Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2008

Open Access 01-12-2008 | Review

The definition and classification of hydrocephalus: a personal recommendation to stimulate debate

Author: Harold L Rekate

Published in: Fluids and Barriers of the CNS | Issue 1/2008

Login to get access

Abstract

The aim of this review is to refine the definition and classification of hydrocephalus as a preview to developing an international consensus on the nomenclature of this complex condition. This proposed definition and classification is based on my own work in this area and is intended to promote a debate on the concepts presented.
A literature review of contemporary definitions and classifications of hydrocephalus, and of the historic context in which these concepts developed, is presented. Based on new technology and understanding of hydrocephalus, the rationale for nomenclature is also discussed.
Currently, there is no recognized definition of hydrocephalus. The failure to agree on a working definition impedes progress in understanding the pathophysiology and treatment of hydrocephalus. There are many proposed classifications, each with its own starting point in terms of the definition of the condition. This author recommends that the following definition be used as a starting point to develop a consensus statement defining hydrocephalus: "Hydrocephalus is an active distension of the ventricular system of the brain resulting from inadequate passage of cerebrospinal fluid from its point of production within the cerebral ventricles to its point of absorption into the systemic circulation." Such a definition can be used to develop a rational classification consistent with observations from contemporary neuroimaging and can lead to testable hypotheses. It is concluded that hydrocephalus is a complicated neurologic disorder with many causes and methods of treatment. Clinicians and basic scientists must agree on a working definition of the condition to be able to interpret results from different investigators. Reaching a consensus on a working definition and functional classification should be a high priority for researchers in this field.
Appendix
Available only for authorised users
Literature
1.
go back to reference Beni-Adani L, Biani N, Ben-Sirah L, Constantini S: The occurrence of obstructive vs absorptive hydrocephalus in newborns and infants: relevance to treatment choices. Childs Nerv Syst. 2006, 22: 1543-1563. 10.1007/s00381-006-0193-5.CrossRefPubMed Beni-Adani L, Biani N, Ben-Sirah L, Constantini S: The occurrence of obstructive vs absorptive hydrocephalus in newborns and infants: relevance to treatment choices. Childs Nerv Syst. 2006, 22: 1543-1563. 10.1007/s00381-006-0193-5.CrossRefPubMed
2.
go back to reference Johnston I, Teo C: Disorders of CSF hydrodynamics. Childs Nerv Syst. 2000, 16: 776-799. 10.1007/s003810000383.CrossRefPubMed Johnston I, Teo C: Disorders of CSF hydrodynamics. Childs Nerv Syst. 2000, 16: 776-799. 10.1007/s003810000383.CrossRefPubMed
3.
go back to reference Mori K: Hydrocephalus--revision of its definition and classification with special reference to "intractable infantile hydrocephalus". Childs Nerv Syst. 1990, 6: 198-204. 10.1007/BF01850971.CrossRefPubMed Mori K: Hydrocephalus--revision of its definition and classification with special reference to "intractable infantile hydrocephalus". Childs Nerv Syst. 1990, 6: 198-204. 10.1007/BF01850971.CrossRefPubMed
4.
go back to reference Mori K, Shimada J, Kurisaka M, Sato K, Watanabe K: Classification of hydrocephalus and outcome of treatment. Brain Dev. 1995, 17: 338-348. 10.1016/0387-7604(95)00070-R.CrossRefPubMed Mori K, Shimada J, Kurisaka M, Sato K, Watanabe K: Classification of hydrocephalus and outcome of treatment. Brain Dev. 1995, 17: 338-348. 10.1016/0387-7604(95)00070-R.CrossRefPubMed
5.
go back to reference Oi S, Di RC: Proposal of "evolution theory in cerebrospinal fluid dynamics" and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst. 2006, 22: 662-669. 10.1007/s00381-005-0020-4.CrossRefPubMed Oi S, Di RC: Proposal of "evolution theory in cerebrospinal fluid dynamics" and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst. 2006, 22: 662-669. 10.1007/s00381-005-0020-4.CrossRefPubMed
6.
go back to reference Oi S, Kudo H, Yamada H, Kim S, Hamano S, Urui S, Matsumoto S: Hydromyelic hydrocephalus. Correlation of hydromyelia with various stages of hydrocephalus in postshunt isolated compartments. J Neurosurg. 1991, 74: 371-379.CrossRefPubMed Oi S, Kudo H, Yamada H, Kim S, Hamano S, Urui S, Matsumoto S: Hydromyelic hydrocephalus. Correlation of hydromyelia with various stages of hydrocephalus in postshunt isolated compartments. J Neurosurg. 1991, 74: 371-379.CrossRefPubMed
7.
go back to reference Raimondi AJ: A unifying theory for the definition and classification of hydrocephalus. Childs Nerv Syst. 1994, 10: 2-12. 10.1007/BF00313578.CrossRefPubMed Raimondi AJ: A unifying theory for the definition and classification of hydrocephalus. Childs Nerv Syst. 1994, 10: 2-12. 10.1007/BF00313578.CrossRefPubMed
8.
go back to reference Shurtleff DB, Foltz EL, Loeser JD: Hydrocephalus. A definition of its progression and relationship to intellectual function, diagnosis, and complications. Am J Dis Child. 1973, 125: 688-693.CrossRefPubMed Shurtleff DB, Foltz EL, Loeser JD: Hydrocephalus. A definition of its progression and relationship to intellectual function, diagnosis, and complications. Am J Dis Child. 1973, 125: 688-693.CrossRefPubMed
9.
go back to reference Engel M, Carmel PW, Chutorian AM: Increased intraventricular pressure without ventriculomegaly in children with shunts: "normal volume" hydrocephalus. Neurosurgery. 1979, 5: 549-552. 10.1097/00006123-197911000-00001.CrossRefPubMed Engel M, Carmel PW, Chutorian AM: Increased intraventricular pressure without ventriculomegaly in children with shunts: "normal volume" hydrocephalus. Neurosurgery. 1979, 5: 549-552. 10.1097/00006123-197911000-00001.CrossRefPubMed
10.
go back to reference Dandy W: Internal hydrocephalus, an experimental, pathological and clinical study. Am J Dis Child. 1914, 8: 406-482.CrossRef Dandy W: Internal hydrocephalus, an experimental, pathological and clinical study. Am J Dis Child. 1914, 8: 406-482.CrossRef
11.
12.
go back to reference Ransohoff J, Shulman K, Fishman RA: Hydrocephalus: A review of etiology and treatment. J Pediatr. 1960, 56: 499-511. Ransohoff J, Shulman K, Fishman RA: Hydrocephalus: A review of etiology and treatment. J Pediatr. 1960, 56: 499-511.
13.
go back to reference Rekate HL: Circuit diagram of the circulation of cerebrospinal fluid. 1989. Pediatr Neurosurg. 1994, 21: 248-252.CrossRefPubMed Rekate HL: Circuit diagram of the circulation of cerebrospinal fluid. 1989. Pediatr Neurosurg. 1994, 21: 248-252.CrossRefPubMed
14.
go back to reference Rekate HL, Olivero WC, McCormick JM: Resistance elements within the cerebrospinal fluid circulation. Ouflow of Cerebrospinal Fluid. Edited by: Gjerris F, Borgesen S and Soelberg-Sorensen P. 1989, Copenhagen, Munksgaard, 45-52. Rekate HL, Olivero WC, McCormick JM: Resistance elements within the cerebrospinal fluid circulation. Ouflow of Cerebrospinal Fluid. Edited by: Gjerris F, Borgesen S and Soelberg-Sorensen P. 1989, Copenhagen, Munksgaard, 45-52.
15.
go back to reference Olivero WC, Rekate HL, Chizeck HJ, Ko W, McCormick JM: Relationship between intracranial and sagittal sinus pressure in normal and hydrocephalic dogs. Pediatr Neurosci. 1988, 14: 196-201.CrossRefPubMed Olivero WC, Rekate HL, Chizeck HJ, Ko W, McCormick JM: Relationship between intracranial and sagittal sinus pressure in normal and hydrocephalic dogs. Pediatr Neurosci. 1988, 14: 196-201.CrossRefPubMed
16.
go back to reference Rekate HL, Williams FC, Brodkey JA, McCormick JM, Chizeck HJ, Ko W: Resistance of the foramen of Monro. Pediatr Neurosci. 1988, 14: 85-89.CrossRefPubMed Rekate HL, Williams FC, Brodkey JA, McCormick JM, Chizeck HJ, Ko W: Resistance of the foramen of Monro. Pediatr Neurosci. 1988, 14: 85-89.CrossRefPubMed
17.
go back to reference Rekate HL: Neurosurgical management of the newborn with spinal bifida. Comprehensive Management of Spina Bifida. Edited by: Rekate HL. 1991, Boca Raton, FL, CRC Press, 1-20. Rekate HL: Neurosurgical management of the newborn with spinal bifida. Comprehensive Management of Spina Bifida. Edited by: Rekate HL. 1991, Boca Raton, FL, CRC Press, 1-20.
18.
go back to reference Rekate HL, Erwood S, Brodkey JA, Chizeck HJ, Spear T, Ko W, Montague F: Etiology of ventriculomegaly in choroid plexus papilloma. Pediatr Neurosci. 1985, 12: 196-201.CrossRefPubMed Rekate HL, Erwood S, Brodkey JA, Chizeck HJ, Spear T, Ko W, Montague F: Etiology of ventriculomegaly in choroid plexus papilloma. Pediatr Neurosci. 1985, 12: 196-201.CrossRefPubMed
19.
go back to reference Rekate HL: Neurosurgical mangement of the child with spinal bifida. Comprehensive Management of Spina Bifida. Edited by: Rekate HL. 1991, Boca Raton, FL, CRC Press, 93-112. Rekate HL: Neurosurgical mangement of the child with spinal bifida. Comprehensive Management of Spina Bifida. Edited by: Rekate HL. 1991, Boca Raton, FL, CRC Press, 93-112.
20.
go back to reference Rekate HL: Selecting patients for endoscopic third ventriculostomy. Neurosurg Clin N Am. 2004, 15: 39-49. 10.1016/S1042-3680(03)00074-3.CrossRefPubMed Rekate HL: Selecting patients for endoscopic third ventriculostomy. Neurosurg Clin N Am. 2004, 15: 39-49. 10.1016/S1042-3680(03)00074-3.CrossRefPubMed
21.
go back to reference Foltz EL, Blanks JP, Yonemura K: CSF pulsatility in hydrocephalus: respiratory effect on pulse wave slope as an indicator of intracranial compliance. Neurol Res. 1990, 12: 67-74.PubMed Foltz EL, Blanks JP, Yonemura K: CSF pulsatility in hydrocephalus: respiratory effect on pulse wave slope as an indicator of intracranial compliance. Neurol Res. 1990, 12: 67-74.PubMed
22.
go back to reference Madsen JR, Egnor M, Zou R: Cerebrospinal fluid pulsatility and hydrocephalus: the fourth circulation. Clin Neurosurg. 2006, 53: 48-52.PubMed Madsen JR, Egnor M, Zou R: Cerebrospinal fluid pulsatility and hydrocephalus: the fourth circulation. Clin Neurosurg. 2006, 53: 48-52.PubMed
23.
go back to reference Rekate HL: Brain turgor (Kb): intrinsic property of the brain to resist distortion. Pediatr Neurosurg. 1992, 18: 257-262.CrossRefPubMed Rekate HL: Brain turgor (Kb): intrinsic property of the brain to resist distortion. Pediatr Neurosurg. 1992, 18: 257-262.CrossRefPubMed
24.
go back to reference Rekate HL: Hydrocephalus: Classification and pathophysiology. Pediatric Neurosurgery: Surgery of the Developing Nervous System. Edited by: McLone D. 2000, Philadelphia, W.B. Saunders, 253-295. Rekate HL: Hydrocephalus: Classification and pathophysiology. Pediatric Neurosurgery: Surgery of the Developing Nervous System. Edited by: McLone D. 2000, Philadelphia, W.B. Saunders, 253-295.
Metadata
Title
The definition and classification of hydrocephalus: a personal recommendation to stimulate debate
Author
Harold L Rekate
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2008
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/1743-8454-5-2

Other articles of this Issue 1/2008

Fluids and Barriers of the CNS 1/2008 Go to the issue