Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2023

Open Access 01-12-2023 | Intracranial Hypertension | Research

The influence of upright posture on craniospinal, arteriovenous, and abdominal pressures in a chronic ovine in-vivo trial

Authors: Anthony Podgoršak, Nina Eva Trimmel, Markus Florian Oertel, Margarete Arras, Miriam Weisskopf, Marianne Schmid Daners

Published in: Fluids and Barriers of the CNS | Issue 1/2023

Login to get access

Abstract

Introduction

Most investigations into postural influences on craniospinal and adjacent physiology have been performed in anesthetized animals. A comprehensive study evaluating these physiologies while awake has yet been completed.

Methods

Six awake sheep had telemetric pressure sensors (100 Hz) implanted to measure intracranial, intrathecal, arterial, central venous, cranial, caudal, dorsal, and ventral intra-abdominal pressure (ICP, ITP, ABP, CVP, IAPcr, IAPcd, IAPds, IAPve, respectively). They were maneuvered upright by placing in a chair for two minutes; repeated 25 times over one month. Changes in mean and pulse pressure were calculated by comparing pre-chair, P0, with three phases during the maneuver: P1, chair entrance; P2, chair halftime; P3, prior to chair exit. Statistical significance (p ≤ .05) was assessed using repeated measures ANOVA.

Results

Significant mean pressure changes of (P1 − P0) and (P3 − P0) were measured at − 12.1 ± 3.1 and − 14.2 ± 3.0(p < .001), 40.8 ± 10.5 and 37.7 ± 3.5(p = .019), 9.7 ± 8.3 and 6.2 ± 5.3(p = .012), 22.3 ± 29.8 and 12.5 ± 12.1(p = .042), and 11.7 ± 3.9 and 9.0 ± 5.2(p = .014) mmHg, for ICP, ITP, IAPds, IAPcr, IAPca, respectively. For pulse pressures, significant changes of (P1 − P0) and (P3 − P0) were measured at − 1.3 ± 0.7 and − 2.0 ± 1.1(p < .001), 4.7 ± 2.3 and 1.4 ± 1.4(p < .001), 15.0 ± 10.2 and 7.3 ± 5.5(p < .001), − 0.7 ± 1.8 and − 1.7 ± 1.7(p < .001), − 1.3 ± 4.2 and − 1.4 ± 4.7(p = .006), and 0.3 ± 3.9 and − 1.0 ± 1.3(p < .001) mmHg, for ICP, ITP, ABP, IAPds, IAPcr, IAPca, respectively.

Conclusions

Pressures changed posture-dependently to differing extents. Changes were most pronounced immediately after entering upright posture (P1) and became less prominent over the chair duration (P2-to-P3), suggesting increased physiologic compensation. Dynamic changes in IAP varied across abdominal locations, motivating the abdominal cavity not to be considered as a unified entity, but sub-compartments with individual dynamics.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Nulsen FE, Spitz EB. Treatment of hydrocephalus by direct shunt from ventricle to jugular vain. Surg Forum. 1951;399:403. Nulsen FE, Spitz EB. Treatment of hydrocephalus by direct shunt from ventricle to jugular vain. Surg Forum. 1951;399:403.
3.
go back to reference Kenny RA, Bayliss J, Ingram A, Sutton R. Head-up tilt: a useful test for investigating unexplained syncope. Lancet. 1986;1352–4. Kenny RA, Bayliss J, Ingram A, Sutton R. Head-up tilt: a useful test for investigating unexplained syncope. Lancet. 1986;1352–4.
4.
go back to reference Sakka L, Chomicki A, Gabrillargues J, Khalil T, Chazal J, Avan P. Validation of a noninvasive test routinely used in otology for the diagnosis of cerebrospinal fluid shunt malfunction in patients with normal pressure hydrocephalus. J Neurosurg. 2016;124(2):342–9.CrossRefPubMed Sakka L, Chomicki A, Gabrillargues J, Khalil T, Chazal J, Avan P. Validation of a noninvasive test routinely used in otology for the diagnosis of cerebrospinal fluid shunt malfunction in patients with normal pressure hydrocephalus. J Neurosurg. 2016;124(2):342–9.CrossRefPubMed
5.
8.
go back to reference Qvarlander S, Sundström N, Malm J, Eklund A. Postural effects on intracranial pressure: modeling and clinical evaluation. J Appl Physiol. 2013;115(10):1474–80.CrossRefPubMed Qvarlander S, Sundström N, Malm J, Eklund A. Postural effects on intracranial pressure: modeling and clinical evaluation. J Appl Physiol. 2013;115(10):1474–80.CrossRefPubMed
9.
10.
go back to reference Alperin N, Lee SH, Bagci AM. MRI measurements of intracranial pressure in the upright posture: the effect of the hydrostatic pressure gradient. J Magn Reson Imaging. 2015;42(4):1158–63.CrossRefPubMed Alperin N, Lee SH, Bagci AM. MRI measurements of intracranial pressure in the upright posture: the effect of the hydrostatic pressure gradient. J Magn Reson Imaging. 2015;42(4):1158–63.CrossRefPubMed
11.
go back to reference Alperin N, Lee SH, Sivaramakrishnan A, Hushek SG. Quantifying the effect of posture on intracranial physiology in humans by MRI flow studies. J Magn Reson Imaging. 2005;22(5):591–6.CrossRefPubMed Alperin N, Lee SH, Sivaramakrishnan A, Hushek SG. Quantifying the effect of posture on intracranial physiology in humans by MRI flow studies. J Magn Reson Imaging. 2005;22(5):591–6.CrossRefPubMed
12.
go back to reference Lee H, Xie L, Yu M, Kang H, Feng T, Deane R, et al. The effect of body posture on Brain Glymphatic Transport. J Neurosci off J Soc Neurosci. 2015;35(31):11034–44.CrossRef Lee H, Xie L, Yu M, Kang H, Feng T, Deane R, et al. The effect of body posture on Brain Glymphatic Transport. J Neurosci off J Soc Neurosci. 2015;35(31):11034–44.CrossRef
13.
go back to reference Katz S, Arish N, Rokach A, Zaltzman Y, Marcus EL. The effect of body position on pulmonary function: a systematic review. BMC Pulm Med. 2018;18(1):1–16.CrossRef Katz S, Arish N, Rokach A, Zaltzman Y, Marcus EL. The effect of body position on pulmonary function: a systematic review. BMC Pulm Med. 2018;18(1):1–16.CrossRef
14.
go back to reference Trinity JD, McDaniel J, Venturelli M, Fjeldstad AS, Ives SJ, Witman MAH, et al. Impact of body position on central and peripheral hemodynamic contributions to movement-induced hyperemia: implications for rehabilitative medicine. Am J Physiol - Hear Circ Physiol. 2011;300(5):1885–91.CrossRef Trinity JD, McDaniel J, Venturelli M, Fjeldstad AS, Ives SJ, Witman MAH, et al. Impact of body position on central and peripheral hemodynamic contributions to movement-induced hyperemia: implications for rehabilitative medicine. Am J Physiol - Hear Circ Physiol. 2011;300(5):1885–91.CrossRef
15.
go back to reference Haouzi P, Chenuel B, Chalon B. Effects of body position on the ventilatory response following an impulse exercise in humans. J Appl Physiol. 2002;92(4):1423–33.CrossRefPubMed Haouzi P, Chenuel B, Chalon B. Effects of body position on the ventilatory response following an impulse exercise in humans. J Appl Physiol. 2002;92(4):1423–33.CrossRefPubMed
17.
go back to reference Di Rocco C, Pettorossi VE, Caldarelli M, Mancinelli R, Velardi F. Experimental hydrocephalus following mechanical increment of intraventricular pulse pressure. Experientia. 1977;33(11):1470–2.CrossRefPubMed Di Rocco C, Pettorossi VE, Caldarelli M, Mancinelli R, Velardi F. Experimental hydrocephalus following mechanical increment of intraventricular pulse pressure. Experientia. 1977;33(11):1470–2.CrossRefPubMed
18.
go back to reference Di Rocco C, Pettorossi VE, Caldarelli M, Mancinelli R, Velardi F. Communicating hydrocephalus induced by mechanically increased amplitude of the intraventricular cerebrospinal fluid pressure: experimental studies. Exp Neurol. 1978;59(1):40–52.CrossRefPubMed Di Rocco C, Pettorossi VE, Caldarelli M, Mancinelli R, Velardi F. Communicating hydrocephalus induced by mechanically increased amplitude of the intraventricular cerebrospinal fluid pressure: experimental studies. Exp Neurol. 1978;59(1):40–52.CrossRefPubMed
19.
go back to reference Cambria S, Gambardella G, Cardia E, Cambria M. Experimental endo-uterine hydrocephalus in foetal sheep and surgical treatment by ventriculo-amniotic shunt. Acta Neurochir (Wien). 1984;72(3–4):235–40.CrossRefPubMed Cambria S, Gambardella G, Cardia E, Cambria M. Experimental endo-uterine hydrocephalus in foetal sheep and surgical treatment by ventriculo-amniotic shunt. Acta Neurochir (Wien). 1984;72(3–4):235–40.CrossRefPubMed
20.
go back to reference Oria M, Duru S, Scorletti F, Vuletin F, Encinas JL, Correa-Martín L, et al. Intracisternal BioGlue injection in the fetal lamb: a novel model for creation of obstructive congenital hydrocephalus without additional chemically induced neuroinflammation. J Neurosurg Pediatr. 2019;24(6):652–62.CrossRef Oria M, Duru S, Scorletti F, Vuletin F, Encinas JL, Correa-Martín L, et al. Intracisternal BioGlue injection in the fetal lamb: a novel model for creation of obstructive congenital hydrocephalus without additional chemically induced neuroinflammation. J Neurosurg Pediatr. 2019;24(6):652–62.CrossRef
21.
go back to reference Emery SP, Greene S, Murdoch G, Wiley CA. Histologic appearance of iatrogenic obstructive hydrocephalus in the fetal Lamb Model. Fetal Diagn Ther. 2020;47(1):7–14.CrossRefPubMed Emery SP, Greene S, Murdoch G, Wiley CA. Histologic appearance of iatrogenic obstructive hydrocephalus in the fetal Lamb Model. Fetal Diagn Ther. 2020;47(1):7–14.CrossRefPubMed
22.
go back to reference Podgoršak A, Trimmel NE, Oertel MF, Qvarlander S, Arras M, Eklund A et al. Intercompartmental communication between the cerebrospinal and adjacent spaces during intrathecal infusions in an acute ovine in – vivo model. Fluids Barriers CNS [Internet]. 2022;0:1–13. https://doi.org/10.1186/s12987-021-00300-0. Podgoršak A, Trimmel NE, Oertel MF, Qvarlander S, Arras M, Eklund A et al. Intercompartmental communication between the cerebrospinal and adjacent spaces during intrathecal infusions in an acute ovine in – vivo model. Fluids Barriers CNS [Internet]. 2022;0:1–13. https://​doi.​org/​10.​1186/​s12987-021-00300-0.
23.
go back to reference Trimmel NE, Podgoršak A, Oertel MF, Jucker S, Arras M, Schmid Daners M, et al. Venous dynamics in anesthetized sheep govern postural-induced changes in cerebrospinal fluid pressure comparable to those in humans. Physiol Rep. 2022;10(24):e15525.CrossRefPubMedPubMedCentral Trimmel NE, Podgoršak A, Oertel MF, Jucker S, Arras M, Schmid Daners M, et al. Venous dynamics in anesthetized sheep govern postural-induced changes in cerebrospinal fluid pressure comparable to those in humans. Physiol Rep. 2022;10(24):e15525.CrossRefPubMedPubMedCentral
24.
go back to reference Podgoršak A, Trimmel NE, Flürenbrock F, Oertel MF, Arras M, Weisskopf M, et al. Influence of head-over-body and body-over-head posture on craniospinal, vascular, and abdominal pressures in an acute ovine in-vivo model. Fluids Barriers CNS. 2023;20(1):58.CrossRefPubMedPubMedCentral Podgoršak A, Trimmel NE, Flürenbrock F, Oertel MF, Arras M, Weisskopf M, et al. Influence of head-over-body and body-over-head posture on craniospinal, vascular, and abdominal pressures in an acute ovine in-vivo model. Fluids Barriers CNS. 2023;20(1):58.CrossRefPubMedPubMedCentral
25.
go back to reference Gakuba C, Gaberel T, Goursaud S, Bourges J, Palma D, Quenault C. General anesthesia inhibits the activity of the glymphatic system. Theranostics. 2018;8(3):710–22.CrossRefPubMedPubMedCentral Gakuba C, Gaberel T, Goursaud S, Bourges J, Palma D, Quenault C. General anesthesia inhibits the activity of the glymphatic system. Theranostics. 2018;8(3):710–22.CrossRefPubMedPubMedCentral
26.
go back to reference National Research Council on Animals (US). Guide for the care and use of laboratory animals. Washington, DC: The National Academiec Press; 2011. National Research Council on Animals (US). Guide for the care and use of laboratory animals. Washington, DC: The National Academiec Press; 2011.
27.
go back to reference National Aeronautics and Space Administration. Man-Systems Integration Standards. 1995. National Aeronautics and Space Administration. Man-Systems Integration Standards. 1995.
28.
go back to reference Kim H-Y. Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restor Dent Endod. 2013;38(1):52–4.CrossRefPubMedPubMedCentral Kim H-Y. Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restor Dent Endod. 2013;38(1):52–4.CrossRefPubMedPubMedCentral
29.
go back to reference Klarica M, Radoš M, Erceg G, Petošić A, Jurjević I, Orešković D. The influence of body position on cerebrospinal fluid pressure gradient and movement in cats with normal and impaired craniospinal communication. PLoS ONE. 2014;9(4):e95229.CrossRefPubMedPubMedCentral Klarica M, Radoš M, Erceg G, Petošić A, Jurjević I, Orešković D. The influence of body position on cerebrospinal fluid pressure gradient and movement in cats with normal and impaired craniospinal communication. PLoS ONE. 2014;9(4):e95229.CrossRefPubMedPubMedCentral
30.
go back to reference Bothwell SW, Janigro D, Patabendige A. Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological Diseases. Fluids Barriers CNS. 2019;16(1):9.CrossRefPubMedPubMedCentral Bothwell SW, Janigro D, Patabendige A. Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological Diseases. Fluids Barriers CNS. 2019;16(1):9.CrossRefPubMedPubMedCentral
31.
go back to reference Patel K, Rössler A, Lackner HK, Trozic I, Laing C, Lorr D, et al. Effect of postural changes on cardiovascular parameters across gender. Med (United States). 2016;95(28):1–7. Patel K, Rössler A, Lackner HK, Trozic I, Laing C, Lorr D, et al. Effect of postural changes on cardiovascular parameters across gender. Med (United States). 2016;95(28):1–7.
32.
go back to reference Tansey EA, Montgomery LEA, Quinn JG, Roe SM, Johnson CD. Understanding basic vein physiology and venous blood pressure through simple physical assessments. Adv Physiol Educ. 2019;43(3):423–9.CrossRefPubMed Tansey EA, Montgomery LEA, Quinn JG, Roe SM, Johnson CD. Understanding basic vein physiology and venous blood pressure through simple physical assessments. Adv Physiol Educ. 2019;43(3):423–9.CrossRefPubMed
33.
go back to reference Cresswell AB, Jassem W, Srinivasan P, Prachalias AA, Sizer E, Burnal W, et al. The effect of body position on compartmental intra-abdominal pressure following liver transplantation. Ann Intensive Care. 2012;2012(Suppl 1):1–10. Cresswell AB, Jassem W, Srinivasan P, Prachalias AA, Sizer E, Burnal W, et al. The effect of body position on compartmental intra-abdominal pressure following liver transplantation. Ann Intensive Care. 2012;2012(Suppl 1):1–10.
34.
go back to reference Qvarlander S, Malm J, Eklund A. The pulsatility curve-the relationship between mean intracranial pressure and pulsation amplitude. Physiol Meas. 2010;31:1517–28.CrossRefPubMed Qvarlander S, Malm J, Eklund A. The pulsatility curve-the relationship between mean intracranial pressure and pulsation amplitude. Physiol Meas. 2010;31:1517–28.CrossRefPubMed
36.
go back to reference Olufsen MS, Ottesen JT, Tran HT, Ellwein LM, Lipsitz LA, Novak V. Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation. J Appl Physiol. 2005;99(4):1523–37.CrossRefPubMed Olufsen MS, Ottesen JT, Tran HT, Ellwein LM, Lipsitz LA, Novak V. Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation. J Appl Physiol. 2005;99(4):1523–37.CrossRefPubMed
38.
go back to reference Kulkarni S, O’Farrell I, Erasi M, Kochar MS. Stress and Hypertension. WMJ. 1998;97(11):34–8.PubMed Kulkarni S, O’Farrell I, Erasi M, Kochar MS. Stress and Hypertension. WMJ. 1998;97(11):34–8.PubMed
Metadata
Title
The influence of upright posture on craniospinal, arteriovenous, and abdominal pressures in a chronic ovine in-vivo trial
Authors
Anthony Podgoršak
Nina Eva Trimmel
Markus Florian Oertel
Margarete Arras
Miriam Weisskopf
Marianne Schmid Daners
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2023
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-023-00485-6

Other articles of this Issue 1/2023

Fluids and Barriers of the CNS 1/2023 Go to the issue