Skip to main content
Top
Published in: Journal of Diabetes & Metabolic Disorders 2/2020

01-12-2020 | Insulins | Review article

Role of mitochondria in pathogenesis of type 2 diabetes mellitus

Author: Pankaj Prasun

Published in: Journal of Diabetes & Metabolic Disorders | Issue 2/2020

Login to get access

Abstract

Type 2 diabetes mellitus (T2DM) is global health problem. An estimated 425 million people in the world had diabetes in 2017. It is a major cause of morbidity and mortality worldwide. Although, pathogenesis of T2DM and its complications have been focus of medical research for long, much remains to be learned. A better understanding of molecular pathogenesis is essential for more effective preventive and therapeutic interventions. Role of mitochondria in pathogenesis of metabolic problems such as obesity, metabolic syndrome, and T2DM is the focus of many recent research studies. Mitochondrial dysfunction contributes to the oxidative stress and systemic inflammation leading to insulin resistance (IR). Mitochondria are also essential for pancreatic beta cell insulin secretion. Hence, mitochondria are important players in the pathogenesis of T2DM. In this article, pathogenesis of T2DM is examined from a mitochondrial perspective.
Literature
1.
go back to reference Walsh CT, Tu BP, Tang Y. Eight kinetically stable but thermodynamically activated molecules that power cell metabolism. Chem Rev. 2018;118:1460–94.PubMed Walsh CT, Tu BP, Tang Y. Eight kinetically stable but thermodynamically activated molecules that power cell metabolism. Chem Rev. 2018;118:1460–94.PubMed
2.
go back to reference Sun F, Zhou Q, Pang X, Xu Y, Rao Z. Revealing various coupling of electron transfer and proton pumping in mitochondrial respiratory chain. Curr Opin Struct Biol. 2013;23:526–38.PubMed Sun F, Zhou Q, Pang X, Xu Y, Rao Z. Revealing various coupling of electron transfer and proton pumping in mitochondrial respiratory chain. Curr Opin Struct Biol. 2013;23:526–38.PubMed
3.
go back to reference Maechler P, Li N, Casimir M, Vetterli L, Frigerio F, Brun T. Role of mitochondria in beta-cell function and dysfunction. Adv Exp Med Biol. 2010;654:193–216.PubMed Maechler P, Li N, Casimir M, Vetterli L, Frigerio F, Brun T. Role of mitochondria in beta-cell function and dysfunction. Adv Exp Med Biol. 2010;654:193–216.PubMed
4.
go back to reference Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.PubMed Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.PubMed
6.
go back to reference Pastor N, Weinstein H, Jamison E, Brenowitz M. A detailed interpretation of OH radical footprints in a TBP-DNA complex reveals the role of dynamics in the mechanism of sequence-specific binding. J Mol Biol. 2000;304:55–68.PubMed Pastor N, Weinstein H, Jamison E, Brenowitz M. A detailed interpretation of OH radical footprints in a TBP-DNA complex reveals the role of dynamics in the mechanism of sequence-specific binding. J Mol Biol. 2000;304:55–68.PubMed
7.
go back to reference Lipinski B. Hydroxyl radical and its scavengers in health and disease. Oxidative Med Cell Longev. 2011;2011:809696. Lipinski B. Hydroxyl radical and its scavengers in health and disease. Oxidative Med Cell Longev. 2011;2011:809696.
8.
go back to reference Kanaan GN, Harper ME. Cellular redox dysfunction in the development of cardiovascular diseases. Biochim Biophys Acta Gen Subj. 1861;2017:2822–9. Kanaan GN, Harper ME. Cellular redox dysfunction in the development of cardiovascular diseases. Biochim Biophys Acta Gen Subj. 1861;2017:2822–9.
9.
go back to reference Betteridge DJ. What is oxidative stress? Metabolism. 2000;49:3–8.PubMed Betteridge DJ. What is oxidative stress? Metabolism. 2000;49:3–8.PubMed
10.
go back to reference McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013;5:a008656.PubMedPubMedCentral McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013;5:a008656.PubMedPubMedCentral
11.
go back to reference Parsons MJ, Green DR. Mitochondria in cell death. Essays Biochem. 2010;47:99–114.PubMed Parsons MJ, Green DR. Mitochondria in cell death. Essays Biochem. 2010;47:99–114.PubMed
12.
13.
go back to reference Gulbins E, Dreschers S, Bock J. Role of mitochondria in apoptosis. Exp Physiol. 2003;88:85–90.PubMed Gulbins E, Dreschers S, Bock J. Role of mitochondria in apoptosis. Exp Physiol. 2003;88:85–90.PubMed
14.
go back to reference Armstrong JA, Cash NJ, Ouyang Y, Morton JC, Chvanov M, Latawiec D, et al. Oxidative stress alters mitochondrial bioenergetics and modifies pancreatic cell death independently of cyclophilin D, resulting in an apoptosis-to-necrosis shift. J Biol Chem. 2018;293:8032–47.PubMedPubMedCentral Armstrong JA, Cash NJ, Ouyang Y, Morton JC, Chvanov M, Latawiec D, et al. Oxidative stress alters mitochondrial bioenergetics and modifies pancreatic cell death independently of cyclophilin D, resulting in an apoptosis-to-necrosis shift. J Biol Chem. 2018;293:8032–47.PubMedPubMedCentral
15.
go back to reference Ferguson KM, Hu C, Lemmon MA. Insulin and epidermal growth factor receptor family members share parallel activation mechanisms. Protein Sci. 2020;29:1331–44.PubMed Ferguson KM, Hu C, Lemmon MA. Insulin and epidermal growth factor receptor family members share parallel activation mechanisms. Protein Sci. 2020;29:1331–44.PubMed
16.
go back to reference Kaburagi Y, Yamauchi T, Yamamoto-Honda R, et al. The mechanism of insulin-induced signal transduction mediated by the insulin receptor substrate family. Endocr J. 1999;46(Suppl):S25–34.PubMed Kaburagi Y, Yamauchi T, Yamamoto-Honda R, et al. The mechanism of insulin-induced signal transduction mediated by the insulin receptor substrate family. Endocr J. 1999;46(Suppl):S25–34.PubMed
17.
go back to reference Vanhaesebroeck B, Stephens L, Hawkins P. PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol. 2012;13:195–203.PubMed Vanhaesebroeck B, Stephens L, Hawkins P. PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol. 2012;13:195–203.PubMed
18.
go back to reference Paez J, Sellers WR. PI3K/PTEN/Akt pathway. In: Frank DA, editor. Signal transduction in Cancer. Cancer treatment and research, vol. 115. Boston: Springer; 2004. Paez J, Sellers WR. PI3K/PTEN/Akt pathway. In: Frank DA, editor. Signal transduction in Cancer. Cancer treatment and research, vol. 115. Boston: Springer; 2004.
19.
go back to reference Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014;6:a009191.PubMedPubMedCentral Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014;6:a009191.PubMedPubMedCentral
20.
go back to reference Sergi D, Naumovski N, Heilbronn LK, Abeywardena M, O'Callaghan N, Lionetti L, et al. Mitochondrial (Dys)function and insulin resistance: from pathophysiological molecular mechanisms to the impact of diet. Front Physiol. 2019;10:532.PubMedPubMedCentral Sergi D, Naumovski N, Heilbronn LK, Abeywardena M, O'Callaghan N, Lionetti L, et al. Mitochondrial (Dys)function and insulin resistance: from pathophysiological molecular mechanisms to the impact of diet. Front Physiol. 2019;10:532.PubMedPubMedCentral
22.
go back to reference Petersen MC, Shulman GI. Roles of Diacylglycerols and Ceramides in hepatic insulin resistance. Trends Pharmacol Sci. 2017;38:649–65.PubMedPubMedCentral Petersen MC, Shulman GI. Roles of Diacylglycerols and Ceramides in hepatic insulin resistance. Trends Pharmacol Sci. 2017;38:649–65.PubMedPubMedCentral
23.
go back to reference Paradies G, Petrosillo G, Pistolese M, Ruggiero FM. Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene. 2002;286:135–41.PubMed Paradies G, Petrosillo G, Pistolese M, Ruggiero FM. Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene. 2002;286:135–41.PubMed
24.
go back to reference Hurrle S, Hsu WH. The etiology of oxidative stress in insulin resistance. Biom J. 2017;40:257–62. Hurrle S, Hsu WH. The etiology of oxidative stress in insulin resistance. Biom J. 2017;40:257–62.
25.
go back to reference Mailloux RJ. An Update on Mitochondrial Reactive Oxygen Species Production. Antioxidants (Basel). 2020;9:E472. Mailloux RJ. An Update on Mitochondrial Reactive Oxygen Species Production. Antioxidants (Basel). 2020;9:E472.
26.
go back to reference Galloway CA, Lee H, Nejjar S, Jhun BS, Yu T, Hsu W, et al. Transgenic control of mitochondrial fission induces mitochondrial uncoupling and relieves diabetic oxidative stress. Diabetes. 2012;61:2093–104.PubMedPubMedCentral Galloway CA, Lee H, Nejjar S, Jhun BS, Yu T, Hsu W, et al. Transgenic control of mitochondrial fission induces mitochondrial uncoupling and relieves diabetic oxidative stress. Diabetes. 2012;61:2093–104.PubMedPubMedCentral
27.
go back to reference Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM. Mitochondrial dynamics in type 2 diabetes: pathophysiological implications. Redox Biol. 2017;11:637–45.PubMedPubMedCentral Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM. Mitochondrial dynamics in type 2 diabetes: pathophysiological implications. Redox Biol. 2017;11:637–45.PubMedPubMedCentral
28.
go back to reference Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1and NRF1. Proc Natl Acad Sci U S A. 2003;100:8466–71.PubMedPubMedCentral Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1and NRF1. Proc Natl Acad Sci U S A. 2003;100:8466–71.PubMedPubMedCentral
29.
go back to reference Burkart AM, Tan K, Warren L, Iovino S, Hughes KJ, Kahn CR, et al. Insulin resistance in human iPS cells reduces mitochondrial size and function. Sci Rep. 2016;6:22788.PubMedPubMedCentral Burkart AM, Tan K, Warren L, Iovino S, Hughes KJ, Kahn CR, et al. Insulin resistance in human iPS cells reduces mitochondrial size and function. Sci Rep. 2016;6:22788.PubMedPubMedCentral
30.
go back to reference Ma ZA, Zhao Z, Turk J. Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res. 2012;703538. Ma ZA, Zhao Z, Turk J. Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res. 2012;703538.
31.
go back to reference Fex M, Nicholas LM, Vishnu N, Medina A, Sharoyko VV, Nicholls DG, et al. The pathogenetic role of β-cell mitochondria in type 2 diabetes. J Endocrinol. 2018;236:R145–59.PubMed Fex M, Nicholas LM, Vishnu N, Medina A, Sharoyko VV, Nicholls DG, et al. The pathogenetic role of β-cell mitochondria in type 2 diabetes. J Endocrinol. 2018;236:R145–59.PubMed
32.
go back to reference Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013;9:25–53.PubMedPubMedCentral Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013;9:25–53.PubMedPubMedCentral
33.
go back to reference Brun T, Maechler P. Beta-cell mitochondrial carriers and the diabetogenic stress response. Biochim Biophys Acta. 1863;2016:2540–9. Brun T, Maechler P. Beta-cell mitochondrial carriers and the diabetogenic stress response. Biochim Biophys Acta. 1863;2016:2540–9.
34.
go back to reference Kaufman BA, Li C, Soleimanpour SA. Mitochondrial regulation of β-cell function: maintaining the momentum for insulin release. Mol Asp Med. 2015;42:91–104. Kaufman BA, Li C, Soleimanpour SA. Mitochondrial regulation of β-cell function: maintaining the momentum for insulin release. Mol Asp Med. 2015;42:91–104.
35.
go back to reference Islam MS. Stimulus-secretion coupling in Beta-cells: from basic to bedside. Adv Exp Med Biol. 2020;1131:943–63.PubMed Islam MS. Stimulus-secretion coupling in Beta-cells: from basic to bedside. Adv Exp Med Biol. 2020;1131:943–63.PubMed
36.
go back to reference MacDonald MJ, Fahien LA, Brown LJ, Hasan NM, Buss JD, Kendrick MA. Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion. Am J Physiol Endocrinol Metab. 2005;288:E1–15.PubMed MacDonald MJ, Fahien LA, Brown LJ, Hasan NM, Buss JD, Kendrick MA. Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion. Am J Physiol Endocrinol Metab. 2005;288:E1–15.PubMed
37.
go back to reference Schuit F, De Vos A, Farfari S, Moens K, Pipeleers D, Brun T, et al. Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in β cells. J Biol Chem. 1997;272:18572–9.PubMed Schuit F, De Vos A, Farfari S, Moens K, Pipeleers D, Brun T, et al. Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in β cells. J Biol Chem. 1997;272:18572–9.PubMed
38.
go back to reference Olsson AH, Yang BT, Hall E, Taneera J, Salehi A, Dekker Nitert M, et al. Decreased expression of genes involved in oxidative phosphorylation in human pancreatic islets from patients with type 2 diabetes. Eur J Endocrinol. 2011;165:589–95.PubMedPubMedCentral Olsson AH, Yang BT, Hall E, Taneera J, Salehi A, Dekker Nitert M, et al. Decreased expression of genes involved in oxidative phosphorylation in human pancreatic islets from patients with type 2 diabetes. Eur J Endocrinol. 2011;165:589–95.PubMedPubMedCentral
39.
go back to reference Tuppen HA, Blakely EL, Turnbull DM, Taylor RW. Mitochondrial DNA mutations and human disease. Biochim Biophys Acta. 2010;1797:113–28.PubMed Tuppen HA, Blakely EL, Turnbull DM, Taylor RW. Mitochondrial DNA mutations and human disease. Biochim Biophys Acta. 2010;1797:113–28.PubMed
40.
go back to reference El-Hattab AW, Almannai M, Scaglia F. MELAS. 2001 Feb 27 [updated 2018 Nov 29]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [internet]. Seattle: University of Washington, Seattle; 1993-2020. El-Hattab AW, Almannai M, Scaglia F. MELAS. 2001 Feb 27 [updated 2018 Nov 29]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [internet]. Seattle: University of Washington, Seattle; 1993-2020.
41.
go back to reference Robinson KN, Terrazas S, Giordano-Mooga S, Xavier NA. The role of heteroplasmy in the diagnosis and management of maternally inherited diabetes and defaness. Endocr Pract. 2020;26:241–6.PubMed Robinson KN, Terrazas S, Giordano-Mooga S, Xavier NA. The role of heteroplasmy in the diagnosis and management of maternally inherited diabetes and defaness. Endocr Pract. 2020;26:241–6.PubMed
42.
go back to reference McMillan RP, Stewart S, Budnick JA, et al. Quantitative variation in m.3243A > G mutation produce discrete changes in energy metabolism. Sci Rep. 2019;9:5752.PubMedPubMedCentral McMillan RP, Stewart S, Budnick JA, et al. Quantitative variation in m.3243A > G mutation produce discrete changes in energy metabolism. Sci Rep. 2019;9:5752.PubMedPubMedCentral
43.
go back to reference Karaa A, Goldstein A. The spectrum of clinical presentation, diagnosis, and management of mitochondrial forms of diabetes. Pediatr Diabetes. 2015;16:1–9.PubMed Karaa A, Goldstein A. The spectrum of clinical presentation, diagnosis, and management of mitochondrial forms of diabetes. Pediatr Diabetes. 2015;16:1–9.PubMed
44.
go back to reference Maassen JA, 'T Hart LM, Van Essen E, et al. Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes 2004; 53 Suppl 1:S103-S109.PubMed Maassen JA, 'T Hart LM, Van Essen E, et al. Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes 2004; 53 Suppl 1:S103-S109.PubMed
46.
go back to reference Archer SL. Mitochondrial dynamics--mitochondrial fission and fusion in human diseases. N Engl J Med. 2013;369:2236–51.PubMed Archer SL. Mitochondrial dynamics--mitochondrial fission and fusion in human diseases. N Engl J Med. 2013;369:2236–51.PubMed
47.
go back to reference Hasnain SZ, Prins JB, McGuckin MA. Oxidative and endoplasmic reticulum stress in β-cell dysfunction in diabetes. J Mol Endocrinol. 2016;56:R33–54.PubMed Hasnain SZ, Prins JB, McGuckin MA. Oxidative and endoplasmic reticulum stress in β-cell dysfunction in diabetes. J Mol Endocrinol. 2016;56:R33–54.PubMed
49.
go back to reference Fujii J, Homma T, Kobayashi S, Seo HG. Mutual interaction between oxidative stress and endoplasmic reticulum stress in the pathogenesis of diseases specifically focusing on non-alcoholic fatty liver disease. World J Biol Chem. 2018;9:1–15.PubMedPubMedCentral Fujii J, Homma T, Kobayashi S, Seo HG. Mutual interaction between oxidative stress and endoplasmic reticulum stress in the pathogenesis of diseases specifically focusing on non-alcoholic fatty liver disease. World J Biol Chem. 2018;9:1–15.PubMedPubMedCentral
50.
go back to reference Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal. 2014;21:396–413.PubMedPubMedCentral Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal. 2014;21:396–413.PubMedPubMedCentral
51.
go back to reference Ly LD, Xu S, Choi SK, Ha CM, Thoudam T, Cha SK, et al. Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med. 2017;49:e291.PubMedPubMedCentral Ly LD, Xu S, Choi SK, Ha CM, Thoudam T, Cha SK, et al. Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med. 2017;49:e291.PubMedPubMedCentral
53.
go back to reference Burgos-Morón E, Abad-Jiménez Z, Marañón AM, Iannantuoni F, Escribano-López I, López-Domènech S, et al. Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: the Battle continues. J Clin Med. 2019;8:1385.PubMedCentral Burgos-Morón E, Abad-Jiménez Z, Marañón AM, Iannantuoni F, Escribano-López I, López-Domènech S, et al. Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: the Battle continues. J Clin Med. 2019;8:1385.PubMedCentral
Metadata
Title
Role of mitochondria in pathogenesis of type 2 diabetes mellitus
Author
Pankaj Prasun
Publication date
01-12-2020
Publisher
Springer International Publishing
Published in
Journal of Diabetes & Metabolic Disorders / Issue 2/2020
Electronic ISSN: 2251-6581
DOI
https://doi.org/10.1007/s40200-020-00679-x

Other articles of this Issue 2/2020

Journal of Diabetes & Metabolic Disorders 2/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.