Skip to main content
Top
Published in: Journal of Diabetes & Metabolic Disorders 1/2019

01-06-2019 | Insulins | Review Article

Prospective of managing impaired brain insulin signalling in late onset Alzheimers disease with excisting diabetic drugs

Authors: Gifty M. Jojo, Gowthamarajan Kuppusamy, Kousalya Selvaraj, Uday Krishna Baruah

Published in: Journal of Diabetes & Metabolic Disorders | Issue 1/2019

Login to get access

Abstract

Late onset Alzheimer’s disease (AD) is the most common cause of dementia among elderly. The exact cause of the disease is until now unknown and there is no complete cure for the disease. Growing evidence suggest that AD is a metabolic disorder associated with impairment in brain insulin signalling. These findings enriched the scope for the repurposing of diabetic drugs in AD management. Even though many of these drugs are moving in a positive direction in the ongoing clinical studies, the extent of the success has seen to influence by several properties of these drugs since they were originally designed to manage the peripheral insulin resistance. In depth understandings of these properties is hence highly significant to optimise the use of diabetic drugs in the clinical management of AD; which is the primary aim of the present review article.
Literature
1.
go back to reference Pivi GAK, De Andrade NM, Da Ponte JB, De Moraes DS, Bertolucci PHF. Nutritional management for Alzheimer’s disease in all stages: mild, moderate, and severe. Nutrire. 2017;42:1.CrossRef Pivi GAK, De Andrade NM, Da Ponte JB, De Moraes DS, Bertolucci PHF. Nutritional management for Alzheimer’s disease in all stages: mild, moderate, and severe. Nutrire. 2017;42:1.CrossRef
2.
go back to reference Mufson EJ, Counts SE, Perez SE, Ginsberg SD, et al. Cholinergic system during the progression of Alzheimer's disease: Therapeutic implications. Expert Rev Neurother. 2008;8(11):1703–18.CrossRefPubMedPubMedCentral Mufson EJ, Counts SE, Perez SE, Ginsberg SD, et al. Cholinergic system during the progression of Alzheimer's disease: Therapeutic implications. Expert Rev Neurother. 2008;8(11):1703–18.CrossRefPubMedPubMedCentral
3.
go back to reference Wenk G L. Neuropathologic changes in Alzheimer's disease: potential targets for treatment. J Clin Psychiatry. 2006;67 Suppl 3:3–7; quiz 23. Wenk G L. Neuropathologic changes in Alzheimer's disease: potential targets for treatment. J Clin Psychiatry. 2006;67 Suppl 3:3–7; quiz 23.
4.
go back to reference Wenk GL, Parsons CG, Danysz W. Potential role of N-methyl-D-aspartate receptors as executors of neurodegeneration resulting from diverse insults: focus on memantine. Behav Pharmacol. 2006;17:411–24.CrossRefPubMed Wenk GL, Parsons CG, Danysz W. Potential role of N-methyl-D-aspartate receptors as executors of neurodegeneration resulting from diverse insults: focus on memantine. Behav Pharmacol. 2006;17:411–24.CrossRefPubMed
5.
go back to reference Teipel SJ, Meindl T, Grinberg L, Grothe M, Cantero JL, Reiser MF, et al. The cholinergic system in mild cognitive impairment and Alzheimer's disease: an in vivo MRI and DTI study. Hum Brain Mapp. 2011;32:1349–62.CrossRefPubMed Teipel SJ, Meindl T, Grinberg L, Grothe M, Cantero JL, Reiser MF, et al. The cholinergic system in mild cognitive impairment and Alzheimer's disease: an in vivo MRI and DTI study. Hum Brain Mapp. 2011;32:1349–62.CrossRefPubMed
6.
go back to reference Dong S, Duan Y, Hu Y, Zhao Z. Advances in the pathogenesis of Alzheimer’s disease: a re-evaluation of amyloid cascade hypothesis. Transl Neurodegeneration. 2012;1(1):18.CrossRef Dong S, Duan Y, Hu Y, Zhao Z. Advances in the pathogenesis of Alzheimer’s disease: a re-evaluation of amyloid cascade hypothesis. Transl Neurodegeneration. 2012;1(1):18.CrossRef
8.
go back to reference Herrmann N, Chau S, Kircanski I, Lanctôt KL. Current and emerging drug treatment options for Alzheimer’s disease: a systematic review. Drugs. 2011;71:2031–65.CrossRefPubMed Herrmann N, Chau S, Kircanski I, Lanctôt KL. Current and emerging drug treatment options for Alzheimer’s disease: a systematic review. Drugs. 2011;71:2031–65.CrossRefPubMed
10.
go back to reference Anan R, Kiran DG, Abbas AM. Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology. 2014;76:27–50.CrossRef Anan R, Kiran DG, Abbas AM. Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology. 2014;76:27–50.CrossRef
11.
go back to reference Watson GS, Craft S. The role of insulin resistance in the pathogenesis of Alzheimer's disease: implications for treatment. CNS Drugs. 2003;17(1):27–45.CrossRefPubMed Watson GS, Craft S. The role of insulin resistance in the pathogenesis of Alzheimer's disease: implications for treatment. CNS Drugs. 2003;17(1):27–45.CrossRefPubMed
12.
go back to reference Candeias E, Duarte AI, Carvalho C, Correia SC, Cardoso S, Santos RX, et al. The impairment of insulin signaling in Alzheimer's disease. IUBMB Life. 2012;64(12):951–7.CrossRefPubMed Candeias E, Duarte AI, Carvalho C, Correia SC, Cardoso S, Santos RX, et al. The impairment of insulin signaling in Alzheimer's disease. IUBMB Life. 2012;64(12):951–7.CrossRefPubMed
13.
go back to reference Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol. 2011;225(1):54–62.CrossRefPubMedPubMedCentral Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol. 2011;225(1):54–62.CrossRefPubMedPubMedCentral
15.
go back to reference Kalaria RN. Neurodegenerative disease: diabetes, microvascular pathology and Alzheimer disease. Nat Rev Neurol. 2009;5:305–6.CrossRefPubMed Kalaria RN. Neurodegenerative disease: diabetes, microvascular pathology and Alzheimer disease. Nat Rev Neurol. 2009;5:305–6.CrossRefPubMed
17.
go back to reference Mullin, Rick. (2014) "Cost to develop new pharmaceutical drug now exceeds $2.5B". Scientific American. Mullin, Rick. (2014) "Cost to develop new pharmaceutical drug now exceeds $2.5B". Scientific American.
19.
go back to reference Talbot K. Brain insulin resistance in Alzheimer's disease and its potential treatment with GLP-1 analogs. Neurodegenerative Dis Manag. 2014;4(1):31–40.CrossRef Talbot K. Brain insulin resistance in Alzheimer's disease and its potential treatment with GLP-1 analogs. Neurodegenerative Dis Manag. 2014;4(1):31–40.CrossRef
21.
go back to reference Jolivalt CG, Lee CA, Beiswenger KK, Smith JL, Orlov M, Torrance MA, et al. Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice:parallels with alzheimer’s disease and correction by insulin. J Neurosci Res. 2008;86:3265–74.CrossRefPubMedPubMedCentral Jolivalt CG, Lee CA, Beiswenger KK, Smith JL, Orlov M, Torrance MA, et al. Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice:parallels with alzheimer’s disease and correction by insulin. J Neurosci Res. 2008;86:3265–74.CrossRefPubMedPubMedCentral
22.
go back to reference Ryu BR, Ko HW, Jou I, Gwag BJ. Phosphatidylinositol 3-kinase-mediated regulation of neuronal apoptosis and necrosis by insulin and IGF-I. J Neurobiol. 1999;39(4):536–46.CrossRefPubMed Ryu BR, Ko HW, Jou I, Gwag BJ. Phosphatidylinositol 3-kinase-mediated regulation of neuronal apoptosis and necrosis by insulin and IGF-I. J Neurobiol. 1999;39(4):536–46.CrossRefPubMed
23.
go back to reference Min Son S, Song H, Byun J, Park KS, Jang HC, Park YJ, et al. Altered APP processing in insulin-resistant conditions is mediated by autophagosome accumulation via the inhibition of mammalian target of rapamycin pathway. Diabetes. 2012;61(12):3126–38.CrossRef Min Son S, Song H, Byun J, Park KS, Jang HC, Park YJ, et al. Altered APP processing in insulin-resistant conditions is mediated by autophagosome accumulation via the inhibition of mammalian target of rapamycin pathway. Diabetes. 2012;61(12):3126–38.CrossRef
24.
go back to reference Pandini G, Pace V, Copani A, Squatrito S, Milardi D, Vigneri R. Insulin has multiple antiamyloidogenic effects on human neuronal cells. Endocrinology. 2013;154:375–87.CrossRefPubMed Pandini G, Pace V, Copani A, Squatrito S, Milardi D, Vigneri R. Insulin has multiple antiamyloidogenic effects on human neuronal cells. Endocrinology. 2013;154:375–87.CrossRefPubMed
25.
go back to reference Messier C, Teutenberg K. The role of insulin, insulin growth factor, and insulin-degrading enzyme in brain aging and Alzheimer's disease. Neural Plasticity. 2005;12(4):311–28.CrossRefPubMedPubMedCentral Messier C, Teutenberg K. The role of insulin, insulin growth factor, and insulin-degrading enzyme in brain aging and Alzheimer's disease. Neural Plasticity. 2005;12(4):311–28.CrossRefPubMedPubMedCentral
26.
go back to reference Pivovarova O, Hohn A, Grune T, Pfeiffer AF, Rudovich N. Insulin-degrading enzyme: new therapeutic target for diabetes and Alzheimer's disease? Ann Med. 2016;48(8):614–24.CrossRefPubMed Pivovarova O, Hohn A, Grune T, Pfeiffer AF, Rudovich N. Insulin-degrading enzyme: new therapeutic target for diabetes and Alzheimer's disease? Ann Med. 2016;48(8):614–24.CrossRefPubMed
27.
go back to reference Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer’s disease: review and hypothesis. Neurobiol Aging. 2006;27(2):190–8.CrossRefPubMed Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer’s disease: review and hypothesis. Neurobiol Aging. 2006;27(2):190–8.CrossRefPubMed
28.
go back to reference Xie L, Helmerhorst E, Taddei K, Plewright B, Van Bronswijk W, Martins R. Alzheimer's beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci. 2002;22(10):RC221.CrossRefPubMed Xie L, Helmerhorst E, Taddei K, Plewright B, Van Bronswijk W, Martins R. Alzheimer's beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci. 2002;22(10):RC221.CrossRefPubMed
29.
go back to reference Havrankova J, Roth J, Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature. 1978;272:827–9.CrossRefPubMed Havrankova J, Roth J, Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature. 1978;272:827–9.CrossRefPubMed
30.
go back to reference Bingham EM, Hopkins D, Smith D, Pernet A, Hallett W, Reed L, et al. The role of insulin in human brain glucose metabolism: an 18fluoro-deoxyglucose positron emission tomography study. Diabetes. 2002;51:3384–90.CrossRefPubMed Bingham EM, Hopkins D, Smith D, Pernet A, Hallett W, Reed L, et al. The role of insulin in human brain glucose metabolism: an 18fluoro-deoxyglucose positron emission tomography study. Diabetes. 2002;51:3384–90.CrossRefPubMed
31.
go back to reference Figlewicz DP, Szot P, Israel PA, Payne C, Dorsa DM. Insulin reduces norepinephrine transporter mRNA in vivo in rat locus coeruleus. Brain Res. 1993;602:161–4.CrossRefPubMed Figlewicz DP, Szot P, Israel PA, Payne C, Dorsa DM. Insulin reduces norepinephrine transporter mRNA in vivo in rat locus coeruleus. Brain Res. 1993;602:161–4.CrossRefPubMed
32.
go back to reference Kopf SR, Baratti CM. Effects of post training administration of insulin on retention of a habituation response in mice:participation of a central cholinergic mechanism. Neurobiol Learn Mem. 1999;71:50–61.CrossRefPubMed Kopf SR, Baratti CM. Effects of post training administration of insulin on retention of a habituation response in mice:participation of a central cholinergic mechanism. Neurobiol Learn Mem. 1999;71:50–61.CrossRefPubMed
33.
go back to reference Kaiyala KJ, Prigeon RL, Kahn SE, Woods SC, Schwartz MW. Obesity induced by a high-fat diet is associated with reduced brain insulin transport in dogs. Diabetes. 2000;49:1525–33.CrossRefPubMed Kaiyala KJ, Prigeon RL, Kahn SE, Woods SC, Schwartz MW. Obesity induced by a high-fat diet is associated with reduced brain insulin transport in dogs. Diabetes. 2000;49:1525–33.CrossRefPubMed
34.
go back to reference Park K, Gross M, Lee DH, Holvoet P, Himes JH, Shikany JM, et al. Oxidative stress and insulin resistance: the coronary artery risk development in young adults study. Diabetes Care. 2009;32(7):1302–7.CrossRefPubMedPubMedCentral Park K, Gross M, Lee DH, Holvoet P, Himes JH, Shikany JM, et al. Oxidative stress and insulin resistance: the coronary artery risk development in young adults study. Diabetes Care. 2009;32(7):1302–7.CrossRefPubMedPubMedCentral
35.
go back to reference Henriksen EJ, Diamond-Stanic MK, Marchionne EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med. 2011;51(5):993–9.CrossRefPubMed Henriksen EJ, Diamond-Stanic MK, Marchionne EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med. 2011;51(5):993–9.CrossRefPubMed
36.
37.
go back to reference MacKnight C, Rockwood K, Awalt E, McDowell I. Diabetes mellitus and the risk of dementia, Alzheimer's disease and vascular cognitive impairment in the Canadian study of health and aging. Dement Geriatr Cogn Disord. 2002;14:77–83.CrossRefPubMed MacKnight C, Rockwood K, Awalt E, McDowell I. Diabetes mellitus and the risk of dementia, Alzheimer's disease and vascular cognitive impairment in the Canadian study of health and aging. Dement Geriatr Cogn Disord. 2002;14:77–83.CrossRefPubMed
38.
go back to reference Frolich L, Blum-Degen D, Bernstein HG, et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm (Vienna). 1998;105:423–38.CrossRef Frolich L, Blum-Degen D, Bernstein HG, et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm (Vienna). 1998;105:423–38.CrossRef
39.
go back to reference Chakrabarti S, Munshi S, Banerjee K, ThakurtaI G, et al. Mitochondrial dysfunction during brain aging: role of oxidative stress and modulation by antioxidant supplementation. Aging Dis. 2011;2(3):242–56.PubMedPubMedCentral Chakrabarti S, Munshi S, Banerjee K, ThakurtaI G, et al. Mitochondrial dysfunction during brain aging: role of oxidative stress and modulation by antioxidant supplementation. Aging Dis. 2011;2(3):242–56.PubMedPubMedCentral
40.
go back to reference Liu R, Liu IY, Bi X, Thompson RF, Doctrow SR, Malfroy B, et al. Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc Natl Acad Sci U S A. 2003;100(14):8526–31.CrossRefPubMedPubMedCentral Liu R, Liu IY, Bi X, Thompson RF, Doctrow SR, Malfroy B, et al. Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc Natl Acad Sci U S A. 2003;100(14):8526–31.CrossRefPubMedPubMedCentral
41.
go back to reference Floyd RA, Hensley K. Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging. 2002;23(5):795–807.CrossRefPubMed Floyd RA, Hensley K. Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging. 2002;23(5):795–807.CrossRefPubMed
42.
go back to reference Mariani E, Polidori MC, Cherubini A, Mecocci P. Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Anal Technol Biomed Life Sci. 2005;827(1):65–75.CrossRef Mariani E, Polidori MC, Cherubini A, Mecocci P. Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Anal Technol Biomed Life Sci. 2005;827(1):65–75.CrossRef
43.
go back to reference Muller DC, Elahi D, Tobin JD, Andres R. The effect of age on insulin resistance and secretion: a review. Semin Nephrol. 1996;16(4):289–98.PubMed Muller DC, Elahi D, Tobin JD, Andres R. The effect of age on insulin resistance and secretion: a review. Semin Nephrol. 1996;16(4):289–98.PubMed
44.
go back to reference Sartorius T, Peter A, Heni M, Maetzler W, Fritsche A, Häring HU, et al. The brain response to peripheral insulin declines with age: a contribution of the blood-brain barrier? PLoS One. 2015;10(5):e0126804.CrossRefPubMedPubMedCentral Sartorius T, Peter A, Heni M, Maetzler W, Fritsche A, Häring HU, et al. The brain response to peripheral insulin declines with age: a contribution of the blood-brain barrier? PLoS One. 2015;10(5):e0126804.CrossRefPubMedPubMedCentral
45.
go back to reference Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Häring HU. Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans. Physiol Rev. 2016;96:1169–209.CrossRefPubMed Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Häring HU. Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans. Physiol Rev. 2016;96:1169–209.CrossRefPubMed
46.
go back to reference Simpson IA, Chundu KR, Davies-Hill T, Honer WG, Davies P. Decreased concentrations of glut1 and glut3 glucose transporters in the brain of patients with Alzheimer’s disease. Ann Neurol. 1994;35:546–51.CrossRefPubMed Simpson IA, Chundu KR, Davies-Hill T, Honer WG, Davies P. Decreased concentrations of glut1 and glut3 glucose transporters in the brain of patients with Alzheimer’s disease. Ann Neurol. 1994;35:546–51.CrossRefPubMed
47.
go back to reference Simpson IA, Davies P. Reduced glucose transporter concentrations in brains of patients with Alzheimer’s disease. Ann Neurol. 1994;36:800–1.CrossRefPubMed Simpson IA, Davies P. Reduced glucose transporter concentrations in brains of patients with Alzheimer’s disease. Ann Neurol. 1994;36:800–1.CrossRefPubMed
48.
go back to reference Harik SI. Changes in the glucose transporter of brain capillaries. Can J Physiol Pharmacol. 1992;70:S113–7.CrossRefPubMed Harik SI. Changes in the glucose transporter of brain capillaries. Can J Physiol Pharmacol. 1992;70:S113–7.CrossRefPubMed
49.
go back to reference Kalaria RN, Harik SI. Reduced glucose transporter at the blood-brain barrier and in cerebral cortex in Alzheimer’s disease. J Neurochem. 1989;53:1083–8.CrossRefPubMed Kalaria RN, Harik SI. Reduced glucose transporter at the blood-brain barrier and in cerebral cortex in Alzheimer’s disease. J Neurochem. 1989;53:1083–8.CrossRefPubMed
50.
go back to reference Liu Y, Liu F, Iqbal K, Grundke-Iqbal I, Gong CX. Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Lett. 2008;582:359–64.CrossRefPubMedPubMedCentral Liu Y, Liu F, Iqbal K, Grundke-Iqbal I, Gong CX. Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Lett. 2008;582:359–64.CrossRefPubMedPubMedCentral
51.
go back to reference Uemura E, Greenlee HW. Insulin regulates neuronal glucose uptake by promoting translocation of glucose transporter GLUT3. Exp Neurol. 2006;198(1):48–53.CrossRefPubMed Uemura E, Greenlee HW. Insulin regulates neuronal glucose uptake by promoting translocation of glucose transporter GLUT3. Exp Neurol. 2006;198(1):48–53.CrossRefPubMed
52.
go back to reference McEwen BS, Reagan LP. Glucose transporter expression in the central nervous system: relationship to synaptic function. Eur J Pharmacol. 2004;490:13–24.CrossRefPubMed McEwen BS, Reagan LP. Glucose transporter expression in the central nervous system: relationship to synaptic function. Eur J Pharmacol. 2004;490:13–24.CrossRefPubMed
53.
go back to reference Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. Proc Natl Acad Sci U S A. 2004;101(29):10804–9.CrossRefPubMedPubMedCentral Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. Proc Natl Acad Sci U S A. 2004;101(29):10804–9.CrossRefPubMedPubMedCentral
54.
go back to reference Li X, Lu F, Wang JZ, Gong CX. Concurrent alterations of O-GlcNAcylation and phosphorylation of tau in mouse brains during fasting. Eur J Neurosci. 2006;23(8):2078–86.CrossRefPubMed Li X, Lu F, Wang JZ, Gong CX. Concurrent alterations of O-GlcNAcylation and phosphorylation of tau in mouse brains during fasting. Eur J Neurosci. 2006;23(8):2078–86.CrossRefPubMed
55.
go back to reference Winkler EA, Nishida Y, Sagare AP, Rege SV, Bell RD, Perlmutter D, et al. GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci. 2015;18(4):521–30.CrossRefPubMedPubMedCentral Winkler EA, Nishida Y, Sagare AP, Rege SV, Bell RD, Perlmutter D, et al. GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci. 2015;18(4):521–30.CrossRefPubMedPubMedCentral
56.
go back to reference Arluison M, Quinon M, Thorens B, Leloup C, et al. Immunohistochemical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. II Electron microscopic study. J Chem Neuroanat. 2004;28:137–46.CrossRefPubMed Arluison M, Quinon M, Thorens B, Leloup C, et al. Immunohistochemical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. II Electron microscopic study. J Chem Neuroanat. 2004;28:137–46.CrossRefPubMed
57.
go back to reference Arluison M, Quinon M, Nguyen P, Thorens B, et al. Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain-an-immunohistochemical study. J Chem Neuroanat. 2004;28:117–36.CrossRefPubMed Arluison M, Quinon M, Nguyen P, Thorens B, et al. Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain-an-immunohistochemical study. J Chem Neuroanat. 2004;28:117–36.CrossRefPubMed
58.
go back to reference Vannucci SJ, Koehler-Stec EM, Li K, Reynolds TH, Clark R, Simpson IA. GLUT4 glucose transporter expression in rodent brain: effect of diabetes. Brain Res. 1998;797:1–11.CrossRefPubMed Vannucci SJ, Koehler-Stec EM, Li K, Reynolds TH, Clark R, Simpson IA. GLUT4 glucose transporter expression in rodent brain: effect of diabetes. Brain Res. 1998;797:1–11.CrossRefPubMed
59.
go back to reference Winocur G, Greenwood CE, Piroli GG, Grillo CA, Reznikov LR, Reagan LP, et al. Memory impairment in obese Zucker rats: an investigation of cognitive function in an animal model of insulin resistance and obesity. Behav Neurosci. 2005;119(5):1389–95.CrossRefPubMed Winocur G, Greenwood CE, Piroli GG, Grillo CA, Reznikov LR, Reagan LP, et al. Memory impairment in obese Zucker rats: an investigation of cognitive function in an animal model of insulin resistance and obesity. Behav Neurosci. 2005;119(5):1389–95.CrossRefPubMed
60.
go back to reference Piroli GG, Grillo CA, Reznikov LR, Adams S, McEwen BS, Charron MJ, et al. Corticosterone impairs insulin-stimulated translocation of GLUT4 in the rat hippocampus. Neuroendocrinology. 2007;85(2):71–80.CrossRefPubMed Piroli GG, Grillo CA, Reznikov LR, Adams S, McEwen BS, Charron MJ, et al. Corticosterone impairs insulin-stimulated translocation of GLUT4 in the rat hippocampus. Neuroendocrinology. 2007;85(2):71–80.CrossRefPubMed
61.
go back to reference Lebovitz HE. Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes. 2001;109(Suppl 2):S135–48.CrossRefPubMed Lebovitz HE. Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes. 2001;109(Suppl 2):S135–48.CrossRefPubMed
62.
go back to reference Kulstad JJ, Green PS, Cook DG, Watson GS, Reger MA, Baker LD, et al. Differential modulation of plasma beta-amyloid by insulin in patients with Alzheimer disease. Neurology. 2006;66(10):1506–10.CrossRefPubMed Kulstad JJ, Green PS, Cook DG, Watson GS, Reger MA, Baker LD, et al. Differential modulation of plasma beta-amyloid by insulin in patients with Alzheimer disease. Neurology. 2006;66(10):1506–10.CrossRefPubMed
63.
go back to reference Craft S, Asthana S, Newcomer JW, Wilkinson CW, Matos IT, Baker LD, et al. Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch Gen Psychiatry. 1999;56(12):1135–40.CrossRefPubMed Craft S, Asthana S, Newcomer JW, Wilkinson CW, Matos IT, Baker LD, et al. Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch Gen Psychiatry. 1999;56(12):1135–40.CrossRefPubMed
65.
go back to reference Ferrannini E, Galvan AQ, Santoro D, Donatella S, Andrea N. Potassium as a link between insulin and the renin-angiotensin-aldosterone system. J Hypertens. 1992;10(1):S5–10.CrossRef Ferrannini E, Galvan AQ, Santoro D, Donatella S, Andrea N. Potassium as a link between insulin and the renin-angiotensin-aldosterone system. J Hypertens. 1992;10(1):S5–10.CrossRef
66.
go back to reference Barbagallo M, Dominguez LJ, Galioto A, Ferlisi A, Cani C, Malfa L, et al. Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X. Mol Asp Med. 2003;24:39–52.CrossRef Barbagallo M, Dominguez LJ, Galioto A, Ferlisi A, Cani C, Malfa L, et al. Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X. Mol Asp Med. 2003;24:39–52.CrossRef
67.
68.
go back to reference Hanson LR, Frey WH II. Intranasal delivery bypasses the blood brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008;9:S5.CrossRefPubMedPubMedCentral Hanson LR, Frey WH II. Intranasal delivery bypasses the blood brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008;9:S5.CrossRefPubMedPubMedCentral
70.
go back to reference Schiöth HB, Craft S, Brooks SJ, Frey WH 2nd, Benedict C. Brain insulin signaling and Alzheimer's disease: current evidence and future directions. Mol Neurobiol. 2012;46(1):4–10.CrossRefPubMed Schiöth HB, Craft S, Brooks SJ, Frey WH 2nd, Benedict C. Brain insulin signaling and Alzheimer's disease: current evidence and future directions. Mol Neurobiol. 2012;46(1):4–10.CrossRefPubMed
71.
go back to reference Hu SH, Jiang T, Yang SS, Yang Y. Pioglitazone ameliorates intracerebral insulin resistance and tau-protein hyperphosphorylation in rats with Type 2 Diabetes. Exp Clin Endocrinol Diabetes. 2013;121(4):220–4.CrossRefPubMed Hu SH, Jiang T, Yang SS, Yang Y. Pioglitazone ameliorates intracerebral insulin resistance and tau-protein hyperphosphorylation in rats with Type 2 Diabetes. Exp Clin Endocrinol Diabetes. 2013;121(4):220–4.CrossRefPubMed
72.
go back to reference Sastre M, Dewachter I, Rossner S, Bogdanovic N, Rosen E, Borghgraef P, et al. Nonsteroidal anti-inflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma. Proc Natl Acad Sci U S A. 2006;103:443–8.CrossRefPubMedPubMedCentral Sastre M, Dewachter I, Rossner S, Bogdanovic N, Rosen E, Borghgraef P, et al. Nonsteroidal anti-inflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma. Proc Natl Acad Sci U S A. 2006;103:443–8.CrossRefPubMedPubMedCentral
73.
go back to reference d'Abramo C, Massone S, Zingg JM, Pizzuti A, Marambaud P, Dalla Piccola B, et al. Role of peroxisome proliferator-activated receptor gamma in amyloid precursor protein processing and amyloid beta-mediated cell death. Biochem J. 2005;391:693–8.CrossRefPubMedPubMedCentral d'Abramo C, Massone S, Zingg JM, Pizzuti A, Marambaud P, Dalla Piccola B, et al. Role of peroxisome proliferator-activated receptor gamma in amyloid precursor protein processing and amyloid beta-mediated cell death. Biochem J. 2005;391:693–8.CrossRefPubMedPubMedCentral
74.
go back to reference Camacho IE, Serneels L, Spittaels K, Merchiers P, Dominguez D, de Strooper B. Peroxisome proliferator-activated receptor gamma induces a clearance mechanism forthe amyloid-beta peptide. J Neurosci. 2004;24:10908–17.CrossRefPubMed Camacho IE, Serneels L, Spittaels K, Merchiers P, Dominguez D, de Strooper B. Peroxisome proliferator-activated receptor gamma induces a clearance mechanism forthe amyloid-beta peptide. J Neurosci. 2004;24:10908–17.CrossRefPubMed
75.
go back to reference Bogacka I, Xie H, Bray GA, Smith SR. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes. 2005;54:1392–9.CrossRefPubMed Bogacka I, Xie H, Bray GA, Smith SR. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes. 2005;54:1392–9.CrossRefPubMed
76.
go back to reference Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev. 2006;27:728–35.CrossRefPubMed Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev. 2006;27:728–35.CrossRefPubMed
77.
go back to reference Pathan AR, Viswanad B, Sonkusare SK, Ramarao P. Chronic administration of pioglitazone attenuates intracerebroventricular streptozotocin induced-memory impairment in rats. Life Sci. 2006;79:2209–16.CrossRefPubMed Pathan AR, Viswanad B, Sonkusare SK, Ramarao P. Chronic administration of pioglitazone attenuates intracerebroventricular streptozotocin induced-memory impairment in rats. Life Sci. 2006;79:2209–16.CrossRefPubMed
78.
go back to reference Qing-Qing Y, Jin-Jing P, Xu S, Ding-Zhen L, et al. Pioglitazone improves cognitive function via increasing insulin sensitivity and strengthening antioxidantdefense system in fructose-drinking insulin resistance rats. PLoS One. 2013;8(3):e59313.CrossRef Qing-Qing Y, Jin-Jing P, Xu S, Ding-Zhen L, et al. Pioglitazone improves cognitive function via increasing insulin sensitivity and strengthening antioxidantdefense system in fructose-drinking insulin resistance rats. PLoS One. 2013;8(3):e59313.CrossRef
79.
go back to reference Daynes RA, Jones DC. Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol. 2002;2:748–59.CrossRefPubMed Daynes RA, Jones DC. Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol. 2002;2:748–59.CrossRefPubMed
81.
go back to reference Cho DH, Lee EJ, Kwon KJ, Shin CY, Song KH, Park JH, et al. Troglitazone, a thiazolidinedione, decreases tau phosphorylation through the inhibition of cyclin-dependent kinase 5 activity in SH-SY5Y neuroblastoma cells and primary neurons. J Neurochem. 126:685–95. Cho DH, Lee EJ, Kwon KJ, Shin CY, Song KH, Park JH, et al. Troglitazone, a thiazolidinedione, decreases tau phosphorylation through the inhibition of cyclin-dependent kinase 5 activity in SH-SY5Y neuroblastoma cells and primary neurons. J Neurochem. 126:685–95.
82.
go back to reference Qu J, Nakamura T, Cao G, Holland EA, McKercher SR, Lipton SA. (2011) S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by beta-amyloid peptide. Proc Natl Acad Sci U S A. 2011;108(34):14330–5.CrossRefPubMedPubMedCentral Qu J, Nakamura T, Cao G, Holland EA, McKercher SR, Lipton SA. (2011) S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by beta-amyloid peptide. Proc Natl Acad Sci U S A. 2011;108(34):14330–5.CrossRefPubMedPubMedCentral
84.
go back to reference Jiang LY, Su-Su T, Wang XY, Liu LP, et al. PPARγ agonist pioglitazone reverses memory impairment and biochemical changes in a mouse model of type 2 diabetes mellitus. CNS Neurosci Ther. 2012;18:659–66.CrossRefPubMedPubMedCentral Jiang LY, Su-Su T, Wang XY, Liu LP, et al. PPARγ agonist pioglitazone reverses memory impairment and biochemical changes in a mouse model of type 2 diabetes mellitus. CNS Neurosci Ther. 2012;18:659–66.CrossRefPubMedPubMedCentral
85.
go back to reference Li-ping L, Tian-hua Y, Li-ying J, Hu W, et al. Pioglitazone ameliorates memory deficits in streptozotocin-induced diabetic mice by reducing brain β-amyloid through PPARγ activation. Acta Pharmacol Sin. 2013;34:455–63.CrossRef Li-ping L, Tian-hua Y, Li-ying J, Hu W, et al. Pioglitazone ameliorates memory deficits in streptozotocin-induced diabetic mice by reducing brain β-amyloid through PPARγ activation. Acta Pharmacol Sin. 2013;34:455–63.CrossRef
86.
go back to reference Yin QQ, Pei JJ, Xu S, Luo DZ. Pioglitazone improves cognitive function via increasing insulin sensitivity and strengthening antioxidant defense system in fructose-drinking insulin resistance rats. PLoS One. 2013;8(3):e59313.CrossRefPubMedPubMedCentral Yin QQ, Pei JJ, Xu S, Luo DZ. Pioglitazone improves cognitive function via increasing insulin sensitivity and strengthening antioxidant defense system in fructose-drinking insulin resistance rats. PLoS One. 2013;8(3):e59313.CrossRefPubMedPubMedCentral
87.
go back to reference Yang S, Chen Z, Cao M, Li R, et al. Pioglitazone ameliorates Aβ42 deposition in rats with diet-induced insulin resistance associated with AKT/GSK3β activation. Mol Med Rep. 2017;15(5):2588–94.CrossRefPubMedPubMedCentral Yang S, Chen Z, Cao M, Li R, et al. Pioglitazone ameliorates Aβ42 deposition in rats with diet-induced insulin resistance associated with AKT/GSK3β activation. Mol Med Rep. 2017;15(5):2588–94.CrossRefPubMedPubMedCentral
88.
go back to reference Fernandez-Martos CM, Atkinson RAK, Chuah MI, King AE, Vickers JC. Combination treatment with leptin and pioglitazone in a mouse model of Alzheimer's disease. Alzheimers Dement. 2017;3:92–106. Fernandez-Martos CM, Atkinson RAK, Chuah MI, King AE, Vickers JC. Combination treatment with leptin and pioglitazone in a mouse model of Alzheimer's disease. Alzheimers Dement. 2017;3:92–106.
89.
go back to reference Maeshiba Y, Kiyota Y, Yamashita K, Yoshimura Y, Motohashi M, Tanayama S. Disposition of the new antidiabetic agent pioglitazone in rats, dogs, and monkeys. Arzneimittelforschung. 1997;47:29–35.PubMed Maeshiba Y, Kiyota Y, Yamashita K, Yoshimura Y, Motohashi M, Tanayama S. Disposition of the new antidiabetic agent pioglitazone in rats, dogs, and monkeys. Arzneimittelforschung. 1997;47:29–35.PubMed
90.
go back to reference Landreth G, Jiang Q, Mandrekar S, Heneka M. PPAR agonists as therapeutics for the treatment of Alzheimer’s disease. Am Soc Exp NeuroTher Inc. 2008;5:481–9. Landreth G, Jiang Q, Mandrekar S, Heneka M. PPAR agonists as therapeutics for the treatment of Alzheimer’s disease. Am Soc Exp NeuroTher Inc. 2008;5:481–9.
92.
go back to reference Morgenweck J, Abdel-Aleem OS, McNamara KC, Donahue RR, et al. Activation of peroxisome proliferator activated receptor γ in brain inhibits inflammatory pain, dorsal horn expression of Fos, and local edema. Neuropharmacology. 2010;58(2):337.CrossRefPubMed Morgenweck J, Abdel-Aleem OS, McNamara KC, Donahue RR, et al. Activation of peroxisome proliferator activated receptor γ in brain inhibits inflammatory pain, dorsal horn expression of Fos, and local edema. Neuropharmacology. 2010;58(2):337.CrossRefPubMed
93.
go back to reference Matias JA, Gilbert ER, Denbow DM, Cline MA. Effects of intracerebroventricular injection of rosiglitazone on appetite-associated parameters in chicks. Gen Comp Endocrinol. 2017;246:99–104.CrossRefPubMed Matias JA, Gilbert ER, Denbow DM, Cline MA. Effects of intracerebroventricular injection of rosiglitazone on appetite-associated parameters in chicks. Gen Comp Endocrinol. 2017;246:99–104.CrossRefPubMed
94.
go back to reference Ou Z, Zhao X, Labiche LA, Strong R, Grotta JC, Herrmann O, et al. Neuronal expression of peroxisome proliferator-activated receptor-gamma (PPARgamma) and 15d-prostaglandin J2--mediated protection of brain after experimental cerebral ischemia in rat. Brain Res. 2006;1096(1):196–203.CrossRefPubMed Ou Z, Zhao X, Labiche LA, Strong R, Grotta JC, Herrmann O, et al. Neuronal expression of peroxisome proliferator-activated receptor-gamma (PPARgamma) and 15d-prostaglandin J2--mediated protection of brain after experimental cerebral ischemia in rat. Brain Res. 2006;1096(1):196–203.CrossRefPubMed
95.
go back to reference Pedersen WA, McMillan PJ, Kulstad JJ, Leverenz JB, Craft S, Haynatzki GR. Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Exp Neurol. 2006;199(2):265–73.CrossRefPubMed Pedersen WA, McMillan PJ, Kulstad JJ, Leverenz JB, Craft S, Haynatzki GR. Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Exp Neurol. 2006;199(2):265–73.CrossRefPubMed
96.
go back to reference Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71.CrossRefPubMed Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71.CrossRefPubMed
97.
go back to reference Tuccori M, Filion KB, Yin H, Oriana HY, Platt RW, Azoulay L. Pioglitazone use and risk of bladder cancer: population based cohort study. BMJ. 2016;352:i1541.CrossRefPubMedPubMedCentral Tuccori M, Filion KB, Yin H, Oriana HY, Platt RW, Azoulay L. Pioglitazone use and risk of bladder cancer: population based cohort study. BMJ. 2016;352:i1541.CrossRefPubMedPubMedCentral
99.
go back to reference Lin JH, Yamazaki M. Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet. 2003;42(1):59–98.CrossRefPubMed Lin JH, Yamazaki M. Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet. 2003;42(1):59–98.CrossRefPubMed
101.
go back to reference Geldmacher DS, Fritsch T, McClendon MJ, Landreth G. A randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease. Arch Neurol. 2011;68(1):45–50.CrossRefPubMed Geldmacher DS, Fritsch T, McClendon MJ, Landreth G. A randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease. Arch Neurol. 2011;68(1):45–50.CrossRefPubMed
102.
go back to reference Labuzek K, Suchy D, Gabryel B, Bielecka A, Liber S, Okopień B. Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacol Rep. 2010;62:956–65.CrossRefPubMed Labuzek K, Suchy D, Gabryel B, Bielecka A, Liber S, Okopień B. Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacol Rep. 2010;62:956–65.CrossRefPubMed
103.
go back to reference Chopra I, Li HF, Wang H, Webster KA. Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle. Diabetologia. 2012;55(3):783–94.CrossRefPubMed Chopra I, Li HF, Wang H, Webster KA. Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle. Diabetologia. 2012;55(3):783–94.CrossRefPubMed
104.
go back to reference Kitabchi AE, Temprosa M, Knowler WC, Kahn SE, Fowler SE, Haffner SM, et al. Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: effects of lifestyle intervention and metformin. Diabetes. 2005;54:2404–14.CrossRefPubMed Kitabchi AE, Temprosa M, Knowler WC, Kahn SE, Fowler SE, Haffner SM, et al. Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: effects of lifestyle intervention and metformin. Diabetes. 2005;54:2404–14.CrossRefPubMed
105.
go back to reference Salminen A, Kaarniranta K, Haapasalo A, Soininen H, Hiltunen M. AMP-activated protein kinase: a potential player in Alzheimer's disease. J Neurochem. 2011;118(4):460–74.CrossRefPubMed Salminen A, Kaarniranta K, Haapasalo A, Soininen H, Hiltunen M. AMP-activated protein kinase: a potential player in Alzheimer's disease. J Neurochem. 2011;118(4):460–74.CrossRefPubMed
106.
go back to reference Du LL, Chai DM, Zhao LN, Li XH, et al. AMPK activation ameliorates Alzheimer's disease-like pathology and spatial memory impairment in a streptozotocin-induced Alzheimer's disease model in rats. J Alzheimers Dis. 2015;43(3):775–84.CrossRefPubMed Du LL, Chai DM, Zhao LN, Li XH, et al. AMPK activation ameliorates Alzheimer's disease-like pathology and spatial memory impairment in a streptozotocin-induced Alzheimer's disease model in rats. J Alzheimers Dis. 2015;43(3):775–84.CrossRefPubMed
107.
go back to reference Cai Z, Yan LJ, Li K, Quazi SH, Zhao B. Roles of AMP-activated protein kinase in Alzheimer's disease. NeuroMol Med. 2012;14(1):1–14.CrossRef Cai Z, Yan LJ, Li K, Quazi SH, Zhao B. Roles of AMP-activated protein kinase in Alzheimer's disease. NeuroMol Med. 2012;14(1):1–14.CrossRef
108.
go back to reference Price NL, Gomes AP, Ling AJ, Duarte FV, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15(5):675–90.CrossRefPubMedPubMedCentral Price NL, Gomes AP, Ling AJ, Duarte FV, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15(5):675–90.CrossRefPubMedPubMedCentral
109.
go back to reference Gupta A, Bisht B, Dey CS. Peripheral insulin-sensitizer drug metformin ameliorates neuronal insulin resistance and Alzheimer’s like changes. Neuropharmacology. 2011;60:910–20.CrossRefPubMed Gupta A, Bisht B, Dey CS. Peripheral insulin-sensitizer drug metformin ameliorates neuronal insulin resistance and Alzheimer’s like changes. Neuropharmacology. 2011;60:910–20.CrossRefPubMed
110.
go back to reference Li J, Deng W, Sheng ZZ. Metformin attenuates Alzheimer’s disease-like neuropathology in obese, leptin-resistant mice. Pharmacol Biochem Behav. 2012;101(4):564–74.CrossRefPubMedPubMedCentral Li J, Deng W, Sheng ZZ. Metformin attenuates Alzheimer’s disease-like neuropathology in obese, leptin-resistant mice. Pharmacol Biochem Behav. 2012;101(4):564–74.CrossRefPubMedPubMedCentral
111.
go back to reference Hsu CC, Wahlqvist ML, Lee MS, Tsai HN. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J Alzheimers Dis. 2011;24(3):485–93.CrossRefPubMed Hsu CC, Wahlqvist ML, Lee MS, Tsai HN. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J Alzheimers Dis. 2011;24(3):485–93.CrossRefPubMed
112.
go back to reference Imfeld P, Bodmer M, Jick SS, Meier CR. Metformin, other antidiabetic drugs, and risk of Alzheimer's disease: a population-based case-control study. J Am Geriatr Soc. 2012;60(5):916–21.CrossRefPubMed Imfeld P, Bodmer M, Jick SS, Meier CR. Metformin, other antidiabetic drugs, and risk of Alzheimer's disease: a population-based case-control study. J Am Geriatr Soc. 2012;60(5):916–21.CrossRefPubMed
113.
go back to reference Ng TP, Feng L, Yap KB, Lee TS. Long-term metformin usage and cognitive function among older adults with diabetes. J Alzheimers Dis. 2014;41(1):61–8.CrossRefPubMed Ng TP, Feng L, Yap KB, Lee TS. Long-term metformin usage and cognitive function among older adults with diabetes. J Alzheimers Dis. 2014;41(1):61–8.CrossRefPubMed
114.
go back to reference Cheng C, Lin CH, Tsai YW, Tsai CJ, et al. Type 2 diabetes and antidiabetic medications in relation to dementia diagnosis. J Gerontol A Biol Sci Med Sci. 2014;69(10):1299–305.CrossRefPubMed Cheng C, Lin CH, Tsai YW, Tsai CJ, et al. Type 2 diabetes and antidiabetic medications in relation to dementia diagnosis. J Gerontol A Biol Sci Med Sci. 2014;69(10):1299–305.CrossRefPubMed
115.
go back to reference Koenig AM, Mechanic-Hamilton D, Xie SX, Combs MF, Cappola AR, Xie L, et al. Effects of the insulin sensitizer metformin in Alzheimer disease: pilot data from a randomized placebo-controlled crossover study. Alzheimer Dis Assoc Disord. 2017;31(2):107–13.CrossRefPubMedPubMedCentral Koenig AM, Mechanic-Hamilton D, Xie SX, Combs MF, Cappola AR, Xie L, et al. Effects of the insulin sensitizer metformin in Alzheimer disease: pilot data from a randomized placebo-controlled crossover study. Alzheimer Dis Assoc Disord. 2017;31(2):107–13.CrossRefPubMedPubMedCentral
116.
go back to reference Andres E, Noel E, Goichot B. Metformin-associated vitamin B12 deficiency. Arch Intern Med. 2002;162(19):2251–2.CrossRefPubMed Andres E, Noel E, Goichot B. Metformin-associated vitamin B12 deficiency. Arch Intern Med. 2002;162(19):2251–2.CrossRefPubMed
117.
go back to reference Kibirige D, Mwebaze R. Vitamin B12 deficiency among patients with diabetes mellitus: is routine screening and supplementation justified? J Diabetes Metab Disord. 2013;12(1):17.CrossRefPubMedPubMedCentral Kibirige D, Mwebaze R. Vitamin B12 deficiency among patients with diabetes mellitus: is routine screening and supplementation justified? J Diabetes Metab Disord. 2013;12(1):17.CrossRefPubMedPubMedCentral
118.
go back to reference Ting RZ, Szeto CC, Chan MH, Ma KK, Chow KM. Risk factors of vitamin B(12) deficiency in patients receiving metformin. Arch Intern Med. 2006;166(18):1975–9.CrossRefPubMed Ting RZ, Szeto CC, Chan MH, Ma KK, Chow KM. Risk factors of vitamin B(12) deficiency in patients receiving metformin. Arch Intern Med. 2006;166(18):1975–9.CrossRefPubMed
119.
go back to reference Osimani A, Berger A, Friedman J, Porat-Katz BS, Abarbanel JM. Neuropsychology of vitamin B12 deficiency in elderly dementia patients and control subjects. J Geriatr Psychiatry Neurol. 2005;18(1):33–8.CrossRefPubMed Osimani A, Berger A, Friedman J, Porat-Katz BS, Abarbanel JM. Neuropsychology of vitamin B12 deficiency in elderly dementia patients and control subjects. J Geriatr Psychiatry Neurol. 2005;18(1):33–8.CrossRefPubMed
120.
go back to reference Du LL, Chai DM, Zhao LN, Li XH, et al. AMPK activation ameliorates Alzheimer's disease-like pathology and spatial memory impairment in a streptozotocin-induced Alzheimer's disease model in rats. J Alzheimers Dis. 2015;43(3):775–84.CrossRefPubMed Du LL, Chai DM, Zhao LN, Li XH, et al. AMPK activation ameliorates Alzheimer's disease-like pathology and spatial memory impairment in a streptozotocin-induced Alzheimer's disease model in rats. J Alzheimers Dis. 2015;43(3):775–84.CrossRefPubMed
121.
go back to reference Domise M, Didier S, Marinangeli C, Zhao H, et al. AMP-activated protein kinase modulates tau phosphorylation and tau pathology in vivo. Sci Rep. 2016;6:26758.CrossRefPubMedPubMedCentral Domise M, Didier S, Marinangeli C, Zhao H, et al. AMP-activated protein kinase modulates tau phosphorylation and tau pathology in vivo. Sci Rep. 2016;6:26758.CrossRefPubMedPubMedCentral
122.
go back to reference Vingtdeux V, Davies P, Dickson DW, Marambaud P. AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer's disease and other tauopathies. Acta Neuropathol. 2011;121(3):337–49.CrossRefPubMed Vingtdeux V, Davies P, Dickson DW, Marambaud P. AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer's disease and other tauopathies. Acta Neuropathol. 2011;121(3):337–49.CrossRefPubMed
123.
go back to reference Ma T, Chen Y, Vingtdeux V, Zhao H, Viollet B, Marambaud P, et al. Inhibition of AMP-activated protein kinase signaling alleviates impairments in hippocampal synaptic plasticity induced by amyloid β. J Neurosci. 2014;34(36):12230–8.CrossRefPubMedPubMedCentral Ma T, Chen Y, Vingtdeux V, Zhao H, Viollet B, Marambaud P, et al. Inhibition of AMP-activated protein kinase signaling alleviates impairments in hippocampal synaptic plasticity induced by amyloid β. J Neurosci. 2014;34(36):12230–8.CrossRefPubMedPubMedCentral
124.
go back to reference Chen Y, Zhou K, Wang R, Liu Y, Kwak YD, Ma T, et al. Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer's amyloid peptides via up-regulating BACE1 transcription. Proc Natl Acad Sci U S A. 2009;106(10):3907–12.CrossRefPubMedPubMedCentral Chen Y, Zhou K, Wang R, Liu Y, Kwak YD, Ma T, et al. Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer's amyloid peptides via up-regulating BACE1 transcription. Proc Natl Acad Sci U S A. 2009;106(10):3907–12.CrossRefPubMedPubMedCentral
125.
go back to reference Picone P, Nuzzo D, Caruana L, Messina E, Barera A, Vasto S, et al. Metformin increases APP expression and processing via oxidative stress, mitochondrial dysfunction and NF-κB activation: use of insulin to attenuate metformin's effect. Biochim Biophys Acta. 2015;1853(5):1046–59.CrossRefPubMed Picone P, Nuzzo D, Caruana L, Messina E, Barera A, Vasto S, et al. Metformin increases APP expression and processing via oxidative stress, mitochondrial dysfunction and NF-κB activation: use of insulin to attenuate metformin's effect. Biochim Biophys Acta. 2015;1853(5):1046–59.CrossRefPubMed
126.
go back to reference Son SM, Shin HJ, Byun J, Kook SY, Moon M, Chang YJ, et al. Metformin facilitates amyloid-β generation by β- and γ-secretases via autophagy activation. J Alzheimers Dis. 2016;51(4):1197–208.CrossRefPubMed Son SM, Shin HJ, Byun J, Kook SY, Moon M, Chang YJ, et al. Metformin facilitates amyloid-β generation by β- and γ-secretases via autophagy activation. J Alzheimers Dis. 2016;51(4):1197–208.CrossRefPubMed
127.
go back to reference de Wet H, Proks P. Molecular action of sulphonylureas on KATP channels: a real partnership between drugs and nucleotides. Biochem Soc Trans. 2015;43(5):901–7.CrossRefPubMedPubMedCentral de Wet H, Proks P. Molecular action of sulphonylureas on KATP channels: a real partnership between drugs and nucleotides. Biochem Soc Trans. 2015;43(5):901–7.CrossRefPubMedPubMedCentral
128.
go back to reference Betourne A, Bertholet AM, Labroue E, Halley H, Sun HS, Lorsignol A, et al. Involvement of hippocampal CA3 K (ATP) channels in contextual memory. Neuropharmacology. 2009;56(3):615–25.CrossRefPubMed Betourne A, Bertholet AM, Labroue E, Halley H, Sun HS, Lorsignol A, et al. Involvement of hippocampal CA3 K (ATP) channels in contextual memory. Neuropharmacology. 2009;56(3):615–25.CrossRefPubMed
129.
go back to reference Ghelardini C, Galeotti N, Bartolini A. Influence of potassium channel modulators on cognitive processes in mice. Br J Pharmacol. 1998;123(6):1079–84.CrossRefPubMedPubMedCentral Ghelardini C, Galeotti N, Bartolini A. Influence of potassium channel modulators on cognitive processes in mice. Br J Pharmacol. 1998;123(6):1079–84.CrossRefPubMedPubMedCentral
130.
go back to reference Stefani MR, Nicholson GM, Gold PE. ATP-sensitive potassium channel blockade enhances spontaneous alternation performance in the rat: a potential mechanism for glucose-mediated memory enhancement. Neuroscience. 1999;93(2):557–63.CrossRefPubMed Stefani MR, Nicholson GM, Gold PE. ATP-sensitive potassium channel blockade enhances spontaneous alternation performance in the rat: a potential mechanism for glucose-mediated memory enhancement. Neuroscience. 1999;93(2):557–63.CrossRefPubMed
131.
go back to reference Salgado-Puga K, Rodríguez-Colorado J, Prado-Alcalá RA, Peña-Ortega F. Subclinical doses of ATP-sensitive Potassium Channel modulators prevent alterations in memory and synaptic plasticity induced by amyloid-β. J Alzheimers Dis. 2017;57(1):205–26.CrossRefPubMed Salgado-Puga K, Rodríguez-Colorado J, Prado-Alcalá RA, Peña-Ortega F. Subclinical doses of ATP-sensitive Potassium Channel modulators prevent alterations in memory and synaptic plasticity induced by amyloid-β. J Alzheimers Dis. 2017;57(1):205–26.CrossRefPubMed
132.
go back to reference Liu D, Pitta M, Lee JH, Ray B, Lahiri DK, Furukawa K, et al. The KATP channel activator diazoxide ameliorates amyloid-β and tau pathologies and improves memory in the 3xTgAD mouse model of Alzheimer's disease. J Alzheimers Dis. 2010;22(2):443–57.CrossRefPubMedPubMedCentral Liu D, Pitta M, Lee JH, Ray B, Lahiri DK, Furukawa K, et al. The KATP channel activator diazoxide ameliorates amyloid-β and tau pathologies and improves memory in the 3xTgAD mouse model of Alzheimer's disease. J Alzheimers Dis. 2010;22(2):443–57.CrossRefPubMedPubMedCentral
133.
go back to reference Awad N, Gagnon M, Messier C. The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. J Clin Exp Neuropsychol. 2004;26(8):1044–80.CrossRefPubMed Awad N, Gagnon M, Messier C. The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. J Clin Exp Neuropsychol. 2004;26(8):1044–80.CrossRefPubMed
135.
go back to reference Dorn A, Bernstein HG, Rinne A, Ziegler M, Hahn HJ, Ansorge S. Insulin- and glucagonlike peptides in the brain. Anat Rec. 1983;207:69–77.CrossRefPubMed Dorn A, Bernstein HG, Rinne A, Ziegler M, Hahn HJ, Ansorge S. Insulin- and glucagonlike peptides in the brain. Anat Rec. 1983;207:69–77.CrossRefPubMed
136.
go back to reference Dorn A, Bernstein HG, Rinne A, Hahn HJ, Ziegler M. Insulin-like immunoreactivity in the human brain- a preliminary report. Histochemistry. 1982;74:293–300.CrossRefPubMed Dorn A, Bernstein HG, Rinne A, Hahn HJ, Ziegler M. Insulin-like immunoreactivity in the human brain- a preliminary report. Histochemistry. 1982;74:293–300.CrossRefPubMed
137.
go back to reference Ghasemi R, Haeri A, Dargahi L, Mohamed Z, Ahmadiani A. Insulin in the brain: sources, localization and functions. Mol Neurobiol. 2013;47:145–71.CrossRefPubMed Ghasemi R, Haeri A, Dargahi L, Mohamed Z, Ahmadiani A. Insulin in the brain: sources, localization and functions. Mol Neurobiol. 2013;47:145–71.CrossRefPubMed
138.
go back to reference Birch NP, Christie DL, Renwick AG. Proinsulin-like material in mouse foetal brain cell cultures. FEBS Lett. 1984;168:299–302.CrossRefPubMed Birch NP, Christie DL, Renwick AG. Proinsulin-like material in mouse foetal brain cell cultures. FEBS Lett. 1984;168:299–302.CrossRefPubMed
139.
go back to reference Gerozissis K. Brain insulin: Regulation, mechanisms of action and functions. Cell Mol Neurobiol. 2003;23(1):1–25.CrossRefPubMed Gerozissis K. Brain insulin: Regulation, mechanisms of action and functions. Cell Mol Neurobiol. 2003;23(1):1–25.CrossRefPubMed
140.
go back to reference Ikeda M, Dewar D, McCulloch J. High affinity hippocampal [3H]-glibenclamide binding sites are preserved in Alzheimer's disease. J Neural Transm Park Dis Dement. 1993;5(3):177–84.CrossRef Ikeda M, Dewar D, McCulloch J. High affinity hippocampal [3H]-glibenclamide binding sites are preserved in Alzheimer's disease. J Neural Transm Park Dis Dement. 1993;5(3):177–84.CrossRef
141.
go back to reference Griffith CM, Xie MX, Qiu WY, Sharp AA, Ma C, Pan A, et al. Aberrant expression of the pore-forming KATP channel subunit Kir6.2 in hippocampal reactive astrocytes in the 3xTg-AD mouse model and human Alzheimer's disease. Neuroscience. 2016;336:81–101.CrossRefPubMed Griffith CM, Xie MX, Qiu WY, Sharp AA, Ma C, Pan A, et al. Aberrant expression of the pore-forming KATP channel subunit Kir6.2 in hippocampal reactive astrocytes in the 3xTg-AD mouse model and human Alzheimer's disease. Neuroscience. 2016;336:81–101.CrossRefPubMed
142.
143.
go back to reference Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet. 2002;359(9309):824–30.CrossRefPubMed Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet. 2002;359(9309):824–30.CrossRefPubMed
144.
go back to reference Yildirim Simsir I, Soyaltin UE, Cetinkalp S. Glucagon like peptide-1 (GLP-1) likes Alzheimer's disease. Diabetes Metab Syndr. 2018;12(3):469–75.CrossRefPubMed Yildirim Simsir I, Soyaltin UE, Cetinkalp S. Glucagon like peptide-1 (GLP-1) likes Alzheimer's disease. Diabetes Metab Syndr. 2018;12(3):469–75.CrossRefPubMed
145.
go back to reference Calsolaro V, Edison P. Novel GLP-1 (glucagon-like peptide-1) analogues and insulin in the treatment for alzheimer’s disease and other neurodegenerative diseases. CNS Drugs. 2015;29(12):1023–39.CrossRefPubMed Calsolaro V, Edison P. Novel GLP-1 (glucagon-like peptide-1) analogues and insulin in the treatment for alzheimer’s disease and other neurodegenerative diseases. CNS Drugs. 2015;29(12):1023–39.CrossRefPubMed
146.
go back to reference Campbell JE, Drucker DJ. Pharmacology: physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17(6):819–37.CrossRefPubMed Campbell JE, Drucker DJ. Pharmacology: physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17(6):819–37.CrossRefPubMed
147.
go back to reference Perfetti R, Zhou J, Doyle ME, Egan JM. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old: glucose-intolerant rats. Endocrinology. 2000;141(12):4600–5.CrossRefPubMed Perfetti R, Zhou J, Doyle ME, Egan JM. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old: glucose-intolerant rats. Endocrinology. 2000;141(12):4600–5.CrossRefPubMed
148.
go back to reference McClean PL, Parthsarathy V, Faivre E, Holscher C. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J Neurosci. 2011;31(17):6587–94.CrossRefPubMedPubMedCentral McClean PL, Parthsarathy V, Faivre E, Holscher C. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J Neurosci. 2011;31(17):6587–94.CrossRefPubMedPubMedCentral
149.
go back to reference McClean PL, Holscher C. Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer’s disease. Neuropharmacology. 2014;76(Pt A):57–67.CrossRefPubMed McClean PL, Holscher C. Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer’s disease. Neuropharmacology. 2014;76(Pt A):57–67.CrossRefPubMed
150.
go back to reference McClean PL, Holscher C. Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer’s disease. Neuropharmacology. 2014;86:241–58.CrossRefPubMed McClean PL, Holscher C. Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer’s disease. Neuropharmacology. 2014;86:241–58.CrossRefPubMed
151.
go back to reference Li L, Zhang ZF, Holscher C, Gao C, Jiang YH, Liu YZ. (Val(8)) glucagon-like peptide-1 prevents tau hyperphosphorylation, impairment of spatial learning and ultra-structural cellular damage induced by streptozotocin in rat brains. Eur J Pharmacol. 2012;674(2–3):280–6.CrossRefPubMed Li L, Zhang ZF, Holscher C, Gao C, Jiang YH, Liu YZ. (Val(8)) glucagon-like peptide-1 prevents tau hyperphosphorylation, impairment of spatial learning and ultra-structural cellular damage induced by streptozotocin in rat brains. Eur J Pharmacol. 2012;674(2–3):280–6.CrossRefPubMed
152.
go back to reference Hansen HH, Fabricius K, Barkholt P, Niehoff ML, Morley JE, Jelsing J, et al. The GLP-1 receptor agonist liraglutide improves memory function and increases hippocampal CA1 neuronal numbers in a senescence-accelerated mouse model of Alzheimer’s disease. J Alzheimers Dis. 2015;46(4):877–88.CrossRefPubMedPubMedCentral Hansen HH, Fabricius K, Barkholt P, Niehoff ML, Morley JE, Jelsing J, et al. The GLP-1 receptor agonist liraglutide improves memory function and increases hippocampal CA1 neuronal numbers in a senescence-accelerated mouse model of Alzheimer’s disease. J Alzheimers Dis. 2015;46(4):877–88.CrossRefPubMedPubMedCentral
153.
go back to reference Gejl M, Gjedde A, Egefjord L, Moller A, Hansen SB, Vang K, et al. In alzheimer’s disease, 6-months treatment with glp-1 analog prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial. Front Aging Neurosci. 2016;8:108.CrossRefPubMedPubMedCentral Gejl M, Gjedde A, Egefjord L, Moller A, Hansen SB, Vang K, et al. In alzheimer’s disease, 6-months treatment with glp-1 analog prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial. Front Aging Neurosci. 2016;8:108.CrossRefPubMedPubMedCentral
154.
go back to reference Gradman TJ, Laws A, Thompson LW, Reaven GM. Verbal learning and/or memory improves with glycemic control in older subjects with non-insulin-dependent diabetes mellitus. J Am Geriatr Soc. 1993;41(12):1305–12.CrossRefPubMed Gradman TJ, Laws A, Thompson LW, Reaven GM. Verbal learning and/or memory improves with glycemic control in older subjects with non-insulin-dependent diabetes mellitus. J Am Geriatr Soc. 1993;41(12):1305–12.CrossRefPubMed
155.
156.
go back to reference Fewlass DC, Noboa K, Pi-Sunyer FX, Johnston JM, Yan SD, Tezapsidis N. Obesity-related leptin regulates Alzheimer's Abeta. FASEB J. 2004;18:1870–8.CrossRefPubMed Fewlass DC, Noboa K, Pi-Sunyer FX, Johnston JM, Yan SD, Tezapsidis N. Obesity-related leptin regulates Alzheimer's Abeta. FASEB J. 2004;18:1870–8.CrossRefPubMed
157.
go back to reference Greco SJ, Sarkar S, Johnston JM, Zhu X, Su B, Casadesus G, et al. Leptin reduces Alzheimer's disease-related tau phosphorylation in neuronal cells. Biochem Biophys Res Commun. 2008;376:536–41.CrossRefPubMedPubMedCentral Greco SJ, Sarkar S, Johnston JM, Zhu X, Su B, Casadesus G, et al. Leptin reduces Alzheimer's disease-related tau phosphorylation in neuronal cells. Biochem Biophys Res Commun. 2008;376:536–41.CrossRefPubMedPubMedCentral
158.
go back to reference Letra L, Santana I, Seiça R. Obesity as a risk factor for Alzheimer's disease: the role of adipocytokines. Metab Brain Dis. 2014;29(3):563–8.CrossRefPubMed Letra L, Santana I, Seiça R. Obesity as a risk factor for Alzheimer's disease: the role of adipocytokines. Metab Brain Dis. 2014;29(3):563–8.CrossRefPubMed
159.
go back to reference Myers MG Jr, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab. 2010;21(11):643–51.CrossRefPubMedPubMedCentral Myers MG Jr, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab. 2010;21(11):643–51.CrossRefPubMedPubMedCentral
160.
161.
go back to reference Lieb W, Beiser AS, Vasan RS, Tan ZS, Au R, Harris TB, et al. Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging. JAMA. 2009;302:2565–72.CrossRefPubMedPubMedCentral Lieb W, Beiser AS, Vasan RS, Tan ZS, Au R, Harris TB, et al. Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging. JAMA. 2009;302:2565–72.CrossRefPubMedPubMedCentral
162.
go back to reference McGuire MJ, Ishii M. Leptin dysfunction and Alzheimer's disease: evidence from cellular, animal, and human studies. Cell Mol Neurobiol. 2016;36(2):203–17.CrossRefPubMedPubMedCentral McGuire MJ, Ishii M. Leptin dysfunction and Alzheimer's disease: evidence from cellular, animal, and human studies. Cell Mol Neurobiol. 2016;36(2):203–17.CrossRefPubMedPubMedCentral
164.
165.
166.
go back to reference Berhanu P, Perez A, Yu S. Effect of pioglitazone in combination with insulin therapy on glycaemic control, insulin dose requirement and lipid profile in patients with type 2 diabetes previously poorly controlled with combination therapy. Diabetes Obes Metab. 2007;9(4):512–20.CrossRefPubMed Berhanu P, Perez A, Yu S. Effect of pioglitazone in combination with insulin therapy on glycaemic control, insulin dose requirement and lipid profile in patients with type 2 diabetes previously poorly controlled with combination therapy. Diabetes Obes Metab. 2007;9(4):512–20.CrossRefPubMed
167.
go back to reference Reger MA, Watson GS, Frey WH 2nd, Baker LD, et al. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging. 2006;27(3):451–8 Epub 2005 Jun 16.CrossRefPubMed Reger MA, Watson GS, Frey WH 2nd, Baker LD, et al. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging. 2006;27(3):451–8 Epub 2005 Jun 16.CrossRefPubMed
168.
go back to reference Reger MA, Watson GS, Green PS. Intranasal insulin improves cognition and modulates -amyloid in early AD. Neurology. 2008;70:440–8.CrossRefPubMed Reger MA, Watson GS, Green PS. Intranasal insulin improves cognition and modulates -amyloid in early AD. Neurology. 2008;70:440–8.CrossRefPubMed
169.
go back to reference Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma β-amyloid in memory-impaired older adults. J Alzheimers Dis. 2008;13(3):323–31.CrossRefPubMedPubMedCentral Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma β-amyloid in memory-impaired older adults. J Alzheimers Dis. 2008;13(3):323–31.CrossRefPubMedPubMedCentral
170.
go back to reference Craft S, Baker LD, Montine TJ, Minoshima S, et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol. 2012;69(1):29–38.CrossRefPubMed Craft S, Baker LD, Montine TJ, Minoshima S, et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol. 2012;69(1):29–38.CrossRefPubMed
171.
go back to reference Watson GS, Cholerton BA, Reger MA, Baker LD, Plymate SR, Asthana S, et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry. 2005;13(11):950–8.PubMed Watson GS, Cholerton BA, Reger MA, Baker LD, Plymate SR, Asthana S, et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry. 2005;13(11):950–8.PubMed
172.
go back to reference Tzimopoulou S, Cunningham VJ, Nichols TE, Searle G, Bird NP, Mistry P, et al. A multi-center randomized proof-of-concept clinical trial applying [18F]FDG-PET for evaluation of metabolic therapy with rosiglitazone XR in mild to moderate Alzheimer's disease. J Alzheimers Dis. 2010;22(4):1241–56.CrossRefPubMed Tzimopoulou S, Cunningham VJ, Nichols TE, Searle G, Bird NP, Mistry P, et al. A multi-center randomized proof-of-concept clinical trial applying [18F]FDG-PET for evaluation of metabolic therapy with rosiglitazone XR in mild to moderate Alzheimer's disease. J Alzheimers Dis. 2010;22(4):1241–56.CrossRefPubMed
173.
go back to reference Risner ME, Saunders AM, Altman JF, Ormandy GC, Craft S, Foley IM, et al. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J. 2006;6(4):246–54.CrossRefPubMed Risner ME, Saunders AM, Altman JF, Ormandy GC, Craft S, Foley IM, et al. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J. 2006;6(4):246–54.CrossRefPubMed
174.
go back to reference Harrington C, Sawchak S, Chiang C, Davies J, Donovan C, Saunders AM, et al. Rosiglitazone does not improve cognition or global function when used as adjunctive therapy to AChE inhibitors in mild-to-moderate Alzheimer's disease: two phase 3 studies. Curr Alzheimer Res. 2011;8(5):592–606.CrossRefPubMed Harrington C, Sawchak S, Chiang C, Davies J, Donovan C, Saunders AM, et al. Rosiglitazone does not improve cognition or global function when used as adjunctive therapy to AChE inhibitors in mild-to-moderate Alzheimer's disease: two phase 3 studies. Curr Alzheimer Res. 2011;8(5):592–606.CrossRefPubMed
175.
go back to reference Hanyu H, Sato T, Kiuchi A, Sakurai H, Iwamoto T, et al. Pioglitazone improved cognition in a pilot study on patients with Alzheimer's disease and mild cognitive impairment with diabetes mellitus. J Am Geriatr Soc. 2009;57(1):177–9.CrossRefPubMed Hanyu H, Sato T, Kiuchi A, Sakurai H, Iwamoto T, et al. Pioglitazone improved cognition in a pilot study on patients with Alzheimer's disease and mild cognitive impairment with diabetes mellitus. J Am Geriatr Soc. 2009;57(1):177–9.CrossRefPubMed
176.
177.
go back to reference Li XL, Aou S, Oomura Y, Hori N, Fukunaga K, Hori T. Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neuroscience. 2002;113:607–15.CrossRefPubMed Li XL, Aou S, Oomura Y, Hori N, Fukunaga K, Hori T. Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neuroscience. 2002;113:607–15.CrossRefPubMed
Metadata
Title
Prospective of managing impaired brain insulin signalling in late onset Alzheimers disease with excisting diabetic drugs
Authors
Gifty M. Jojo
Gowthamarajan Kuppusamy
Kousalya Selvaraj
Uday Krishna Baruah
Publication date
01-06-2019
Publisher
Springer International Publishing
Published in
Journal of Diabetes & Metabolic Disorders / Issue 1/2019
Electronic ISSN: 2251-6581
DOI
https://doi.org/10.1007/s40200-019-00405-2

Other articles of this Issue 1/2019

Journal of Diabetes & Metabolic Disorders 1/2019 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.