Skip to main content
Top
Published in: Cardiovascular Toxicology 2/2022

01-02-2022 | Interferon

Curcumin Ameliorates Doxorubicin-Induced Cardiotoxicity and Hepatotoxicity Via Suppressing Oxidative Stress and Modulating iNOS, NF-κB, and TNF-α in Rats

Authors: Ghadha Ibrahim Fouad, Kawkab A. Ahmed

Published in: Cardiovascular Toxicology | Issue 2/2022

Login to get access

Abstract

Doxorubicin (DOX) is one of the widely used anti-tumor drugs. However, DOX-induced cardiotoxicity (DIC) and hepatotoxicity (DIH) are among the side effects that limited its therapeutic efficiency and clinical applicability. This study aimed to investigate the cardioprotective and hepatoprotective potentials of curcumin (CMN)—a bioactive polyphenolic compound—in alleviating DOX-induced cardiotoxicity (DIC) and hepatotoxicity (DIH) in male rats. A single intraperitoneal (i.p.) dose of DOX (20 mg/kg) was used to induce DIC and DIH. DOX-intoxicated rats were co-treated with CMN (100 mg/kg, oral) for 10 days before and 5 days after a single dose of DOX. We studied the anti-inflammatory and anti-oxidative activities of CMN on biochemical and immunohistochemical aspects. DOX disrupted cardiac and hepatic functions and stimulated oxidative stress and inflammation in both tissues that was confirmed biochemically and immunohistochemically. DOX enhanced inflammatory interferon-gamma (IFN-γ) and upregulated immunoexpression of nuclear factor-κB (NF-κB), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-alpha (TNF-α). DOX induced structural alterations in both cardiac and hepatic tissues. CMN demonstrated cardioprotective potential through reducing cardiac troponin I (cTn1) and aspartate amino transaminase (AST). In addition, CMN significantly ameliorated liver function through decreasing alanine amino transaminase (ALT) and, gamma-glutamyl transferase (GGT), total cholesterol (TC), and triglycerides (TG). CMN demonstrated anti-inflammatory potential through decreasing IFN-γ levels and immunoexpression of iNOS, NF-κB, and TNF-α. Histopathologically, CMN restored DOX-associated cardiac and liver structural alterations. CMN showed anti-oxidative and anti-inflammatory potentials in both the cardiac and hepatic tissues. In addition, cTn1, IFN-γ, and AST could be used as blood-based biomarkers.
Literature
1.
go back to reference Prša, P., Karademir, B., Biçim, G., Mahmoud, H., Dahan, I., Yalçın, A. S., et al. (2020). The potential use of natural products to negate hepatic, renal and neuronal toxicity induced by cancer therapeutics. Biochemical pharmacology, 173, 113551.PubMed Prša, P., Karademir, B., Biçim, G., Mahmoud, H., Dahan, I., Yalçın, A. S., et al. (2020). The potential use of natural products to negate hepatic, renal and neuronal toxicity induced by cancer therapeutics. Biochemical pharmacology, 173, 113551.PubMed
2.
go back to reference Chari, R. V. (2008). Targeted cancer therapy: Conferring specificity to cytotoxic drugs. Accounts of chemical research, 41(1), 98–107.PubMed Chari, R. V. (2008). Targeted cancer therapy: Conferring specificity to cytotoxic drugs. Accounts of chemical research, 41(1), 98–107.PubMed
3.
go back to reference Fraczkowska, K., Bacia, M., Przybyło, M., Drabik, D., Kaczorowska, A., Rybka, J., et al. (2018). Alterations of biomechanics in cancer and normal cells induced by doxorubicin. Biomedicine & Pharmacotherapy, 97, 1195–1203. Fraczkowska, K., Bacia, M., Przybyło, M., Drabik, D., Kaczorowska, A., Rybka, J., et al. (2018). Alterations of biomechanics in cancer and normal cells induced by doxorubicin. Biomedicine & Pharmacotherapy, 97, 1195–1203.
6.
go back to reference Ibrahim Fouad, G., & Ahmed, K. A. (2021). The protective impact of Berberine against Doxorubicin-induced nephrotoxicity in Rats. Tissue and Cell, 1, 101612. Ibrahim Fouad, G., & Ahmed, K. A. (2021). The protective impact of Berberine against Doxorubicin-induced nephrotoxicity in Rats. Tissue and Cell, 1, 101612.
8.
go back to reference Magdy, T., Burmeister, B. T., & Burridge, P. W. (2016). Validating the pharmacogenomics of chemotherapy-induced cardiotoxicity: What is missing? Pharmacology & Therapeutics, 168, 113–125. Magdy, T., Burmeister, B. T., & Burridge, P. W. (2016). Validating the pharmacogenomics of chemotherapy-induced cardiotoxicity: What is missing? Pharmacology & Therapeutics, 168, 113–125.
9.
go back to reference Zhang, K. W., Finkelman, B. S., Gulati, G., Narayan, H. K., Upshaw, J., Narayan, V., et al. (2018). Abnormalities in 3-dimensional left ventricular mechanics with anthracycline chemotherapy are associated with systolic and diastolic dysfunction. Journal of the American College of Cardiology, 11, 1059–1068. https://doi.org/10.1016/j.jcmg.2018.01.015CrossRef Zhang, K. W., Finkelman, B. S., Gulati, G., Narayan, H. K., Upshaw, J., Narayan, V., et al. (2018). Abnormalities in 3-dimensional left ventricular mechanics with anthracycline chemotherapy are associated with systolic and diastolic dysfunction. Journal of the American College of Cardiology, 11, 1059–1068. https://​doi.​org/​10.​1016/​j.​jcmg.​2018.​01.​015CrossRef
11.
go back to reference Priya, L. B., Baskaran, R., Huang, C. Y., & Padma, V. V. (2017). Neferine ameliorates cardiomyoblast apoptosis induced by doxorubicin: Possible role in modulating NADPH oxidase/ROS-mediated NFκB redox signaling cascade. Scientific reports, 7(1), 1–13. Priya, L. B., Baskaran, R., Huang, C. Y., & Padma, V. V. (2017). Neferine ameliorates cardiomyoblast apoptosis induced by doxorubicin: Possible role in modulating NADPH oxidase/ROS-mediated NFκB redox signaling cascade. Scientific reports, 7(1), 1–13.
12.
go back to reference Songbo, M., Lang, H., Xinyong, C., Bin, X., Ping, Z., & Liang, S. (2019). Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicology letters, 307, 41–48.PubMed Songbo, M., Lang, H., Xinyong, C., Bin, X., Ping, Z., & Liang, S. (2019). Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicology letters, 307, 41–48.PubMed
13.
go back to reference Ichikawa, Y., Ghanefar, M., Bayeva, M., Wu, R., Khechaduri, A., Prasad, S. V. N., et al. (2014). Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. The Journal of Clinical Investigation, 124(2), 617–630.PubMedPubMedCentral Ichikawa, Y., Ghanefar, M., Bayeva, M., Wu, R., Khechaduri, A., Prasad, S. V. N., et al. (2014). Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. The Journal of Clinical Investigation, 124(2), 617–630.PubMedPubMedCentral
14.
go back to reference Singh, M. K., Mohd, F., Ayaz, A., Ankur, S., & Jyoti, Y. (2012). Protective effect of Lagenaria siceraria against doxorubicin induced cardiotoxicity in wistar rats. International Journal of Drug Development and Research, 4(2), 298–305. Singh, M. K., Mohd, F., Ayaz, A., Ankur, S., & Jyoti, Y. (2012). Protective effect of Lagenaria siceraria against doxorubicin induced cardiotoxicity in wistar rats. International Journal of Drug Development and Research, 4(2), 298–305.
15.
go back to reference Zhang, Y. W., Shi, J., Li, Y. J., & Wei, L. (2009). Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Archivum Immunologiae et Therapiae Experimentalis, 57(6), 435–445.PubMedPubMedCentral Zhang, Y. W., Shi, J., Li, Y. J., & Wei, L. (2009). Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Archivum Immunologiae et Therapiae Experimentalis, 57(6), 435–445.PubMedPubMedCentral
16.
go back to reference Chopra, S., & Saxena, R. (2018). Drug-induced liver injury-perspectives from pathology. Current Pharmacology Reports, 4(3), 182–192. Chopra, S., & Saxena, R. (2018). Drug-induced liver injury-perspectives from pathology. Current Pharmacology Reports, 4(3), 182–192.
17.
go back to reference Pedrycz, A., Wieczorski, M., & Czerny, K. (2004). Increased apoptosis in the adult rat liver after a single dose of adriamycin administration. Annales Universitatis Mariae Curie-Sklodowska D, 59(2), 313–318. Pedrycz, A., Wieczorski, M., & Czerny, K. (2004). Increased apoptosis in the adult rat liver after a single dose of adriamycin administration. Annales Universitatis Mariae Curie-Sklodowska D, 59(2), 313–318.
18.
go back to reference Kalender, Y., Yel, M., & Kalender, S. (2005). Doxorubicin hepatotoxicity and hepatic free radical metabolism in rats: The effects of vitamin E and catechin. Toxicology, 209(1), 39–45.PubMed Kalender, Y., Yel, M., & Kalender, S. (2005). Doxorubicin hepatotoxicity and hepatic free radical metabolism in rats: The effects of vitamin E and catechin. Toxicology, 209(1), 39–45.PubMed
19.
go back to reference Dunn, G. P., Ikeda, H., Bruce, A. T., Koebel, C., Uppaluri, R., Bui, J., et al. (2005). Interferon-γ and cancer immunoediting. Immunologic Research, 32(1), 231–245.PubMed Dunn, G. P., Ikeda, H., Bruce, A. T., Koebel, C., Uppaluri, R., Bui, J., et al. (2005). Interferon-γ and cancer immunoediting. Immunologic Research, 32(1), 231–245.PubMed
21.
go back to reference Jorgovanovic, D., Song, M., Wang, L., & Zhang, Y. (2020). Roles of IFN-γ in tumor progression and regression: A review. Biomarker Research., 8(1), 1–16. Jorgovanovic, D., Song, M., Wang, L., & Zhang, Y. (2020). Roles of IFN-γ in tumor progression and regression: A review. Biomarker Research., 8(1), 1–16.
22.
go back to reference Dobrzanski, M. J. (2013). Expanding roles for CD4 T cells and their subpopulations in tumor immunity and therapy. Frontiers in Oncology, 3, 63.PubMedPubMedCentral Dobrzanski, M. J. (2013). Expanding roles for CD4 T cells and their subpopulations in tumor immunity and therapy. Frontiers in Oncology, 3, 63.PubMedPubMedCentral
23.
go back to reference Mandai, M., Hamanishi, J., Abiko, K., Matsumura, N., Baba, T., & Konishi, I. (2016). Dual faces of IFN-gamma in cancer progression: A role of pd-l1 induction in the determination of pro- and antitumor immunity. Clinical Cancer Research., 22, 2329–2334.PubMed Mandai, M., Hamanishi, J., Abiko, K., Matsumura, N., Baba, T., & Konishi, I. (2016). Dual faces of IFN-gamma in cancer progression: A role of pd-l1 induction in the determination of pro- and antitumor immunity. Clinical Cancer Research., 22, 2329–2334.PubMed
24.
go back to reference Mojic, M., Takeda, K., & Hayakawa, Y. (2017). The dark side of IFN-gamma: Its role in promoting cancer immunoevasion. International Journal of Molecular Sciences, 19, 89.PubMedCentral Mojic, M., Takeda, K., & Hayakawa, Y. (2017). The dark side of IFN-gamma: Its role in promoting cancer immunoevasion. International Journal of Molecular Sciences, 19, 89.PubMedCentral
25.
go back to reference Choudhari, A. S., Mandave, P. C., Deshpande, M., Ranjekar, P., & Prakash, O. (2020). Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Frontiers in Pharmacology, 10, 1614.PubMedPubMedCentral Choudhari, A. S., Mandave, P. C., Deshpande, M., Ranjekar, P., & Prakash, O. (2020). Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Frontiers in Pharmacology, 10, 1614.PubMedPubMedCentral
26.
go back to reference Ojha, S., Venkataraman, B., Kurdi, A., Mahgoub, E., Sadek, B., & Rajesh, M. (2016). Plant-derived agents for counteracting cisplatin-induced nephrotoxicity. Oxidative medicine and cellular longevity.‏ Ojha, S., Venkataraman, B., Kurdi, A., Mahgoub, E., Sadek, B., & Rajesh, M. (2016). Plant-derived agents for counteracting cisplatin-induced nephrotoxicity. Oxidative medicine and cellular longevity.‏
27.
go back to reference Tuorkey, M. J. (2015). Cancer therapy with phytochemicals: Present and future perspectives. Biomedical and Environmental Sciences, 28(11), 808–819.PubMed Tuorkey, M. J. (2015). Cancer therapy with phytochemicals: Present and future perspectives. Biomedical and Environmental Sciences, 28(11), 808–819.PubMed
28.
go back to reference Sak, K. (2012). Chemotherapy and dietary phytochemical agents. Chemotherapy research and practice.‏ Sak, K. (2012). Chemotherapy and dietary phytochemical agents. Chemotherapy research and practice.‏
29.
go back to reference González-Salazar, A., Molina-Jijón, E., Correa, F., Zarco-Márquez, G., Calderón-Oliver, M., Tapia, E., et al. (2011). Curcumin protects from cardiac reperfusion damage by attenuation of oxidant stress and mitochondrial dysfunction. Cardiovascular Toxicology, 11(4), 357.PubMed González-Salazar, A., Molina-Jijón, E., Correa, F., Zarco-Márquez, G., Calderón-Oliver, M., Tapia, E., et al. (2011). Curcumin protects from cardiac reperfusion damage by attenuation of oxidant stress and mitochondrial dysfunction. Cardiovascular Toxicology, 11(4), 357.PubMed
30.
go back to reference Fan, X., Zhang, C., Liu, D. B., Yan, J., & Liang, H. P. (2013). The clinical applications of curcumin: Current state and the future. Current Pharmaceutical Design, 19(11), 2011–2031.PubMed Fan, X., Zhang, C., Liu, D. B., Yan, J., & Liang, H. P. (2013). The clinical applications of curcumin: Current state and the future. Current Pharmaceutical Design, 19(11), 2011–2031.PubMed
31.
go back to reference Rezaee, R., Momtazi, A. A., Monemi, A., & Sahebkar, A. (2017). Curcumin: A potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacological Research, 117, 218–227.PubMed Rezaee, R., Momtazi, A. A., Monemi, A., & Sahebkar, A. (2017). Curcumin: A potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacological Research, 117, 218–227.PubMed
32.
go back to reference Benzer, F., Kandemir, F. M., Ozkaraca, M., Kucukler, S., & Caglayan, C. (2018). Curcumin ameliorates doxorubicin-induced cardiotoxicity by abrogation of inflammation, apoptosis, oxidative DNA damage, and protein oxidation in rats. Journal of Biochemical and Molecular Toxicology, 32(2), e22030. Benzer, F., Kandemir, F. M., Ozkaraca, M., Kucukler, S., & Caglayan, C. (2018). Curcumin ameliorates doxorubicin-induced cardiotoxicity by abrogation of inflammation, apoptosis, oxidative DNA damage, and protein oxidation in rats. Journal of Biochemical and Molecular Toxicology, 32(2), e22030.
34.
go back to reference Ma, Z., Wang, N., He, H., & Tang, X. (2019). Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. Journal of Controlled Release., 316, 359–380.PubMed Ma, Z., Wang, N., He, H., & Tang, X. (2019). Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. Journal of Controlled Release., 316, 359–380.PubMed
35.
go back to reference Chen, K., Pan, H., Yan, Z., Li, Y., Ji, D., Yun, K., et al. (2021). A novel alginate/gelatin sponge combined with curcumin-loaded electrospun fibers for postoperative rapid hemostasis and prevention of tumor recurrence. International Journal of Biological Macromolecules., 182, 1339–1350.PubMed Chen, K., Pan, H., Yan, Z., Li, Y., Ji, D., Yun, K., et al. (2021). A novel alginate/gelatin sponge combined with curcumin-loaded electrospun fibers for postoperative rapid hemostasis and prevention of tumor recurrence. International Journal of Biological Macromolecules., 182, 1339–1350.PubMed
36.
go back to reference Paul, S., & Sa, G. (2021). Curcumin as an adjuvant to cancer immunotherapy. Frontiers in Oncology., 11, 675. Paul, S., & Sa, G. (2021). Curcumin as an adjuvant to cancer immunotherapy. Frontiers in Oncology., 11, 675.
37.
go back to reference Lv, X., Zhu, Y., Deng, Y., Zhang, S., Zhang, Q., Zhao, B., & Li, G. (2020). Glycyrrhizin improved autophagy flux via HMGB1-dependent Akt/mTOR signaling pathway to prevent Doxorubicin-induced cardiotoxicity. Toxicology, 441, 152508.PubMed Lv, X., Zhu, Y., Deng, Y., Zhang, S., Zhang, Q., Zhao, B., & Li, G. (2020). Glycyrrhizin improved autophagy flux via HMGB1-dependent Akt/mTOR signaling pathway to prevent Doxorubicin-induced cardiotoxicity. Toxicology, 441, 152508.PubMed
38.
go back to reference Yu, W., Wu, J., Cai, F., Xiang, J., Zha, W., Fan, D., et al. (2012). Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats. PLoS ONE, 7(12), e52013.PubMedPubMedCentral Yu, W., Wu, J., Cai, F., Xiang, J., Zha, W., Fan, D., et al. (2012). Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats. PLoS ONE, 7(12), e52013.PubMedPubMedCentral
39.
go back to reference Reitman, S., & Frankel, S. (1957). In vitro determination of transaminase activity in serum. American Journal of Clinical Pathology, 28(1), 56–63.PubMed Reitman, S., & Frankel, S. (1957). In vitro determination of transaminase activity in serum. American Journal of Clinical Pathology, 28(1), 56–63.PubMed
40.
go back to reference Tietz, N. W., Burtis, C. A., Duncan, P., et al. (1983). A reference method for measurement of alkaline phosphatase activity in human serum. Clinical Chemistry, 29, 751–761.PubMed Tietz, N. W., Burtis, C. A., Duncan, P., et al. (1983). A reference method for measurement of alkaline phosphatase activity in human serum. Clinical Chemistry, 29, 751–761.PubMed
41.
go back to reference Koracevic, D., Koracevic, G., Djordjevic, V., Andrejevic, S., & Cosic, V. (2001). Method for the measurement of antioxidant activity in human fluids. Journal of Clinical Pathology, 54(5), 356–361.PubMedPubMedCentral Koracevic, D., Koracevic, G., Djordjevic, V., Andrejevic, S., & Cosic, V. (2001). Method for the measurement of antioxidant activity in human fluids. Journal of Clinical Pathology, 54(5), 356–361.PubMedPubMedCentral
42.
go back to reference Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351.PubMed Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351.PubMed
44.
go back to reference Allain, C. C., Poon, L. S., Chan, C. S., Richmond, W., & Fu, P. C. (1974). Enzymatic determination of total serum cholesterol. Clinical Chemistry, 20(4), 470–475.PubMed Allain, C. C., Poon, L. S., Chan, C. S., Richmond, W., & Fu, P. C. (1974). Enzymatic determination of total serum cholesterol. Clinical Chemistry, 20(4), 470–475.PubMed
45.
go back to reference Fassati, P., & Prencipe, L. (1982). Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clinical Chemistry, 28(10), 2077–2080. Fassati, P., & Prencipe, L. (1982). Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clinical Chemistry, 28(10), 2077–2080.
46.
go back to reference Suvarna, S. K., Layton, C., & Bancroft, J. D. (2019). Bancroft’s Theory and Practice of Histological Techniques. Churchill Livingstone Elsevier. Suvarna, S. K., Layton, C., & Bancroft, J. D. (2019). Bancroft’s Theory and Practice of Histological Techniques. Churchill Livingstone Elsevier.
47.
go back to reference Ahmed, K. A., Korany, R. M. S., El Halawany, H. A., & Ahmed, K. S. (2019). Spirulina platensis alleviates arsenic-induced toxicity in male rats: Biochemical, histopathological and immunohistochemical studies. Adv. Anim. Vet. Sci., 7(8), 701–710. Ahmed, K. A., Korany, R. M. S., El Halawany, H. A., & Ahmed, K. S. (2019). Spirulina platensis alleviates arsenic-induced toxicity in male rats: Biochemical, histopathological and immunohistochemical studies. Adv. Anim. Vet. Sci., 7(8), 701–710.
48.
go back to reference Martín-Burriel, I., et al. (2004). Histopathological and molecular changes during apoptosis produced by 7H-dibenzo [c, g]-carbazole in mouse liver. Toxicologic Pathology, 32(2), 202–211.PubMed Martín-Burriel, I., et al. (2004). Histopathological and molecular changes during apoptosis produced by 7H-dibenzo [c, g]-carbazole in mouse liver. Toxicologic Pathology, 32(2), 202–211.PubMed
49.
go back to reference Yu, J., Wang, C., Kong, Q., Wu, X., Lu, J. J., & Chen, X. (2018). Recent progress in doxorubicin-induced cardiotoxicity and protective potential of natural products. Phytomedicine, 40, 125–139.PubMed Yu, J., Wang, C., Kong, Q., Wu, X., Lu, J. J., & Chen, X. (2018). Recent progress in doxorubicin-induced cardiotoxicity and protective potential of natural products. Phytomedicine, 40, 125–139.PubMed
50.
go back to reference Gonzalez, Y., Pokrzywinski, K. L., Rosen, E. T., Mog, S., Aryal, B., Chehab, L. M., Vijay, V., Moland, C. L., Desai, V. G., Dickey, J. S., et al. (2015). Reproductive hormone levels and differential mitochondria-related oxidative gene expression as potential mechanisms for gender differences in cardiosensitivity to doxorubicin in tumor-bearing spontaneously hypertensive rats. Cancer Chemotherapy and Pharmacology, 76(3), 447–459.PubMed Gonzalez, Y., Pokrzywinski, K. L., Rosen, E. T., Mog, S., Aryal, B., Chehab, L. M., Vijay, V., Moland, C. L., Desai, V. G., Dickey, J. S., et al. (2015). Reproductive hormone levels and differential mitochondria-related oxidative gene expression as potential mechanisms for gender differences in cardiosensitivity to doxorubicin in tumor-bearing spontaneously hypertensive rats. Cancer Chemotherapy and Pharmacology, 76(3), 447–459.PubMed
51.
go back to reference O’brien, P. J., Smith, D. E. C., Knechtel, T. J., Marchak, M. A., Pruimboom-Brees, I., Brees, D. J., Spratt, D. P., Archer, F. J., Butler, P., Potter, A. N., & Provost, J. P. (2006). Cardiac troponin I is a sensitive, specific biomarker of cardiac injury in laboratory animals. Laboratory Animals, 40(2), 153–171.PubMed O’brien, P. J., Smith, D. E. C., Knechtel, T. J., Marchak, M. A., Pruimboom-Brees, I., Brees, D. J., Spratt, D. P., Archer, F. J., Butler, P., Potter, A. N., & Provost, J. P. (2006). Cardiac troponin I is a sensitive, specific biomarker of cardiac injury in laboratory animals. Laboratory Animals, 40(2), 153–171.PubMed
52.
go back to reference Ahmed, L. A., Abdou, F. Y., El Fiky, A. A., Shaaban, E. A., & Ain-Shoka, A. A. (2021). Bradykinin-potentiating activity of a gamma-irradiated bioactive fraction isolated from scorpion (Leiurus quinquestriatus) venom in rats with doxorubicin-induced acute cardiotoxicity: Favorable modulation of oxidative stress and inflammatory, fibrogenic and apoptotic pathways. Cardiovascular Toxicology, 21(2), 127–141.PubMed Ahmed, L. A., Abdou, F. Y., El Fiky, A. A., Shaaban, E. A., & Ain-Shoka, A. A. (2021). Bradykinin-potentiating activity of a gamma-irradiated bioactive fraction isolated from scorpion (Leiurus quinquestriatus) venom in rats with doxorubicin-induced acute cardiotoxicity: Favorable modulation of oxidative stress and inflammatory, fibrogenic and apoptotic pathways. Cardiovascular Toxicology, 21(2), 127–141.PubMed
53.
go back to reference Botelho, A. F. M., Lempek, M. R., Branco, S. E. M., Nogueira, M. M., de Almeida, M. E., Costa, A. G., et al. (2019). Coenzyme Q10 cardioprotective effects against doxorubicin-induced cardiotoxicity in Wistar Rat. Cardiovascular Toxicology, 1, 1–13. Botelho, A. F. M., Lempek, M. R., Branco, S. E. M., Nogueira, M. M., de Almeida, M. E., Costa, A. G., et al. (2019). Coenzyme Q10 cardioprotective effects against doxorubicin-induced cardiotoxicity in Wistar Rat. Cardiovascular Toxicology, 1, 1–13.
54.
go back to reference Swain, S. M., Whaley, F. S., & Ewer, M. S. (2003). Congestive heart failure in patients treated with doxorubicin: A retrospective analysis of three trials. Cancer Interdisciplinary International Journal of the American Cancer Society, 97(11), 2869–2879. Swain, S. M., Whaley, F. S., & Ewer, M. S. (2003). Congestive heart failure in patients treated with doxorubicin: A retrospective analysis of three trials. Cancer Interdisciplinary International Journal of the American Cancer Society, 97(11), 2869–2879.
55.
go back to reference Goudarzi, M., Fatemi, I., Siahpoosh, A., Sezavar, S. H., Mansouri, E., & Mehrzadi, S. (2018). Protective effect of ellagic acid against sodium arsenite-induced cardio-and hematotoxicity in rats. Cardiovascular Toxicology, 18(4), 337–345.PubMed Goudarzi, M., Fatemi, I., Siahpoosh, A., Sezavar, S. H., Mansouri, E., & Mehrzadi, S. (2018). Protective effect of ellagic acid against sodium arsenite-induced cardio-and hematotoxicity in rats. Cardiovascular Toxicology, 18(4), 337–345.PubMed
56.
go back to reference Haybar, H., Goudarzi, M., Mehrzadi, S., Aminzadeh, A., Khodayar, M. J., Kalantar, M., & Fatemi, I. (2019). Effect of gemfibrozil on cardiotoxicity induced by doxorubicin in male experimental rats. Biomedicine & Pharmacotherapy, 109, 530–535. Haybar, H., Goudarzi, M., Mehrzadi, S., Aminzadeh, A., Khodayar, M. J., Kalantar, M., & Fatemi, I. (2019). Effect of gemfibrozil on cardiotoxicity induced by doxorubicin in male experimental rats. Biomedicine & Pharmacotherapy, 109, 530–535.
57.
go back to reference Chen, Y., Jiang, W., Liu, X., Du, Y., Liu, L., Ordovas, J. M., et al. (2020). Curcumin supplementation improves heat-stress-induced cardiac injury of mice: Physiological and molecular mechanisms. The Journal of Nutritional Biochemistry, 78, 108331.PubMed Chen, Y., Jiang, W., Liu, X., Du, Y., Liu, L., Ordovas, J. M., et al. (2020). Curcumin supplementation improves heat-stress-induced cardiac injury of mice: Physiological and molecular mechanisms. The Journal of Nutritional Biochemistry, 78, 108331.PubMed
58.
go back to reference Damodar, G., Smitha, T., Gopinath, S., Vijayakumar, S., & Rao, Y. (2014). An evaluation of hepatotoxicity in breast cancer patients receiving injection doxorubicin. Annals of Medical and Health Sciences Research, 4, 74–79.PubMedPubMedCentral Damodar, G., Smitha, T., Gopinath, S., Vijayakumar, S., & Rao, Y. (2014). An evaluation of hepatotoxicity in breast cancer patients receiving injection doxorubicin. Annals of Medical and Health Sciences Research, 4, 74–79.PubMedPubMedCentral
59.
go back to reference Mohammed, H. S., Hosny, E. N., Khadrawy, Y. A., Magdy, M., Attia, Y. S., Sayed, O. A., & AbdElaal, M. (2020). Protective effect of curcumin nanoparticles against cardiotoxicity induced by doxorubicin in rat. Biochimica et Biophysica Acta Molecular Basis of Disease, 1866(5), 165665.PubMed Mohammed, H. S., Hosny, E. N., Khadrawy, Y. A., Magdy, M., Attia, Y. S., Sayed, O. A., & AbdElaal, M. (2020). Protective effect of curcumin nanoparticles against cardiotoxicity induced by doxorubicin in rat. Biochimica et Biophysica Acta Molecular Basis of Disease, 1866(5), 165665.PubMed
60.
go back to reference Mete, R., Oran, M., Topcu, B., Oznur, M., Seber, E. S., Gedikbasi, A., & Yetisyigit, T. (2016). Protective effects of onion (Allium cepa) extract against doxorubicin-induced hepatotoxicity in rats. Toxicology and Industrial Health, 32(3), 551–557.PubMed Mete, R., Oran, M., Topcu, B., Oznur, M., Seber, E. S., Gedikbasi, A., & Yetisyigit, T. (2016). Protective effects of onion (Allium cepa) extract against doxorubicin-induced hepatotoxicity in rats. Toxicology and Industrial Health, 32(3), 551–557.PubMed
61.
go back to reference Omobowale, T. O., Oyagbemi, A. A., Ajufo, U. E., Adejumobi, O. A., Ola-Davies, O. E., Adedapo, A. A., & Yakubu, M. A. (2018). Ameliorative effect of gallic acid in doxorubicin-induced hepatotoxicity in Wistar rats through antioxidant defense system. Journal of Dietary Supplements, 15(2), 183–196.PubMed Omobowale, T. O., Oyagbemi, A. A., Ajufo, U. E., Adejumobi, O. A., Ola-Davies, O. E., Adedapo, A. A., & Yakubu, M. A. (2018). Ameliorative effect of gallic acid in doxorubicin-induced hepatotoxicity in Wistar rats through antioxidant defense system. Journal of Dietary Supplements, 15(2), 183–196.PubMed
62.
go back to reference Wang, Y., Mei, X., Yuan, J., Lu, W., Li, B., & Xu, D. (2015). Taurine zinc solid dispersions attenuate doxorubicin-induced hepatotoxicity and cardiotoxicity in rats. Toxicology and Applied Pharmacology, 289(1), 1–11.PubMed Wang, Y., Mei, X., Yuan, J., Lu, W., Li, B., & Xu, D. (2015). Taurine zinc solid dispersions attenuate doxorubicin-induced hepatotoxicity and cardiotoxicity in rats. Toxicology and Applied Pharmacology, 289(1), 1–11.PubMed
64.
go back to reference Koenig, G., & Seneff, S. (2015). Gamma-glutamyltransferase: A predictive biomarker of cellular antioxidant inadequacy and disease risk. Disease Markers.‏ Koenig, G., & Seneff, S. (2015). Gamma-glutamyltransferase: A predictive biomarker of cellular antioxidant inadequacy and disease risk. Disease Markers.‏
65.
go back to reference Mohamed, R. H., Karam, R. A., & Amer, M. G. (2011). Epicatechin attenuates doxorubicin-induced brain toxicity: Critical role of TNF-α, iNOS and NF-κB. Brain Research Bulletin, 86(1–2), 22–28.PubMed Mohamed, R. H., Karam, R. A., & Amer, M. G. (2011). Epicatechin attenuates doxorubicin-induced brain toxicity: Critical role of TNF-α, iNOS and NF-κB. Brain Research Bulletin, 86(1–2), 22–28.PubMed
66.
go back to reference El-Moselhy, M. A., & El-Sheikh, A. A. (2014). Protective mechanisms of atorvastatin against doxorubicin-induced hepato-renal toxicity. Biomedicine & Pharmacotherapy, 68, 101–110. El-Moselhy, M. A., & El-Sheikh, A. A. (2014). Protective mechanisms of atorvastatin against doxorubicin-induced hepato-renal toxicity. Biomedicine & Pharmacotherapy, 68, 101–110.
67.
go back to reference Chen, X., Zhang, Y., Zhu, Z., Liu, H., Guo, H., Xiong, C., et al. (2016). Protective effect of berberine on doxorubicin induced acute hepatorenal toxicity in rats. Molecular Medicine Reports, 13(5), 3953–3960.PubMed Chen, X., Zhang, Y., Zhu, Z., Liu, H., Guo, H., Xiong, C., et al. (2016). Protective effect of berberine on doxorubicin induced acute hepatorenal toxicity in rats. Molecular Medicine Reports, 13(5), 3953–3960.PubMed
68.
go back to reference Kelleni, M. T., Amin, E. F., & Abdelrahman, A. M. (2015). Effect of metformin and sitagliptin on doxorubicin-induced cardiotoxicity in rats: impact of oxidative stress, inflammation, and apoptosis. Journal of Toxicology, 2015, 1–8. Kelleni, M. T., Amin, E. F., & Abdelrahman, A. M. (2015). Effect of metformin and sitagliptin on doxorubicin-induced cardiotoxicity in rats: impact of oxidative stress, inflammation, and apoptosis. Journal of Toxicology, 2015, 1–8.
69.
go back to reference LeBaron, T. W., Kura, B., Kalocayova, B., Tribulova, N., & Slezak, J. (2019). A new approach for the prevention and treatment of cardiovascular disorders: Molecular hydrogen significantly reduces the effects of oxidative stress. Molecules, 24(11), 2076.PubMedCentral LeBaron, T. W., Kura, B., Kalocayova, B., Tribulova, N., & Slezak, J. (2019). A new approach for the prevention and treatment of cardiovascular disorders: Molecular hydrogen significantly reduces the effects of oxidative stress. Molecules, 24(11), 2076.PubMedCentral
70.
go back to reference Sun, J., Sun, G., Cui, X., Meng, X., Qin, M., & Sun, X. (2016). Myricitrin protects against doxorubicin-induced cardiotoxicity by counteracting oxidative stress and inhibiting mitochondrial apoptosis via ERK/P53 pathway. Evidence-Based Complementary and Alternative Medicine, 2016, 1–5. Sun, J., Sun, G., Cui, X., Meng, X., Qin, M., & Sun, X. (2016). Myricitrin protects against doxorubicin-induced cardiotoxicity by counteracting oxidative stress and inhibiting mitochondrial apoptosis via ERK/P53 pathway. Evidence-Based Complementary and Alternative Medicine, 2016, 1–5.
71.
go back to reference Durdagi, G., Pehlivan, D. Y., Oyar, E. O., Bahceci, S. A., & Ozbek, M. (2021). Effects of melatonin and adrenomedullin in reducing the cardiotoxic effects of doxorubicin in rats. Cardiovascular Toxicology, 21(5), 354–364.PubMed Durdagi, G., Pehlivan, D. Y., Oyar, E. O., Bahceci, S. A., & Ozbek, M. (2021). Effects of melatonin and adrenomedullin in reducing the cardiotoxic effects of doxorubicin in rats. Cardiovascular Toxicology, 21(5), 354–364.PubMed
72.
go back to reference Zare, M. F. R., Rakhshan, K., Aboutaleb, N., Nikbakht, F., Naderi, N., Bakhshesh, M., & Azizi, Y. (2019). Apigenin attenuates doxorubicin induced cardiotoxicity via reducing oxidative stress and apoptosis in male rats. Life Sciences, 232, 116623.PubMed Zare, M. F. R., Rakhshan, K., Aboutaleb, N., Nikbakht, F., Naderi, N., Bakhshesh, M., & Azizi, Y. (2019). Apigenin attenuates doxorubicin induced cardiotoxicity via reducing oxidative stress and apoptosis in male rats. Life Sciences, 232, 116623.PubMed
73.
go back to reference Shaker, R. A., Abboud, S. H., Assad, H. C., & Hadi, N. (2018). Enoxaparin attenuates doxorubicin induced cardiotoxicity in rats via interfering with oxidative stress, inflammation and apoptosis. BMC Pharmacology and Toxicology, 19(1), 1–10. Shaker, R. A., Abboud, S. H., Assad, H. C., & Hadi, N. (2018). Enoxaparin attenuates doxorubicin induced cardiotoxicity in rats via interfering with oxidative stress, inflammation and apoptosis. BMC Pharmacology and Toxicology, 19(1), 1–10.
74.
go back to reference Tan, B. L., & Norhaizan, M. E. (2019). Curcumin combination chemotherapy: The implication and efficacy in cancer. Molecules, 24(14), 2527.PubMedCentral Tan, B. L., & Norhaizan, M. E. (2019). Curcumin combination chemotherapy: The implication and efficacy in cancer. Molecules, 24(14), 2527.PubMedCentral
75.
go back to reference Ma, Y., Yang, L., Ma, J., Lu, L., Wang, X., Ren, J., & Yang, J. (2017). Rutin attenuates doxorubicin-induced cardiotoxicity via regulating autophagy and apoptosis. Biochimica et Biophysica Acta, 1863(8), 1904–1911.PubMed Ma, Y., Yang, L., Ma, J., Lu, L., Wang, X., Ren, J., & Yang, J. (2017). Rutin attenuates doxorubicin-induced cardiotoxicity via regulating autophagy and apoptosis. Biochimica et Biophysica Acta, 1863(8), 1904–1911.PubMed
76.
go back to reference Rahman, I. (2002). Oxidative stress, transcription factors and chromatin remodelling in lung inflammation. Biochemical Pharmacology, 64(5–6), 935–942.PubMed Rahman, I. (2002). Oxidative stress, transcription factors and chromatin remodelling in lung inflammation. Biochemical Pharmacology, 64(5–6), 935–942.PubMed
77.
go back to reference Aziz, M. M., Abd El Fattah, M. A., Ahmed, K. A., & Sayed, H. M. (2020). Protective effects of olmesartan and l-carnitine on doxorubicin-induced cardiotoxicity in rats. Canadian Journal of Physiology and Pharmacology, 98(4), 183–193.PubMed Aziz, M. M., Abd El Fattah, M. A., Ahmed, K. A., & Sayed, H. M. (2020). Protective effects of olmesartan and l-carnitine on doxorubicin-induced cardiotoxicity in rats. Canadian Journal of Physiology and Pharmacology, 98(4), 183–193.PubMed
79.
go back to reference Ni, C., Ma, P., Wang, R., Lou, X., Liu, X., Qin, Y., et al. (2019). Doxorubicin-induced cardiotoxicity involves IFNγ-mediated metabolic reprogramming in cardiomyocytes. The Journal of Pathology, 247(3), 320–332.PubMed Ni, C., Ma, P., Wang, R., Lou, X., Liu, X., Qin, Y., et al. (2019). Doxorubicin-induced cardiotoxicity involves IFNγ-mediated metabolic reprogramming in cardiomyocytes. The Journal of Pathology, 247(3), 320–332.PubMed
80.
go back to reference Levick, S. P., & Goldspink, P. H. (2014). Could interferon-gamma be a therapeutic target for treating heart failure? Heart Failure Reviews, 19(2), 227–236.PubMedPubMedCentral Levick, S. P., & Goldspink, P. H. (2014). Could interferon-gamma be a therapeutic target for treating heart failure? Heart Failure Reviews, 19(2), 227–236.PubMedPubMedCentral
81.
go back to reference Sadek, K. M., Mahmoud, S. F., Zeweil, M. F., & Abouzed, T. K. (2021). Proanthocyanidin alleviates doxorubicin-induced cardiac injury by inhibiting NF-kB pathway and modulating oxidative stress, cell cycle, and fibrogenesis. Journal of Biochemical and Molecular Toxicology, 35(4), e22716.PubMed Sadek, K. M., Mahmoud, S. F., Zeweil, M. F., & Abouzed, T. K. (2021). Proanthocyanidin alleviates doxorubicin-induced cardiac injury by inhibiting NF-kB pathway and modulating oxidative stress, cell cycle, and fibrogenesis. Journal of Biochemical and Molecular Toxicology, 35(4), e22716.PubMed
82.
go back to reference Cosper, P. F., Harvey, P. A., & Leinwand, L. A. (2012). Interferon-gamma causes cardiac myocyte atrophy via selective degradation of myosin heavy chain in a model of chronic myocarditis. American Journal of Pathology., 181, 2038–2046. Cosper, P. F., Harvey, P. A., & Leinwand, L. A. (2012). Interferon-gamma causes cardiac myocyte atrophy via selective degradation of myosin heavy chain in a model of chronic myocarditis. American Journal of Pathology., 181, 2038–2046.
83.
go back to reference Sauter, K. A., Wood, L. J., Wong, J., Iordanov, M., & Magun, B. E. (2011). Doxorubicin and daunorubicin induce processing and release of interleukin-1β through activation of the NLRP3 inflammasome: Progress at a snail’s pace. Cancer Biology & Therapy, 11(12), 1008–1016. Sauter, K. A., Wood, L. J., Wong, J., Iordanov, M., & Magun, B. E. (2011). Doxorubicin and daunorubicin induce processing and release of interleukin-1β through activation of the NLRP3 inflammasome: Progress at a snail’s pace. Cancer Biology & Therapy, 11(12), 1008–1016.
84.
go back to reference Ma, P., Qin, Y., Cao, H., Erben, U., Ni, C., & Qin, Z. (2020). Temporary blockade of interferon-γ ameliorates doxorubicin-induced cardiotoxicity without influencing the anti-tumor effect. Biomedicine & Pharmacotherapy, 130, 110587. Ma, P., Qin, Y., Cao, H., Erben, U., Ni, C., & Qin, Z. (2020). Temporary blockade of interferon-γ ameliorates doxorubicin-induced cardiotoxicity without influencing the anti-tumor effect. Biomedicine & Pharmacotherapy, 130, 110587.
85.
go back to reference Qin, Z., Schwartzkopff, J., Pradera, F., Kammertœns, T., Seliger, B., Pircher, H., & Blankenstein, T. (2003). A critical requirement of interferon γ-mediated angiostasis for tumor rejection by CD8+ T cells. Cancer Research, 63(14), 4095–4100.PubMed Qin, Z., Schwartzkopff, J., Pradera, F., Kammertœns, T., Seliger, B., Pircher, H., & Blankenstein, T. (2003). A critical requirement of interferon γ-mediated angiostasis for tumor rejection by CD8+ T cells. Cancer Research, 63(14), 4095–4100.PubMed
86.
go back to reference Todorović-Raković, N. (2021). The role of cytokines in the evolution of cancer: IFN-γ paradigm. Cytokine, 1, 155442. Todorović-Raković, N. (2021). The role of cytokines in the evolution of cancer: IFN-γ paradigm. Cytokine, 1, 155442.
87.
go back to reference Aktaş, I., Özmen, Ö., Tutun, H., Yalçın, A., & Türk, A. (2020). Artemisinin attenuates doxorubicin induced cardiotoxicity and hepatotoxicity in rats. Biotechnic & Histochemistry, 95(2), 121–128. Aktaş, I., Özmen, Ö., Tutun, H., Yalçın, A., & Türk, A. (2020). Artemisinin attenuates doxorubicin induced cardiotoxicity and hepatotoxicity in rats. Biotechnic & Histochemistry, 95(2), 121–128.
88.
go back to reference Akama, K. T., & Van Eldik, L. J. (2000). β-Amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1β-and tumor necrosis factor-α (TNFα)-dependent, and involves a TNFα receptor-associated factor-and NFκB-inducing kinase-dependent signaling mechanism. Journal of Biological Chemistry, 275(11), 7918–7924. Akama, K. T., & Van Eldik, L. J. (2000). β-Amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1β-and tumor necrosis factor-α (TNFα)-dependent, and involves a TNFα receptor-associated factor-and NFκB-inducing kinase-dependent signaling mechanism. Journal of Biological Chemistry, 275(11), 7918–7924.
89.
go back to reference Elsharkawy, A. M., & Mann, D. A. (2007). Nuclear factor-κB and the hepatic inflammation-fibrosis-cancer axis. Hepatology, 46(2), 590–597.PubMed Elsharkawy, A. M., & Mann, D. A. (2007). Nuclear factor-κB and the hepatic inflammation-fibrosis-cancer axis. Hepatology, 46(2), 590–597.PubMed
90.
go back to reference Aggarwal, B. B. (2003). Signalling pathways of the TNF superfamily: A double-edged sword. Nature Reviews Immunology, 3(9), 745–756.PubMed Aggarwal, B. B. (2003). Signalling pathways of the TNF superfamily: A double-edged sword. Nature Reviews Immunology, 3(9), 745–756.PubMed
91.
go back to reference Ahmad, S., Abbas, M., Ullah, M. F., Aziz, M. H., Beylerli, O., Alam, M. A., et al. (2021). Long non-coding RNAs regulated NF-κB signaling in cancer metastasis: Micromanaging by not so small non-coding RNAs. Academic Press. Ahmad, S., Abbas, M., Ullah, M. F., Aziz, M. H., Beylerli, O., Alam, M. A., et al. (2021). Long non-coding RNAs regulated NF-κB signaling in cancer metastasis: Micromanaging by not so small non-coding RNAs. Academic Press.
92.
go back to reference Lo, S. Z., Steer, J. H., & Joyce, D. A. (2011). TNF-α renders macrophages resistant to a range of cancer chemotherapeutic agents through NF-κB-mediated antagonism of apoptosis signaling. Cancer Letters, 307(1), 80–92.PubMed Lo, S. Z., Steer, J. H., & Joyce, D. A. (2011). TNF-α renders macrophages resistant to a range of cancer chemotherapeutic agents through NF-κB-mediated antagonism of apoptosis signaling. Cancer Letters, 307(1), 80–92.PubMed
93.
go back to reference Chen, Y., Tang, Y., Zhang, Y. C., Huang, X. H., Xie, Y. Q., & Xiang, Y. (2015). A metabolomic study of rats with doxorubicin-induced cardiomyopathy and Shengmai injection treatment. PLoS ONE, 10(5), e0125209.PubMedPubMedCentral Chen, Y., Tang, Y., Zhang, Y. C., Huang, X. H., Xie, Y. Q., & Xiang, Y. (2015). A metabolomic study of rats with doxorubicin-induced cardiomyopathy and Shengmai injection treatment. PLoS ONE, 10(5), e0125209.PubMedPubMedCentral
94.
go back to reference Mohebbati, R., Khajavi Rad, A., Naser Shafei, M., Soukhtanloo, M., Hosseinian, S., Beheshti, F., & Reza Khazdair, M. (2015). The effects of vitamin C on adriamycin-induced hypercholesterolemia in rat. Current Nutrition & Food Science, 11(4), 309–314. Mohebbati, R., Khajavi Rad, A., Naser Shafei, M., Soukhtanloo, M., Hosseinian, S., Beheshti, F., & Reza Khazdair, M. (2015). The effects of vitamin C on adriamycin-induced hypercholesterolemia in rat. Current Nutrition & Food Science, 11(4), 309–314.
95.
go back to reference Lee, B. H., Taylor, M. G., Robinet, P., Smith, J. D., Schweitzer, J., Sehayek, E., et al. (2013). Dysregulation of cholesterol homeostasis in human prostate cancer through loss of ABCA1. Cancer Research, 73, 1211–1218.PubMed Lee, B. H., Taylor, M. G., Robinet, P., Smith, J. D., Schweitzer, J., Sehayek, E., et al. (2013). Dysregulation of cholesterol homeostasis in human prostate cancer through loss of ABCA1. Cancer Research, 73, 1211–1218.PubMed
96.
go back to reference Liu, Z., Huang, P., Law, S., Tian, H., Leung, W., & Xu, C. (2018). Preventive effect of curcumin against chemotherapy-induced side-effects. Frontiers in Pharmacology, 9, 1374.PubMedPubMedCentral Liu, Z., Huang, P., Law, S., Tian, H., Leung, W., & Xu, C. (2018). Preventive effect of curcumin against chemotherapy-induced side-effects. Frontiers in Pharmacology, 9, 1374.PubMedPubMedCentral
Metadata
Title
Curcumin Ameliorates Doxorubicin-Induced Cardiotoxicity and Hepatotoxicity Via Suppressing Oxidative Stress and Modulating iNOS, NF-κB, and TNF-α in Rats
Authors
Ghadha Ibrahim Fouad
Kawkab A. Ahmed
Publication date
01-02-2022
Publisher
Springer US
Keyword
Interferon
Published in
Cardiovascular Toxicology / Issue 2/2022
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-021-09710-w

Other articles of this Issue 2/2022

Cardiovascular Toxicology 2/2022 Go to the issue