Skip to main content
Top
Published in: Journal of Translational Medicine 1/2021

Open Access 01-12-2021 | Research

Integrative eQTL-weighted hierarchical Cox models for SNP-set based time-to-event association studies

Authors: Haojie Lu, Yongyue Wei, Zhou Jiang, Jinhui Zhang, Ting Wang, Shuiping Huang, Ping Zeng

Published in: Journal of Translational Medicine | Issue 1/2021

Login to get access

Abstract

Background

Integrating functional annotations into SNP-set association studies has been proven a powerful analysis strategy. Statistical methods for such integration have been developed for continuous and binary phenotypes; however, the SNP-set integrative approaches for time-to-event or survival outcomes are lacking.

Methods

We here propose IEHC, an integrative eQTL (expression quantitative trait loci) hierarchical Cox regression, for SNP-set based survival association analysis by modeling effect sizes of genetic variants as a function of eQTL via a hierarchical manner. Three p-values combination tests are developed to examine the joint effects of eQTL and genetic variants after a novel decorrelated modification of statistics for the two components. An omnibus test (IEHC-ACAT) is further adapted to aggregate the strengths of all available tests.

Results

Simulations demonstrated that the IEHC joint tests were more powerful if both eQTL and genetic variants contributed to association signal, while IEHC-ACAT was robust and often outperformed other approaches across various simulation scenarios. When applying IEHC to ten TCGA cancers by incorporating eQTL from relevant tissues of GTEx, we revealed that substantial correlations existed between the two types of effect sizes of genetic variants from TCGA and GTEx, and identified 21 (9 unique) cancer-associated genes which would otherwise be missed by approaches not incorporating eQTL.

Conclusion

IEHC represents a flexible, robust, and powerful approach to integrate functional omics information to enhance the power of identifying association signals for the survival risk of complex human cancers.
Appendix
Available only for authorised users
Literature
1.
go back to reference Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S, Lemaçon A, Soucy P, Glubb D, Rostamianfar A, et al. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551:92–4.PubMedPubMedCentralCrossRef Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S, Lemaçon A, Soucy P, Glubb D, Rostamianfar A, et al. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551:92–4.PubMedPubMedCentralCrossRef
2.
go back to reference Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, Dadaev T, Leongamornlert D, Anokian E, Cieza-Borrella C, et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet. 2018;50:928–36.PubMedPubMedCentralCrossRef Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, Dadaev T, Leongamornlert D, Anokian E, Cieza-Borrella C, et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet. 2018;50:928–36.PubMedPubMedCentralCrossRef
3.
go back to reference Huang K-l, Mashl RJ, Wu Y, Ritter DI, Wang J, Oh C, Paczkowska M, Reynolds S, Wyczalkowski MA, Oak N, et al. Pathogenic Germline Variants in 10,389 Adult Cancers. Cell. 2018;173:355–370. Huang K-l, Mashl RJ, Wu Y, Ritter DI, Wang J, Oh C, Paczkowska M, Reynolds S, Wyczalkowski MA, Oak N, et al. Pathogenic Germline Variants in 10,389 Adult Cancers. Cell. 2018;173:355–370.
4.
7.
go back to reference Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106:9362–7.PubMedPubMedCentralCrossRef Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106:9362–7.PubMedPubMedCentralCrossRef
8.
go back to reference Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am J Hum Genet. 2017;101:5–22.PubMedPubMedCentralCrossRef Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am J Hum Genet. 2017;101:5–22.PubMedPubMedCentralCrossRef
9.
go back to reference Zeng P, Zhao Y, Qian C, Zhang L, Zhang R, Gou J, Liu J, Liu L, Chen F. Statistical analysis for genome-wide association study. J Biomed Res. 2015;29:285–97.PubMed Zeng P, Zhao Y, Qian C, Zhang L, Zhang R, Gou J, Liu J, Liu L, Chen F. Statistical analysis for genome-wide association study. J Biomed Res. 2015;29:285–97.PubMed
11.
go back to reference Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.PubMedPubMedCentralCrossRef Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.PubMedPubMedCentralCrossRef
12.
go back to reference Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11:446–50.PubMedPubMedCentralCrossRef Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11:446–50.PubMedPubMedCentralCrossRef
13.
go back to reference Gusev A, Bhatia G, Zaitlen N, Vilhjalmsson BJ, Diogo D, Stahl EA, Gregersen PK, Worthington J, Klareskog L, Raychaudhuri S. Quantifying missing heritability at known GWAS loci. PLoS Genet. 2013;9:e1003993.PubMedPubMedCentralCrossRef Gusev A, Bhatia G, Zaitlen N, Vilhjalmsson BJ, Diogo D, Stahl EA, Gregersen PK, Worthington J, Klareskog L, Raychaudhuri S. Quantifying missing heritability at known GWAS loci. PLoS Genet. 2013;9:e1003993.PubMedPubMedCentralCrossRef
15.
go back to reference Wu MC, Kraft P, Epstein MP, Taylor DM, Chanock SJ, Hunter DJ, Lin X. Powerful SNP-Set Analysis for Case-Control Genome-wide Association Studies. Am J Hum Genet. 2010;86:929–42.PubMedPubMedCentralCrossRef Wu MC, Kraft P, Epstein MP, Taylor DM, Chanock SJ, Hunter DJ, Lin X. Powerful SNP-Set Analysis for Case-Control Genome-wide Association Studies. Am J Hum Genet. 2010;86:929–42.PubMedPubMedCentralCrossRef
16.
go back to reference Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-Variant Association Testing for Sequencing Data with the Sequence Kernel Association Test. Am J Hum Genet. 2011;89:82–93.PubMedPubMedCentralCrossRef Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-Variant Association Testing for Sequencing Data with the Sequence Kernel Association Test. Am J Hum Genet. 2011;89:82–93.PubMedPubMedCentralCrossRef
17.
go back to reference Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA, Christiani David C, Wurfel Mark M, Lin X. Optimal Unified Approach for Rare-Variant Association Testing with Application to Small-Sample Case-Control Whole-Exome Sequencing Studies. Am J Hum Genet. 2012;91:224–37.PubMedPubMedCentralCrossRef Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA, Christiani David C, Wurfel Mark M, Lin X. Optimal Unified Approach for Rare-Variant Association Testing with Application to Small-Sample Case-Control Whole-Exome Sequencing Studies. Am J Hum Genet. 2012;91:224–37.PubMedPubMedCentralCrossRef
18.
go back to reference Schifano ED, Epstein MP, Bielak LF, Jhun MA, Kardia SLR, Peyser PA, Lin X. SNP Set Association Analysis for Familial Data. Genet Epidemiol. 2012;36:797–810.PubMedPubMedCentral Schifano ED, Epstein MP, Bielak LF, Jhun MA, Kardia SLR, Peyser PA, Lin X. SNP Set Association Analysis for Familial Data. Genet Epidemiol. 2012;36:797–810.PubMedPubMedCentral
19.
go back to reference Wang X, Lee S, Zhu X, Redline S, Lin X. GEE-Based SNP Set Association Test for Continuous and Discrete Traits in Family-Based Association Studies. Genet Epidemiol. 2013;37:778–86.PubMedPubMedCentralCrossRef Wang X, Lee S, Zhu X, Redline S, Lin X. GEE-Based SNP Set Association Test for Continuous and Discrete Traits in Family-Based Association Studies. Genet Epidemiol. 2013;37:778–86.PubMedPubMedCentralCrossRef
20.
go back to reference Wu MC, Maity A, Lee S, Simmons EM, Harmon QE, Lin X, Engel SM, Molldrem JJ, Armistead PM. Kernel Machine SNP-Set Testing Under Multiple Candidate Kernels. Genet Epidemiol. 2013;37:267–75.PubMedPubMedCentralCrossRef Wu MC, Maity A, Lee S, Simmons EM, Harmon QE, Lin X, Engel SM, Molldrem JJ, Armistead PM. Kernel Machine SNP-Set Testing Under Multiple Candidate Kernels. Genet Epidemiol. 2013;37:267–75.PubMedPubMedCentralCrossRef
21.
22.
go back to reference Morgenthaler S, Thilly W. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat Res. 2007;615:28–56.PubMedCrossRef Morgenthaler S, Thilly W. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat Res. 2007;615:28–56.PubMedCrossRef
23.
go back to reference Li B, Leal SS. Novel methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet. 2008;83:311–21.PubMedPubMedCentralCrossRef Li B, Leal SS. Novel methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet. 2008;83:311–21.PubMedPubMedCentralCrossRef
24.
go back to reference Zeng P, Zhao Y, Liu J, Liu L, Zhang L, Wang T, Huang S, Chen F. Likelihood ratio tests in rare variant detection for continuous phenotypes. Ann Hum Genet. 2014;78:320–32.PubMedCrossRef Zeng P, Zhao Y, Liu J, Liu L, Zhang L, Wang T, Huang S, Chen F. Likelihood ratio tests in rare variant detection for continuous phenotypes. Ann Hum Genet. 2014;78:320–32.PubMedCrossRef
25.
go back to reference Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 2010;6:e1000888.PubMedPubMedCentralCrossRef Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 2010;6:e1000888.PubMedPubMedCentralCrossRef
26.
go back to reference Su YR, Di C, Bien S, Huang L, Dong X, Abecasis G, Berndt S, Bezieau S, Brenner H, Caan B, et al. A Mixed-Effects Model for Powerful Association Tests in Integrative Functional Genomics. Am J Hum Genet. 2018;102:904–19.PubMedPubMedCentralCrossRef Su YR, Di C, Bien S, Huang L, Dong X, Abecasis G, Berndt S, Bezieau S, Brenner H, Caan B, et al. A Mixed-Effects Model for Powerful Association Tests in Integrative Functional Genomics. Am J Hum Genet. 2018;102:904–19.PubMedPubMedCentralCrossRef
27.
go back to reference Wu C, Pan W. Integrating eQTL data with GWAS summary statistics in pathway-based analysis with application to schizophrenia. Genet Epidemiol. 2018;42:303–16.PubMedPubMedCentralCrossRef Wu C, Pan W. Integrating eQTL data with GWAS summary statistics in pathway-based analysis with application to schizophrenia. Genet Epidemiol. 2018;42:303–16.PubMedPubMedCentralCrossRef
28.
go back to reference Xue H, Pan W, for the Alzheimer's Disease Neuroimaging I. Some statistical consideration in transcriptome-wide association studies. Genet Epidemiol. 2020;44:221–232. Xue H, Pan W, for the Alzheimer's Disease Neuroimaging I. Some statistical consideration in transcriptome-wide association studies. Genet Epidemiol. 2020;44:221–232.
29.
30.
go back to reference Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, Eyler AE, Denny JC, Consortium GT, Nicolae DL, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015;47:1091–8.PubMedPubMedCentralCrossRef Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, Eyler AE, Denny JC, Consortium GT, Nicolae DL, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015;47:1091–8.PubMedPubMedCentralCrossRef
31.
go back to reference Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BWJH, Jansen R, de Geus EJC, Boomsma DI, Wright FA, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48:245–52.PubMedPubMedCentralCrossRef Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BWJH, Jansen R, de Geus EJC, Boomsma DI, Wright FA, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48:245–52.PubMedPubMedCentralCrossRef
32.
go back to reference Lin X, Cai T, Wu MC, Zhou Q, Liu G, Christiani DC, Lin X. Kernel machine SNP-set analysis for censored survival outcomes in genome-wide association studies. Genet Epidemiol. 2011;35:620–31.PubMedPubMedCentralCrossRef Lin X, Cai T, Wu MC, Zhou Q, Liu G, Christiani DC, Lin X. Kernel machine SNP-set analysis for censored survival outcomes in genome-wide association studies. Genet Epidemiol. 2011;35:620–31.PubMedPubMedCentralCrossRef
33.
go back to reference Cai T, Tonini G, Lin X. Kernel machine approach to testing the significance of multiple genetic markers for risk prediction. Biometrics. 2011;67:975–86.PubMedPubMedCentralCrossRef Cai T, Tonini G, Lin X. Kernel machine approach to testing the significance of multiple genetic markers for risk prediction. Biometrics. 2011;67:975–86.PubMedPubMedCentralCrossRef
34.
go back to reference Liu Y, Xie J. Cauchy Combination Test: A Powerful Test With Analytic p-Value Calculation Under Arbitrary Dependency Structures. J Am Stat Assoc. 2020;115:393–402.PubMedCrossRef Liu Y, Xie J. Cauchy Combination Test: A Powerful Test With Analytic p-Value Calculation Under Arbitrary Dependency Structures. J Am Stat Assoc. 2020;115:393–402.PubMedCrossRef
35.
go back to reference Liu Y, Chen S, Li Z, Morrison AC, Boerwinkle E, Lin X. ACAT: A Fast and Powerful p Value Combination Method for Rare-Variant Analysis in Sequencing Studies. Am J Hum Genet. 2019;104:410–21.PubMedPubMedCentralCrossRef Liu Y, Chen S, Li Z, Morrison AC, Boerwinkle E, Lin X. ACAT: A Fast and Powerful p Value Combination Method for Rare-Variant Analysis in Sequencing Studies. Am J Hum Genet. 2019;104:410–21.PubMedPubMedCentralCrossRef
36.
go back to reference GTEx Consortium. Genetic effects on gene expression across human tissues. Nature. 2017;550:204–213. GTEx Consortium. Genetic effects on gene expression across human tissues. Nature. 2017;550:204–213.
37.
go back to reference Cox DR. Regression Models and Life-Tables. J Roy Stat Soc: Ser B (Methodol). 1972;34:187–220. Cox DR. Regression Models and Life-Tables. J Roy Stat Soc: Ser B (Methodol). 1972;34:187–220.
38.
go back to reference GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–585. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–585.
39.
go back to reference Koziol JA, Perlman MD. Combining independent chi-squared tests. J Am Stat Assoc. 1978;73:753–63.CrossRef Koziol JA, Perlman MD. Combining independent chi-squared tests. J Am Stat Assoc. 1978;73:753–63.CrossRef
40.
go back to reference Fisher RA: Statistical Methods for Research Workers, 5th Edn. Biological monographs and manuals. Edinburgh: Oliver and Boyd Ltd; 1934. Fisher RA: Statistical Methods for Research Workers, 5th Edn. Biological monographs and manuals. Edinburgh: Oliver and Boyd Ltd; 1934.
41.
go back to reference Lappalainen T, Sammeth M, Friedländer MR, Pa TH, Monlong J, Rivas MA, Gonzàlezporta M, Kurbatova N, Griebel T, Ferreira PG. Transcriptome and genome sequencing uncovers functional variation in humans. Nature. 2013;501:506–11.PubMedPubMedCentralCrossRef Lappalainen T, Sammeth M, Friedländer MR, Pa TH, Monlong J, Rivas MA, Gonzàlezporta M, Kurbatova N, Griebel T, Ferreira PG. Transcriptome and genome sequencing uncovers functional variation in humans. Nature. 2013;501:506–11.PubMedPubMedCentralCrossRef
42.
go back to reference Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models. Stat Med. 2005;24:1713–23.PubMedCrossRef Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models. Stat Med. 2005;24:1713–23.PubMedCrossRef
43.
go back to reference Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, Shen R, Taylor AM, Cherniack AD, Thorsson V, et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell. 2018;173:291–304.PubMedPubMedCentralCrossRef Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, Shen R, Taylor AM, Cherniack AD, Thorsson V, et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell. 2018;173:291–304.PubMedPubMedCentralCrossRef
44.
go back to reference Yu X, Wang T, Huang S, Zeng P. How can gene expression information improve prognostic prediction in TCGA cancers: an empirical comparison study on regularization and mixed-effect survival models. Front Genetics. 2020;11:8.CrossRef Yu X, Wang T, Huang S, Zeng P. How can gene expression information improve prognostic prediction in TCGA cancers: an empirical comparison study on regularization and mixed-effect survival models. Front Genetics. 2020;11:8.CrossRef
45.
go back to reference Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing for disease and population genetic studies. Nat Methods. 2013;10:5–6.PubMedCrossRef Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing for disease and population genetic studies. Nat Methods. 2013;10:5–6.PubMedCrossRef
46.
go back to reference McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang HM, Fuchsberger C, Danecek P, Sharp K, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48:1279–83.PubMedPubMedCentralCrossRef McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang HM, Fuchsberger C, Danecek P, Sharp K, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48:1279–83.PubMedPubMedCentralCrossRef
47.
go back to reference Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, Vrieze SI, Chew EY, Levy S, McGue M, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284–7.PubMedPubMedCentralCrossRef Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, Vrieze SI, Chew EY, Levy S, McGue M, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284–7.PubMedPubMedCentralCrossRef
48.
go back to reference Piotrowski A, Benetkiewicz M, Menzel U, de Ståhl TD, Mantripragada K, Grigelionis G, Buckley PG, Jankowski M, Hoffman J, Bała D. Microarray-based survey of CpG islands identifies concurrent hyper-and hypomethylation patterns in tissues derived from patients with breast cancer. Genes Chromosom Cancer. 2006;45:656–67.PubMedCrossRef Piotrowski A, Benetkiewicz M, Menzel U, de Ståhl TD, Mantripragada K, Grigelionis G, Buckley PG, Jankowski M, Hoffman J, Bała D. Microarray-based survey of CpG islands identifies concurrent hyper-and hypomethylation patterns in tissues derived from patients with breast cancer. Genes Chromosom Cancer. 2006;45:656–67.PubMedCrossRef
49.
go back to reference Runkle KB, Meyerkord CL, Desai NV, Takahashi Y, Wang H-G. Bif-1 suppresses breast cancer cell migration by promoting EGFR endocytic degradation. Cancer Biol Ther. 2012;13:956–66.PubMedPubMedCentralCrossRef Runkle KB, Meyerkord CL, Desai NV, Takahashi Y, Wang H-G. Bif-1 suppresses breast cancer cell migration by promoting EGFR endocytic degradation. Cancer Biol Ther. 2012;13:956–66.PubMedPubMedCentralCrossRef
50.
go back to reference Privat M, Rudewicz J, Sonnier N, Tamisier C, Ponelle-Chachuat F, Bignon Y-J. Antioxydation and cell migration genes are identified as potential therapeutic targets in basal-like and BRCA1 mutated breast cancer cell lines. Int J Med Sci. 2018;15:46.PubMedPubMedCentralCrossRef Privat M, Rudewicz J, Sonnier N, Tamisier C, Ponelle-Chachuat F, Bignon Y-J. Antioxydation and cell migration genes are identified as potential therapeutic targets in basal-like and BRCA1 mutated breast cancer cell lines. Int J Med Sci. 2018;15:46.PubMedPubMedCentralCrossRef
51.
go back to reference Fedoseienko A, Wieringa HW, Wisman GBA, Duiker E, Reyners AK, Hofker MH, van der Zee AG, van de Sluis B, van Vugt MA. Nuclear COMMD1 is associated with cisplatin sensitivity in ovarian cancer. PLoS ONE. 2016;11:e0165385.PubMedPubMedCentralCrossRef Fedoseienko A, Wieringa HW, Wisman GBA, Duiker E, Reyners AK, Hofker MH, van der Zee AG, van de Sluis B, van Vugt MA. Nuclear COMMD1 is associated with cisplatin sensitivity in ovarian cancer. PLoS ONE. 2016;11:e0165385.PubMedPubMedCentralCrossRef
52.
go back to reference Zeng P, Dai J, Jin S, Zhou X. Aggregating multiple expression prediction models improves the power of transcriptome-wide association studies. Hum Mol Genet. 2021;30:939–51.PubMedCrossRef Zeng P, Dai J, Jin S, Zhou X. Aggregating multiple expression prediction models improves the power of transcriptome-wide association studies. Hum Mol Genet. 2021;30:939–51.PubMedCrossRef
53.
go back to reference Zhu H, Zhou X. Transcriptome-wide association studies: a view from Mendelian randomization. Quant Biol. 2020;9:78. Zhu H, Zhou X. Transcriptome-wide association studies: a view from Mendelian randomization. Quant Biol. 2020;9:78.
54.
go back to reference Yuan Z, Zhu H, Zeng P, Yang S, Sun S, Yang C, Liu J, Zhou X. Testing and controlling for horizontal pleiotropy with probabilistic Mendelian randomization in transcriptome-wide association studies. Nat Commun. 2020;11:3861.PubMedPubMedCentralCrossRef Yuan Z, Zhu H, Zeng P, Yang S, Sun S, Yang C, Liu J, Zhou X. Testing and controlling for horizontal pleiotropy with probabilistic Mendelian randomization in transcriptome-wide association studies. Nat Commun. 2020;11:3861.PubMedPubMedCentralCrossRef
55.
go back to reference Wainberg M, Sinnott-Armstrong N, Mancuso N, Barbeira AN, Knowles DA, Golan D, Ermel R, Ruusalepp A, Quertermous T, Hao K, et al. Opportunities and challenges for transcriptome-wide association studies. Nat Genet. 2019;51:592–9.PubMedPubMedCentralCrossRef Wainberg M, Sinnott-Armstrong N, Mancuso N, Barbeira AN, Knowles DA, Golan D, Ermel R, Ruusalepp A, Quertermous T, Hao K, et al. Opportunities and challenges for transcriptome-wide association studies. Nat Genet. 2019;51:592–9.PubMedPubMedCentralCrossRef
56.
go back to reference Xiao L, Yuan Z, Jin S, Wang T, Huang S, Zeng P. Multiple-tissue integrative transcriptome-wide association studies discovered new genes associated with amyotrophic lateral sclerosis. Front Genetics. 2020;11:587243.CrossRef Xiao L, Yuan Z, Jin S, Wang T, Huang S, Zeng P. Multiple-tissue integrative transcriptome-wide association studies discovered new genes associated with amyotrophic lateral sclerosis. Front Genetics. 2020;11:587243.CrossRef
57.
go back to reference Urrutia E, Lee S, Maity A, Zhao N, Shen J, Li Y, Wu MC. Rare variant testing across methods and thresholds using the multi-kernel sequence kernel association test (MK-SKAT). Stat Interface. 2015;8:495–505.PubMedPubMedCentralCrossRef Urrutia E, Lee S, Maity A, Zhao N, Shen J, Li Y, Wu MC. Rare variant testing across methods and thresholds using the multi-kernel sequence kernel association test (MK-SKAT). Stat Interface. 2015;8:495–505.PubMedPubMedCentralCrossRef
59.
go back to reference Yang H, Cao H, He T, Wang T, Cui Y. Multilevel heterogeneous omics data integration with kernel fusion. Brief Bioinform. 2020;21:156–70. Yang H, Cao H, He T, Wang T, Cui Y. Multilevel heterogeneous omics data integration with kernel fusion. Brief Bioinform. 2020;21:156–70.
60.
go back to reference Yang H, Li S, Cao H, Zhang C, Cui Y. Predicting disease trait with genomic data: a composite kernel approach. Brief Bioinform. 2016;18:591–601. Yang H, Li S, Cao H, Zhang C, Cui Y. Predicting disease trait with genomic data: a composite kernel approach. Brief Bioinform. 2016;18:591–601.
61.
go back to reference He T, Li S, Zhong P-S, Cui Y. An optimal kernel-based U-statistic method for quantitative gene-set association analysis. Genet Epidemiol. 2019;43:137–49.PubMedCrossRef He T, Li S, Zhong P-S, Cui Y. An optimal kernel-based U-statistic method for quantitative gene-set association analysis. Genet Epidemiol. 2019;43:137–49.PubMedCrossRef
Metadata
Title
Integrative eQTL-weighted hierarchical Cox models for SNP-set based time-to-event association studies
Authors
Haojie Lu
Yongyue Wei
Zhou Jiang
Jinhui Zhang
Ting Wang
Shuiping Huang
Ping Zeng
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2021
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-021-03090-z

Other articles of this Issue 1/2021

Journal of Translational Medicine 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.