 2014;29(1):63–9.CrossRefPubMed
17.
go back to reference Liam BL, Plochl W, Cook DJ, Orszulak TA, Daly RC. Hemodilution and whole body oxygen balance during normothermic cardiopulmonary bypass in dogs. J Thorac Cardiovasc Surg. 1998;115(5):1203–8.CrossRefPubMed Liam BL, Plochl W, Cook DJ, Orszulak TA, Daly RC. Hemodilution and whole body oxygen balance during normothermic cardiopulmonary bypass in dogs. J Thorac Cardiovasc Surg. 1998;115(5):1203–8.CrossRefPubMed
18.
go back to reference Cao HJ, Sun YJ, Zhang TZ, Zhou J, Diao YG. Penehyclidine hydrochloride attenuates the cerebral injury in a rat model of cardiopulmonary bypass. Can J Physiol Pharmacol. 2013;91(7):521–7.CrossRefPubMed Cao HJ, Sun YJ, Zhang TZ, Zhou J, Diao YG. Penehyclidine hydrochloride attenuates the cerebral injury in a rat model of cardiopulmonary bypass. Can J Physiol Pharmacol. 2013;91(7):521–7.CrossRefPubMed
20.
go back to reference O'Neil MP, Fleming JC, Badhwar A, Guo LR. Pulsatile versus nonpulsatile flow during cardiopulmonary bypass: microcirculatory and systemic effects. Ann Thorac Surg. 2012;94(6):2046–53.CrossRefPubMed O'Neil MP, Fleming JC, Badhwar A, Guo LR. Pulsatile versus nonpulsatile flow during cardiopulmonary bypass: microcirculatory and systemic effects. Ann Thorac Surg. 2012;94(6):2046–53.CrossRefPubMed
21.
go back to reference Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Investig. 2005;85(1):9–23.CrossRefPubMed Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Investig. 2005;85(1):9–23.CrossRefPubMed
22.
go back to reference Kurundkar AR, Killingsworth CR, McIlwain RB, Timpa JG, Hartman YE, He D, Karnatak RK, Neel ML, Clancy JP, Anantharamaiah GM, et al. Extracorporeal membrane oxygenation causes loss of intestinal epithelial barrier in the newborn piglet. Pediatr Res. 2010;68(2):128–33.CrossRefPubMedPubMedCentral Kurundkar AR, Killingsworth CR, McIlwain RB, Timpa JG, Hartman YE, He D, Karnatak RK, Neel ML, Clancy JP, Anantharamaiah GM, et al. Extracorporeal membrane oxygenation causes loss of intestinal epithelial barrier in the newborn piglet. Pediatr Res. 2010;68(2):128–33.CrossRefPubMedPubMedCentral
23.
go back to reference McILwain RB, Timpa JG, Kurundkar AR, Holt DW, Kelly DR, Hartman YE, Neel ML, Karnatak RK, Schelonka RL, Anantharamaiah GM, et al. Plasma concentrations of inflammatory cytokines rise rapidly during ECMO-related SIRS due to the release of preformed stores in the intestine. Lab Investig. 2010;90(1):128–39.CrossRefPubMed McILwain RB, Timpa JG, Kurundkar AR, Holt DW, Kelly DR, Hartman YE, Neel ML, Karnatak RK, Schelonka RL, Anantharamaiah GM, et al. Plasma concentrations of inflammatory cytokines rise rapidly during ECMO-related SIRS due to the release of preformed stores in the intestine. Lab Investig. 2010;90(1):128–39.CrossRefPubMed
25.
go back to reference Lee HB, Blaufox MD. Blood volume in the rat. J Nucl Med. 1985;26(1):72–6.PubMed Lee HB, Blaufox MD. Blood volume in the rat. J Nucl Med. 1985;26(1):72–6.PubMed
Metadata
Title
Investigation of the pathophysiology of cardiopulmonary bypass using rodent extracorporeal life support model
Authors
Ru-Wen Chang
Chien-Ming Luo
Hsi-Yu Yu
Yih-Sharng Chen
Chih-Hsien Wang
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2017
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-017-0558-6

Other articles of this Issue 1/2017

BMC Cardiovascular Disorders 1/2017 Go to the issue