Skip to main content
Top
Published in: BMC Medical Imaging 1/2020

Open Access 01-12-2020 | Intravascular Ultrasound | Research article

A post-market, multi-vessel evaluation of the imaging of peripheral arteries for diagnostic purposeS comparing optical Coherence tomogrApy and iNtravascular ultrasound imaging (SCAN)

Authors: Edward Pavillard, Luke Sewall

Published in: BMC Medical Imaging | Issue 1/2020

Login to get access

Abstract

Background

Intravascular imaging plays an important part in diagnosis of vascular conditions and providing insight for treatment strategy. Two main imaging modalities are intravascular ultrasound (IVUS) and optical coherence tomography (OCT). The objective of this study was to prove non-inferiority of OCT imaging to IVUS images in matched segments of peripheral vessels in patients with suspected peripheral vascular disease.

Methods

The SCAN study was a prospective, non-inferiority clinical study of matched IVUS and OCT images collected along defined segments of peripheral vessels from twelve subjects (mean age 68 ± 10.3 years; 10 men) displaying symptoms of vascular disease. Luminal diameters were measured by both imaging systems at the distal, middle, and proximal points of the defined segments. Three blinded interventional radiologists evaluated the quality of both imaging modalities in identifying layered structures (3-point grading), plaque (5-point grading), calcification (5-point grading), stent structure (3-point grading), and artifacts (3-point grading) from 240 randomly ordered images. Mean grading scores and luminal diameters were calculated and analyzed with Student’s t-Test and Mann-Whitney-Wilcoxon testing. Intrareader reproducibility was calculated by intraclass correlation (ICC) analysis.

Results

The mean scoring of plaque, calcification, and vascular stent struts by the three readers was significant better in terms of image quality for OCT than IVUS (p < 0.001, p = 0.001, p = 0.004, respectively). The mean scores of vessel wall component visibility and artifacts generated by the two imaging systems were not significantly different (p = 0.19, p = 0.07, respectively). Mean vessel luminal diameter and area at three specific locations within the vessels were not significantly different between the two imaging modalities. No patient injury, adverse effect or device malfunction were noted during the study.

Conclusions

Imaging by OCT provides the physician with better visualization of some vessel and plaque chacteristics, but both IVUS and OCT imaging are safe and effective methods of examining peripheral vessels in order to perform diagnostic assessment of peripheral vessels and provide information necessary for the treatment strategy of peripheral artery disease.

Trial registration

NCT03480685 registered on 29 March 2018.
Literature
1.
go back to reference Kubo T, Akasaka T, Shite J, et al. OCT compared with IVUS in coronary lesion assessment: the OPUS-CLASS study. JACC Cardiovasc Imaging. 2013;6:1095–104.PubMedCrossRef Kubo T, Akasaka T, Shite J, et al. OCT compared with IVUS in coronary lesion assessment: the OPUS-CLASS study. JACC Cardiovasc Imaging. 2013;6:1095–104.PubMedCrossRef
2.
go back to reference Okamura T, Gonzalo N, Gutierrez-Chico JL, et al. Reproducibility of coronary Fourier domain optical coherence tomography: quantitative analysis of in vivo stented coronary arteries using three different software packages. EuroIntervention. 2010;6:371–9.PubMedCrossRef Okamura T, Gonzalo N, Gutierrez-Chico JL, et al. Reproducibility of coronary Fourier domain optical coherence tomography: quantitative analysis of in vivo stented coronary arteries using three different software packages. EuroIntervention. 2010;6:371–9.PubMedCrossRef
3.
go back to reference Gudmundsdottir I, Adamson P, Gray C, et al. Optical coherence tomography versus intravascular ultrasound to evaluate stent implantation in patients with calcified coronary artery disease. Open Heart. 2015;2:e0002225.CrossRef Gudmundsdottir I, Adamson P, Gray C, et al. Optical coherence tomography versus intravascular ultrasound to evaluate stent implantation in patients with calcified coronary artery disease. Open Heart. 2015;2:e0002225.CrossRef
4.
go back to reference Hachinohe D, Mitomo S, Candilio I, Latib A. A practical approach to assessing stent results with IVUS and OCT. Methodist Debakey Cardiovasc J. 2018;14:32–41.PubMedPubMedCentral Hachinohe D, Mitomo S, Candilio I, Latib A. A practical approach to assessing stent results with IVUS and OCT. Methodist Debakey Cardiovasc J. 2018;14:32–41.PubMedPubMedCentral
5.
go back to reference Krishnan P, Tarrisone A, K-Raman P, et al. Intravascular ultrasound guided directional atherectomy versus directional atherectomy guided by angiography for the treatment of femoropopliteal in-stent restensosis. Ther Adv Cardiovasc Dis. 2018;12(1):17–22.PubMedCrossRef Krishnan P, Tarrisone A, K-Raman P, et al. Intravascular ultrasound guided directional atherectomy versus directional atherectomy guided by angiography for the treatment of femoropopliteal in-stent restensosis. Ther Adv Cardiovasc Dis. 2018;12(1):17–22.PubMedCrossRef
6.
go back to reference Schwindt AG, Bennett JG, Crowder WH, et al. Lower extremity revascularization using optical coherence tomography-guided directional atherectomy: final results of the evaluation of the Pantheris optical coherence tomography imaging atherectomy system for use in the peripheral vasculature (VISION) study. J Endovasc Ther. 2017;24(3):355–66.PubMedCrossRef Schwindt AG, Bennett JG, Crowder WH, et al. Lower extremity revascularization using optical coherence tomography-guided directional atherectomy: final results of the evaluation of the Pantheris optical coherence tomography imaging atherectomy system for use in the peripheral vasculature (VISION) study. J Endovasc Ther. 2017;24(3):355–66.PubMedCrossRef
7.
go back to reference Makris GC, Chrysafi P, Little M, et al. The role of intravascular ultrasound in lower limb revascularization in patients with peripheral arterial disease. Int Angiol. 2017;36:505–16.PubMed Makris GC, Chrysafi P, Little M, et al. The role of intravascular ultrasound in lower limb revascularization in patients with peripheral arterial disease. Int Angiol. 2017;36:505–16.PubMed
8.
go back to reference Singh T, Koul D, Szpunar S, et al. Tissue removal by ultrasound evaluation (the TRUE study): the Jetstream G2 system post-market peripheral vascular IVUS study. J Invasive Cardiol. 2011;23(7):269–73.PubMed Singh T, Koul D, Szpunar S, et al. Tissue removal by ultrasound evaluation (the TRUE study): the Jetstream G2 system post-market peripheral vascular IVUS study. J Invasive Cardiol. 2011;23(7):269–73.PubMed
9.
go back to reference Kashyap VS, Lakin RO, Feiten LE, et al. In vivo assessment of endothelial function in human lower extremity arteries. J Vasc Surg. 2013;58(5):1259–66.PubMedPubMedCentralCrossRef Kashyap VS, Lakin RO, Feiten LE, et al. In vivo assessment of endothelial function in human lower extremity arteries. J Vasc Surg. 2013;58(5):1259–66.PubMedPubMedCentralCrossRef
10.
go back to reference Farooq M, Khasnis A, Majid A, Kassab MY. The role of optical coherence tomography in vascular medicine. Vasc Med. 2009;14:63–71.PubMedCrossRef Farooq M, Khasnis A, Majid A, Kassab MY. The role of optical coherence tomography in vascular medicine. Vasc Med. 2009;14:63–71.PubMedCrossRef
11.
go back to reference Eberhardt KM, Treitl M, Boesenecker K, et al. Prospective evaluation of optical coherence tomography in lower limb arteries compared with intravascular ultrasound. JVIR. 2013;24:1499–508.PubMedCrossRef Eberhardt KM, Treitl M, Boesenecker K, et al. Prospective evaluation of optical coherence tomography in lower limb arteries compared with intravascular ultrasound. JVIR. 2013;24:1499–508.PubMedCrossRef
12.
go back to reference MacNeill BD, Lowe HC, Takano M, et al. Intravascular modalities for detection of vulnerable plaque: current status. Arteroscler Thromb Vasc Biol. 2003;23:1333–42.CrossRef MacNeill BD, Lowe HC, Takano M, et al. Intravascular modalities for detection of vulnerable plaque: current status. Arteroscler Thromb Vasc Biol. 2003;23:1333–42.CrossRef
13.
go back to reference Prati F, Guagliumi G, Mintz GS, et al. Expert review document part 2: methodology, terminology, and clinical applications of optical coherence tomography for the assessment of interventional procedures. Eur Heart J. 2012;33:2513–20.PubMedPubMedCentralCrossRef Prati F, Guagliumi G, Mintz GS, et al. Expert review document part 2: methodology, terminology, and clinical applications of optical coherence tomography for the assessment of interventional procedures. Eur Heart J. 2012;33:2513–20.PubMedPubMedCentralCrossRef
14.
go back to reference Meissner OA, Rieber J, Babaryka G, et al. Intravascular optical coherence tomography comparison with histopathology in atherosclerotic peripheral artery specimens. J Vasc Interv Radiol. 2006;17:343–9.PubMedCrossRef Meissner OA, Rieber J, Babaryka G, et al. Intravascular optical coherence tomography comparison with histopathology in atherosclerotic peripheral artery specimens. J Vasc Interv Radiol. 2006;17:343–9.PubMedCrossRef
15.
go back to reference Stefano GT, Mehanna E, Parikh SA. Imaging a spiral dissection of the superficial femoral artery in high resolution with optical coherence tomography—seeing is believing. Catheter Cardiovasc Interv. 2013;81:568–72.PubMedCrossRef Stefano GT, Mehanna E, Parikh SA. Imaging a spiral dissection of the superficial femoral artery in high resolution with optical coherence tomography—seeing is believing. Catheter Cardiovasc Interv. 2013;81:568–72.PubMedCrossRef
16.
go back to reference Andrews J, Puri R, Kataoka Y, Nicholls SJ, Psaltis PJ. Therapeutic modulation of the natural history of coronary atherosclerosis: lessons learned from serial imaging studies. Cardiovasc Diagn Ther. 2016;6(4):282–303.PubMedPubMedCentralCrossRef Andrews J, Puri R, Kataoka Y, Nicholls SJ, Psaltis PJ. Therapeutic modulation of the natural history of coronary atherosclerosis: lessons learned from serial imaging studies. Cardiovasc Diagn Ther. 2016;6(4):282–303.PubMedPubMedCentralCrossRef
17.
go back to reference Ma T, Zhou B, Hsiai TK, Shung KK. A review of intravascular ultrasound-based multimodal intravascular imaging: the synergistic approach to characterizing vulnerable plaques. Ultrason Imaging. 2016;38(5):314–31.PubMedCrossRef Ma T, Zhou B, Hsiai TK, Shung KK. A review of intravascular ultrasound-based multimodal intravascular imaging: the synergistic approach to characterizing vulnerable plaques. Ultrason Imaging. 2016;38(5):314–31.PubMedCrossRef
18.
go back to reference Gudmundsdottir I, Adamson P, Gray C, et al. Optical coherence tomography versus intravascular ultrasound to evaluate stent implantation in patients with calcific coronary artery disease. Open Heart. 2015;2(1):e000225.PubMedPubMedCentralCrossRef Gudmundsdottir I, Adamson P, Gray C, et al. Optical coherence tomography versus intravascular ultrasound to evaluate stent implantation in patients with calcific coronary artery disease. Open Heart. 2015;2(1):e000225.PubMedPubMedCentralCrossRef
19.
go back to reference Su M, Chen CY, Yeh HI, Wang KT. Concise review of optical coherence tomography in clinical practice. Acta Cardio Sin. 2016;32(4):381–6. Su M, Chen CY, Yeh HI, Wang KT. Concise review of optical coherence tomography in clinical practice. Acta Cardio Sin. 2016;32(4):381–6.
20.
go back to reference Chen CY, Maehara A, Fall K, et al. Imaging comparisons of coregistered native and stented coronary segments by high-definition 60-MHz intravascular ultrasound and optical coherence tomography. JACC Cardiovasc Interven. 2016;9(12):1305–6.CrossRef Chen CY, Maehara A, Fall K, et al. Imaging comparisons of coregistered native and stented coronary segments by high-definition 60-MHz intravascular ultrasound and optical coherence tomography. JACC Cardiovasc Interven. 2016;9(12):1305–6.CrossRef
21.
go back to reference Ataka R, Saito N, Tsujimura A, et al. Direct comparison of optical coherence tomography and high-definition 60-MHz intravascular ultrasound imaging of intra-procedural stent thrombosis in a patient with acute coronary syndrome. Cardiovasc Revasc Med. 2019;20(4):365–7.PubMedCrossRef Ataka R, Saito N, Tsujimura A, et al. Direct comparison of optical coherence tomography and high-definition 60-MHz intravascular ultrasound imaging of intra-procedural stent thrombosis in a patient with acute coronary syndrome. Cardiovasc Revasc Med. 2019;20(4):365–7.PubMedCrossRef
22.
go back to reference Okada K, Kitahara H, Mitsutake Y, et al. Assessment of bioresorbable scaffold with a novel high-definition 60 MHz IVUS imaging system: comparison with 40 MHz IVUS referenced to optical coherence tomography. Catheter Cardiovasc Interv. 2018;91(5):874–83.PubMedCrossRef Okada K, Kitahara H, Mitsutake Y, et al. Assessment of bioresorbable scaffold with a novel high-definition 60 MHz IVUS imaging system: comparison with 40 MHz IVUS referenced to optical coherence tomography. Catheter Cardiovasc Interv. 2018;91(5):874–83.PubMedCrossRef
23.
go back to reference Koganti S, Kotecha T, Rakhit RD. Choice of intracoronary imaging: when to use intravascular ultrasound or optical coherence tomography. Intervent Cardiol Rev. 2016;11(1):11–6.CrossRef Koganti S, Kotecha T, Rakhit RD. Choice of intracoronary imaging: when to use intravascular ultrasound or optical coherence tomography. Intervent Cardiol Rev. 2016;11(1):11–6.CrossRef
24.
go back to reference Rathod KS, Hamspere SM, Jones DA, Mathur A. Intravascular ultrasound versus optical coherence tomography for coronary artery imaging—apples and oranges? Interv Cardiol. 2015;10(1):8–15.PubMedPubMedCentralCrossRef Rathod KS, Hamspere SM, Jones DA, Mathur A. Intravascular ultrasound versus optical coherence tomography for coronary artery imaging—apples and oranges? Interv Cardiol. 2015;10(1):8–15.PubMedPubMedCentralCrossRef
25.
go back to reference Evans JL, Ng KH, Wiet SG, et al. Accurate three-dimensional reconstruction of intravascular ultrasound data. Circulation. 1996;93(3):1–5.CrossRef Evans JL, Ng KH, Wiet SG, et al. Accurate three-dimensional reconstruction of intravascular ultrasound data. Circulation. 1996;93(3):1–5.CrossRef
26.
go back to reference Giannoglou GD, Chatzizisis YS, Sianos G, et al. In vivo validation of spatially correct three-dimensional reconstruction of human coronary arteries by integrating intravascular ultrasound and biplane angiography. Coron Artery Dis. 2006;17:533–43.PubMedCrossRef Giannoglou GD, Chatzizisis YS, Sianos G, et al. In vivo validation of spatially correct three-dimensional reconstruction of human coronary arteries by integrating intravascular ultrasound and biplane angiography. Coron Artery Dis. 2006;17:533–43.PubMedCrossRef
27.
go back to reference Dohad S, Shao J, Cawich I, et al. Diagnostic imaging capabilities of the ocelot optical coherence tomography system: ex vivo evaluation and clinical relevance. BMC Med Imaging. 2015;15:57.PubMedPubMedCentralCrossRef Dohad S, Shao J, Cawich I, et al. Diagnostic imaging capabilities of the ocelot optical coherence tomography system: ex vivo evaluation and clinical relevance. BMC Med Imaging. 2015;15:57.PubMedPubMedCentralCrossRef
28.
go back to reference Maehara A, Matsumura M, Ali ZA, et al. IVUS-guided versus OCT-guided coronary stent implantation. JACC Cardiovasc Imaging. 2017;10:1487–503.PubMedCrossRef Maehara A, Matsumura M, Ali ZA, et al. IVUS-guided versus OCT-guided coronary stent implantation. JACC Cardiovasc Imaging. 2017;10:1487–503.PubMedCrossRef
29.
go back to reference Mori S, Hirano K, Nakano M, et al. Intravascular ultrasound measurements after drug-eluting stent placement in femoropopliteal lesions: determining predictors of restenosis. J Endovasc Ther. 2015;22:341–9.PubMedCrossRef Mori S, Hirano K, Nakano M, et al. Intravascular ultrasound measurements after drug-eluting stent placement in femoropopliteal lesions: determining predictors of restenosis. J Endovasc Ther. 2015;22:341–9.PubMedCrossRef
30.
go back to reference Negi SJ, Rosales O. The role of intravascular optical coherence tomography in peripheral percutaneous interventions. J Invasive Cardiol. 2013;25:E51–3.PubMed Negi SJ, Rosales O. The role of intravascular optical coherence tomography in peripheral percutaneous interventions. J Invasive Cardiol. 2013;25:E51–3.PubMed
31.
go back to reference Lichtenberg MK, Carr JG, Golzar JA. Optical coherence tomography: guided therapy of in-stent restenosis for peripheral arterial disease. J Cardiovasc Surg (Torino). 2017;58:518–27. Lichtenberg MK, Carr JG, Golzar JA. Optical coherence tomography: guided therapy of in-stent restenosis for peripheral arterial disease. J Cardiovasc Surg (Torino). 2017;58:518–27.
32.
go back to reference Kuku KO, Garcia-Garcia HM, Koifman E, et al. Intravascular ultrasound assessment of the effect of laser energy on the arterial wall during the treatment of femoro-popliteal lesions: a CliRpath excimer laser system to enlarge lumen openings (CELLO) registry study. Int J Cardiovasc Imaging. 2018;34:345–52.PubMedCrossRef Kuku KO, Garcia-Garcia HM, Koifman E, et al. Intravascular ultrasound assessment of the effect of laser energy on the arterial wall during the treatment of femoro-popliteal lesions: a CliRpath excimer laser system to enlarge lumen openings (CELLO) registry study. Int J Cardiovasc Imaging. 2018;34:345–52.PubMedCrossRef
33.
go back to reference Kozuki A, Shinke T, Otake H, et al. Optical coherence tomography study of chronic-phase vessel healing after implantation of bare metal and paclitaxel-eluting self-expanding nitinol stents in the superficial femoral artery. J Cardiol. 2016;67:424–9.PubMedCrossRef Kozuki A, Shinke T, Otake H, et al. Optical coherence tomography study of chronic-phase vessel healing after implantation of bare metal and paclitaxel-eluting self-expanding nitinol stents in the superficial femoral artery. J Cardiol. 2016;67:424–9.PubMedCrossRef
34.
go back to reference Jia H, Abrahian F, Aguirre AD, et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol. 2013;62:1748–58.PubMedCrossRef Jia H, Abrahian F, Aguirre AD, et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol. 2013;62:1748–58.PubMedCrossRef
35.
go back to reference Fanellli F, Connavale A, Gazzetti M, et al. Calcium burden assessment and impact on drug-eluding balloons in peripheral arterial disease. Cardiovasc Intervent Radiol. 2014;37:898–907.CrossRef Fanellli F, Connavale A, Gazzetti M, et al. Calcium burden assessment and impact on drug-eluding balloons in peripheral arterial disease. Cardiovasc Intervent Radiol. 2014;37:898–907.CrossRef
36.
go back to reference Kim RJ, Smith JB, Vogel TR. Preoperative assessment of computerized tomography angiography to predict success for crossing long trans-Atlantic inter-society consensus D lesions using optical coherence tomography catheter. Vascular. 2018;26:362–7.PubMedCrossRef Kim RJ, Smith JB, Vogel TR. Preoperative assessment of computerized tomography angiography to predict success for crossing long trans-Atlantic inter-society consensus D lesions using optical coherence tomography catheter. Vascular. 2018;26:362–7.PubMedCrossRef
37.
go back to reference Spiliopoulos S, Kitrou P, Katasanos K, Karnabatidis D. FD-OCT and IVUS intravascular imaging modalities in peripheral vasculature. Expert Rev Med Devices. 2017;4:127–34.CrossRef Spiliopoulos S, Kitrou P, Katasanos K, Karnabatidis D. FD-OCT and IVUS intravascular imaging modalities in peripheral vasculature. Expert Rev Med Devices. 2017;4:127–34.CrossRef
38.
go back to reference Selmon MR, Schwindt AG, Cawich IM, et al. Final results of the chronic total occlusion crossing with the ocelot system II (CONNECT II) study. J Endovasc Ther. 2013;20:770–81.PubMedCrossRef Selmon MR, Schwindt AG, Cawich IM, et al. Final results of the chronic total occlusion crossing with the ocelot system II (CONNECT II) study. J Endovasc Ther. 2013;20:770–81.PubMedCrossRef
39.
go back to reference Horimatsu T, Fujii K, Fukunaga M, et al. The distribution of calcified nodule and plaque rupture in patients with peripheral artery disease: an intravascular ultrasound analysis. Heart Vessels. 2017;32:1161–8.PubMedCrossRef Horimatsu T, Fujii K, Fukunaga M, et al. The distribution of calcified nodule and plaque rupture in patients with peripheral artery disease: an intravascular ultrasound analysis. Heart Vessels. 2017;32:1161–8.PubMedCrossRef
41.
go back to reference Marmagkiolis K, Lendel V, Cawich I, Cilingiroglu M. Ocelot catheter for the recanalization of lower extremity arterial chronic total occlusion. Cardiovasc Revasc Med. 2014;15:46–9.PubMedCrossRef Marmagkiolis K, Lendel V, Cawich I, Cilingiroglu M. Ocelot catheter for the recanalization of lower extremity arterial chronic total occlusion. Cardiovasc Revasc Med. 2014;15:46–9.PubMedCrossRef
42.
go back to reference Antonsen L, Thayssen P, Hansen HS, et al. Optical coherence tomography assessment of incidence, morphological characteristics, and spontaneous healing course of edge dissections following percutaneous coronary intervention with stent implantation in patients with non-ST segment elevation myocardial infarction. Int J Cardiol. 2016;223:466–74.PubMedCrossRef Antonsen L, Thayssen P, Hansen HS, et al. Optical coherence tomography assessment of incidence, morphological characteristics, and spontaneous healing course of edge dissections following percutaneous coronary intervention with stent implantation in patients with non-ST segment elevation myocardial infarction. Int J Cardiol. 2016;223:466–74.PubMedCrossRef
43.
go back to reference Araki M, Lee T, Mural T, Kakuta T. Serial examinations of right coronary artery directly injured by radiofrequency catheter ablation with optical coherence tomography and intravascular ultrasound. Cardiovasc Interv Ther. 2017;32(1):62–5.PubMedCrossRef Araki M, Lee T, Mural T, Kakuta T. Serial examinations of right coronary artery directly injured by radiofrequency catheter ablation with optical coherence tomography and intravascular ultrasound. Cardiovasc Interv Ther. 2017;32(1):62–5.PubMedCrossRef
44.
go back to reference Yonetsu T, Kakuta T, Lee T, et al. Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography. Eur Heart J. 2010;31(13):1608–15.PubMedCrossRef Yonetsu T, Kakuta T, Lee T, et al. Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography. Eur Heart J. 2010;31(13):1608–15.PubMedCrossRef
45.
go back to reference Karnbatidis D, Katsanos K, Paraskevopoulos I, et al. Frequency-domain intravascular optical coherence tomography of the femoropopliteal artery. Cardiovasc Intervent Radiol. 2011;34:1172–81.CrossRef Karnbatidis D, Katsanos K, Paraskevopoulos I, et al. Frequency-domain intravascular optical coherence tomography of the femoropopliteal artery. Cardiovasc Intervent Radiol. 2011;34:1172–81.CrossRef
46.
go back to reference Wijns W, Shite J, Jones MR, et al. Optical coherence tomography imaging during percutaneous coronary intervention impacts physician decision-making: ILUMIEN I study. Eur Heart J. 2015;36:3346–55.PubMedPubMedCentralCrossRef Wijns W, Shite J, Jones MR, et al. Optical coherence tomography imaging during percutaneous coronary intervention impacts physician decision-making: ILUMIEN I study. Eur Heart J. 2015;36:3346–55.PubMedPubMedCentralCrossRef
47.
go back to reference Kochman J, Pietraski A, Rdzanak A, et al. Comparison between optical coherence tomography and intravascular ultrasound in detecting neointimal healing patterns after stent implantation. Kardiol Pol. 2014;72:534–40.PubMedCrossRef Kochman J, Pietraski A, Rdzanak A, et al. Comparison between optical coherence tomography and intravascular ultrasound in detecting neointimal healing patterns after stent implantation. Kardiol Pol. 2014;72:534–40.PubMedCrossRef
48.
go back to reference Kendrick DE, Allemang MT, Gosling AF, et al. Dextran or saline can replace contrast for intravascular optical coherence tomography in lower extremity arteries. J Endovasc Ther. 2016;23(5):723–30.PubMedCrossRef Kendrick DE, Allemang MT, Gosling AF, et al. Dextran or saline can replace contrast for intravascular optical coherence tomography in lower extremity arteries. J Endovasc Ther. 2016;23(5):723–30.PubMedCrossRef
49.
go back to reference Babaev A, Zavlunova S, Attubato MJ, et al. Orbital atherectomy plaque modification assessment of the femoropopliteal artery via intravascular ultrasound (TRUTH study). Vasc Endovascular Surg. 2015;49:188–94.PubMedPubMedCentralCrossRef Babaev A, Zavlunova S, Attubato MJ, et al. Orbital atherectomy plaque modification assessment of the femoropopliteal artery via intravascular ultrasound (TRUTH study). Vasc Endovascular Surg. 2015;49:188–94.PubMedPubMedCentralCrossRef
50.
go back to reference Huisman J, Hartmann M, von Birgelen C. Ultrasound and light: friend or foe? On the role of intravascular ultrasound in the era of optical coherence tomography. Int J Cardiovasc Imaging. 2011;27:209–14.PubMedPubMedCentralCrossRef Huisman J, Hartmann M, von Birgelen C. Ultrasound and light: friend or foe? On the role of intravascular ultrasound in the era of optical coherence tomography. Int J Cardiovasc Imaging. 2011;27:209–14.PubMedPubMedCentralCrossRef
51.
go back to reference Sakamoto N, Nakazato K, Misaka T, et al. Very late stent thrombosis and neointimal plaque rupture after implantation of sirolimus-eluting stents: observations with angiography, IVUS, and OCT. Cardiovasc Interv Ther. 2011;26:263–8.PubMedCrossRef Sakamoto N, Nakazato K, Misaka T, et al. Very late stent thrombosis and neointimal plaque rupture after implantation of sirolimus-eluting stents: observations with angiography, IVUS, and OCT. Cardiovasc Interv Ther. 2011;26:263–8.PubMedCrossRef
52.
go back to reference Marmagkiolis K, Lendel V, Leesar MA, et al. Use of optical coherence tomography during superficial femoral artery interventions. J Invasive Cardiol. 2014;26(5):220–3.PubMed Marmagkiolis K, Lendel V, Leesar MA, et al. Use of optical coherence tomography during superficial femoral artery interventions. J Invasive Cardiol. 2014;26(5):220–3.PubMed
53.
go back to reference Tarricone A, Ali Z, Rajamanickam A, et al. Histopathological evidence of adventitial or medial injury is a strong predictor of restenosis during directional atherectomy for peripheral artery disease. J Endovasc Ther. 2015;22:712–5.PubMedCrossRef Tarricone A, Ali Z, Rajamanickam A, et al. Histopathological evidence of adventitial or medial injury is a strong predictor of restenosis during directional atherectomy for peripheral artery disease. J Endovasc Ther. 2015;22:712–5.PubMedCrossRef
54.
go back to reference Waller BF, Pinkerton CA, Slack JD. Intravascular ultrasound: a histological study of vessels during life. Circulation. 1992;85:2305–10.PubMedCrossRef Waller BF, Pinkerton CA, Slack JD. Intravascular ultrasound: a histological study of vessels during life. Circulation. 1992;85:2305–10.PubMedCrossRef
55.
go back to reference Krishnan P, Terricone A, Ali Z, et al. Intravascular ultrasound is an effective tool for predicting histopathology-confirmed evidence of adventitial injury following directional atherectomy for the treatment of peripheral artery disease. J Endovasc Ther. 2016;23:672–3.PubMedCrossRef Krishnan P, Terricone A, Ali Z, et al. Intravascular ultrasound is an effective tool for predicting histopathology-confirmed evidence of adventitial injury following directional atherectomy for the treatment of peripheral artery disease. J Endovasc Ther. 2016;23:672–3.PubMedCrossRef
56.
go back to reference Maehara A, Mintz GS, Weissman NJ. Advances in intravascular imaging. Circ Cardiovasc Interv. 2009;2:482–90.PubMedCrossRef Maehara A, Mintz GS, Weissman NJ. Advances in intravascular imaging. Circ Cardiovasc Interv. 2009;2:482–90.PubMedCrossRef
Metadata
Title
A post-market, multi-vessel evaluation of the imaging of peripheral arteries for diagnostic purposeS comparing optical Coherence tomogrApy and iNtravascular ultrasound imaging (SCAN)
Authors
Edward Pavillard
Luke Sewall
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2020
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-020-0420-7

Other articles of this Issue 1/2020

BMC Medical Imaging 1/2020 Go to the issue