Skip to main content
Top
Published in: Virology Journal 1/2023

Open Access 01-12-2023 | Influenza Virus | Review

Immune response in influenza virus infection and modulation of immune injury by viral neuraminidase

Authors: Hongyu Jiang, Zongde Zhang

Published in: Virology Journal | Issue 1/2023

Login to get access

Abstract

Influenza A viruses cause severe respiratory illnesses in humans and animals. Overreaction of the innate immune response to influenza virus infection results in hypercytokinemia, which is responsible for mortality and morbidity. The influenza A virus surface glycoprotein neuraminidase (NA) plays a vital role in viral attachment, entry, and virion release from infected cells. NA acts as a sialidase, which cleaves sialic acids from cell surface proteins and carbohydrate side chains on nascent virions. Here, we review progress in understanding the role of NA in modulating host immune response to influenza virus infection. We also discuss recent exciting findings targeting NA protein to interrupt influenza-induced immune injury.
Literature
1.
go back to reference Javanian M, Barary M, Ghebrehewet S, Koppolu V, et al. A brief review of influenza virus infection. J Med Virol. 2021;93(8):4638–46.PubMed Javanian M, Barary M, Ghebrehewet S, Koppolu V, et al. A brief review of influenza virus infection. J Med Virol. 2021;93(8):4638–46.PubMed
2.
go back to reference Gaitonde DY, Moore FC, Morgan MK. Influenza: diagnosis and treatment. Am Fam Phys. 2019;100(12):751–8. Gaitonde DY, Moore FC, Morgan MK. Influenza: diagnosis and treatment. Am Fam Phys. 2019;100(12):751–8.
3.
go back to reference Bridges CB, Kuehnert MJ, Hall CB. Transmission of influenza: implications for control in health care settings. Clin Infect Dis. 2003;37(8):1094–101.PubMed Bridges CB, Kuehnert MJ, Hall CB. Transmission of influenza: implications for control in health care settings. Clin Infect Dis. 2003;37(8):1094–101.PubMed
4.
go back to reference Tamerius J, Nelson MI, Zhou SZ, Viboud C, et al. Global influenza seasonality: reconciling patterns across temperate and tropical regions. Environ Health Perspect. 2011;119(4):439–45.PubMed Tamerius J, Nelson MI, Zhou SZ, Viboud C, et al. Global influenza seasonality: reconciling patterns across temperate and tropical regions. Environ Health Perspect. 2011;119(4):439–45.PubMed
5.
go back to reference Kalil AC, Thomas PG. Influenza virus-related critical illness: pathophysiology and epidemiology. Crit Care. 2019;23(1):258.PubMedPubMedCentral Kalil AC, Thomas PG. Influenza virus-related critical illness: pathophysiology and epidemiology. Crit Care. 2019;23(1):258.PubMedPubMedCentral
7.
go back to reference Zhai SL, Zhang H, Chen SN, Zhou X, et al. Influenza D virus in animal species in Guangdong Province, Southern China. Emerg Infect Dis. 2017;23(8):1392–6.PubMedPubMedCentral Zhai SL, Zhang H, Chen SN, Zhou X, et al. Influenza D virus in animal species in Guangdong Province, Southern China. Emerg Infect Dis. 2017;23(8):1392–6.PubMedPubMedCentral
8.
go back to reference Centers for Disease C, Prevention. Bacterial coinfections in lung tissue specimens from fatal cases of 2009 pandemic influenza A (H1N1)—United States, May-August 2009. MMWR Morb Mortal Wkly Rep. 2009;58(38):1071–4. Centers for Disease C, Prevention. Bacterial coinfections in lung tissue specimens from fatal cases of 2009 pandemic influenza A (H1N1)—United States, May-August 2009. MMWR Morb Mortal Wkly Rep. 2009;58(38):1071–4.
9.
go back to reference Shaw ML, Stone KL, Colangelo CM, Gulcicek EE, et al. Cellular proteins in influenza virus particles. PLoS Pathog. 2008;4(6):e1000085.PubMedPubMedCentral Shaw ML, Stone KL, Colangelo CM, Gulcicek EE, et al. Cellular proteins in influenza virus particles. PLoS Pathog. 2008;4(6):e1000085.PubMedPubMedCentral
10.
go back to reference Hutchinson EC, Charles PD, Hester SS, Thomas B, et al. Conserved and host-specific features of influenza virion architecture. Nat Commun. 2014;5:4816.PubMed Hutchinson EC, Charles PD, Hester SS, Thomas B, et al. Conserved and host-specific features of influenza virion architecture. Nat Commun. 2014;5:4816.PubMed
11.
go back to reference Tate MD, Job ER, Deng YM, Gunalan V, et al. Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses. 2014;6(3):1294–316.PubMedPubMedCentral Tate MD, Job ER, Deng YM, Gunalan V, et al. Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses. 2014;6(3):1294–316.PubMedPubMedCentral
12.
go back to reference Reading PC, Tate MD, Pickett DL, Brooks AG. Glycosylation as a target for recognition of influenza viruses by the innate immune system. Adv Exp Med Biol. 2007;598:279–92.PubMed Reading PC, Tate MD, Pickett DL, Brooks AG. Glycosylation as a target for recognition of influenza viruses by the innate immune system. Adv Exp Med Biol. 2007;598:279–92.PubMed
13.
go back to reference Tumpey TM, Maines TR, Van Hoeven N, Glaser L, et al. A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science. 2007;315(5812):655–9.PubMed Tumpey TM, Maines TR, Van Hoeven N, Glaser L, et al. A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science. 2007;315(5812):655–9.PubMed
14.
go back to reference McCrone JT, Woods RJ, Martin ET, Malosh RE, et al. Stochastic processes constrain the within and between host evolution of influenza virus. Elife. 2018;7:e35962.PubMedPubMedCentral McCrone JT, Woods RJ, Martin ET, Malosh RE, et al. Stochastic processes constrain the within and between host evolution of influenza virus. Elife. 2018;7:e35962.PubMedPubMedCentral
15.
go back to reference Dadonaite B, Gilbertson B, Knight ML, Trifkovic S, et al. The structure of the influenza A virus genome. Nat Microbiol. 2019;4(11):1781–9.PubMedPubMedCentral Dadonaite B, Gilbertson B, Knight ML, Trifkovic S, et al. The structure of the influenza A virus genome. Nat Microbiol. 2019;4(11):1781–9.PubMedPubMedCentral
16.
go back to reference Sanders CJ, Vogel P, McClaren JL, Bajracharya R, et al. Compromised respiratory function in lethal influenza infection is characterized by the depletion of type I alveolar epithelial cells beyond threshold levels. Am J Physiol Lung Cell Mol Physiol. 2013;304(7):L481–8.PubMedPubMedCentral Sanders CJ, Vogel P, McClaren JL, Bajracharya R, et al. Compromised respiratory function in lethal influenza infection is characterized by the depletion of type I alveolar epithelial cells beyond threshold levels. Am J Physiol Lung Cell Mol Physiol. 2013;304(7):L481–8.PubMedPubMedCentral
17.
go back to reference Short KR, Kroeze E, Fouchier RAM, Kuiken T. Pathogenesis of influenza-induced acute respiratory distress syndrome. Lancet Infect Dis. 2014;14(1):57–69.PubMed Short KR, Kroeze E, Fouchier RAM, Kuiken T. Pathogenesis of influenza-induced acute respiratory distress syndrome. Lancet Infect Dis. 2014;14(1):57–69.PubMed
18.
go back to reference Rust MJ, Lakadamyali M, Zhang F, Zhuang X. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol. 2004;11(6):567–73.PubMedPubMedCentral Rust MJ, Lakadamyali M, Zhang F, Zhuang X. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol. 2004;11(6):567–73.PubMedPubMedCentral
19.
go back to reference Rossman JS, Lamb RA. Influenza virus assembly and budding. Virology. 2011;411(2):229–36.PubMed Rossman JS, Lamb RA. Influenza virus assembly and budding. Virology. 2011;411(2):229–36.PubMed
20.
go back to reference Ohuchi M, Asaoka N, Sakai T, Ohuchi R. Roles of neuraminidase in the initial stage of influenza virus infection. Microbes Infect. 2006;8(5):1287–93.PubMed Ohuchi M, Asaoka N, Sakai T, Ohuchi R. Roles of neuraminidase in the initial stage of influenza virus infection. Microbes Infect. 2006;8(5):1287–93.PubMed
21.
go back to reference McAuley JL, Gilbertson BP, Trifkovic S, Brown LE, et al. Influenza virus neuraminidase structure and functions. Front Microbiol. 2019;10:39.PubMedPubMedCentral McAuley JL, Gilbertson BP, Trifkovic S, Brown LE, et al. Influenza virus neuraminidase structure and functions. Front Microbiol. 2019;10:39.PubMedPubMedCentral
22.
go back to reference Brown EG. Influenza virus genetics. Biomed Pharmacother. 2000;54(4):196–209.PubMed Brown EG. Influenza virus genetics. Biomed Pharmacother. 2000;54(4):196–209.PubMed
23.
go back to reference Li L, Dai S, Gao GF, Wang J. Lattice-translocation defects in specific crystals of the catalytic head domain of influenza neuraminidase. Acta Crystallogr D Struct Biol. 2020;76(Pt 11):1057–64.PubMed Li L, Dai S, Gao GF, Wang J. Lattice-translocation defects in specific crystals of the catalytic head domain of influenza neuraminidase. Acta Crystallogr D Struct Biol. 2020;76(Pt 11):1057–64.PubMed
24.
go back to reference Ellis D, Lederhofer J, Acton OJ, Tsybovsky Y, et al. Structure-based design of stabilized recombinant influenza neuraminidase tetramers. Nat Commun. 2022;13(1):1825.PubMedPubMedCentral Ellis D, Lederhofer J, Acton OJ, Tsybovsky Y, et al. Structure-based design of stabilized recombinant influenza neuraminidase tetramers. Nat Commun. 2022;13(1):1825.PubMedPubMedCentral
25.
go back to reference Einav T, Gentles LE, Bloom JD. SnapShot: influenza by the numbers. Cell. 2020;182(2):532-e1.PubMed Einav T, Gentles LE, Bloom JD. SnapShot: influenza by the numbers. Cell. 2020;182(2):532-e1.PubMed
26.
go back to reference Jin H, Leser GP, Zhang J, Lamb RA. Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape. EMBO J. 1997;16(6):1236–47.PubMedPubMedCentral Jin H, Leser GP, Zhang J, Lamb RA. Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape. EMBO J. 1997;16(6):1236–47.PubMedPubMedCentral
27.
go back to reference Barman S, Adhikary L, Chakrabarti AK, Bernas C, et al. Role of transmembrane domain and cytoplasmic tail amino acid sequences of influenza a virus neuraminidase in raft association and virus budding. J Virol. 2004;78(10):5258–69.PubMedPubMedCentral Barman S, Adhikary L, Chakrabarti AK, Bernas C, et al. Role of transmembrane domain and cytoplasmic tail amino acid sequences of influenza a virus neuraminidase in raft association and virus budding. J Virol. 2004;78(10):5258–69.PubMedPubMedCentral
28.
go back to reference Kundu A, Avalos RT, Sanderson CM, Nayak DP. Transmembrane domain of influenza virus neuraminidase, a type II protein, possesses an apical sorting signal in polarized MDCK cells. J Virol. 1996;70(9):6508–15.PubMedPubMedCentral Kundu A, Avalos RT, Sanderson CM, Nayak DP. Transmembrane domain of influenza virus neuraminidase, a type II protein, possesses an apical sorting signal in polarized MDCK cells. J Virol. 1996;70(9):6508–15.PubMedPubMedCentral
29.
go back to reference Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–80.PubMed Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–80.PubMed
30.
go back to reference Moller S, Croning MD, Apweiler R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics. 2001;17(7):646–53.PubMed Moller S, Croning MD, Apweiler R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics. 2001;17(7):646–53.PubMed
31.
go back to reference Air GM. Influenza neuraminidase. Influenza Other Respir Viruses. 2012;6(4):245–56.PubMed Air GM. Influenza neuraminidase. Influenza Other Respir Viruses. 2012;6(4):245–56.PubMed
32.
go back to reference Kumari K, Gulati S, Smith DF, Gulati U, et al. Receptor binding specificity of recent human H3N2 influenza viruses. Virol J. 2007;4:42.PubMedPubMedCentral Kumari K, Gulati S, Smith DF, Gulati U, et al. Receptor binding specificity of recent human H3N2 influenza viruses. Virol J. 2007;4:42.PubMedPubMedCentral
33.
go back to reference Chandrasekaran A, Srinivasan A, Raman R, Viswanathan K, et al. Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nat Biotechnol. 2008;26(1):107–13.PubMed Chandrasekaran A, Srinivasan A, Raman R, Viswanathan K, et al. Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nat Biotechnol. 2008;26(1):107–13.PubMed
34.
go back to reference Sun Y, Tan Y, Wei K, Sun H, et al. Amino acid 316 of hemagglutinin and the neuraminidase stalk length influence virulence of H9N2 influenza virus in chickens and mice. J Virol. 2013;87(5):2963–8.PubMedPubMedCentral Sun Y, Tan Y, Wei K, Sun H, et al. Amino acid 316 of hemagglutinin and the neuraminidase stalk length influence virulence of H9N2 influenza virus in chickens and mice. J Virol. 2013;87(5):2963–8.PubMedPubMedCentral
35.
go back to reference Wang X, Zeng Z, Zhang Z, Zheng Y, et al. The appropriate combination of hemagglutinin and neuraminidase prompts the predominant H5N6 highly pathogenic avian influenza virus in birds. Front Microbiol. 2018;9:1088.PubMedPubMedCentral Wang X, Zeng Z, Zhang Z, Zheng Y, et al. The appropriate combination of hemagglutinin and neuraminidase prompts the predominant H5N6 highly pathogenic avian influenza virus in birds. Front Microbiol. 2018;9:1088.PubMedPubMedCentral
36.
go back to reference Burmeister WP, Ruigrok RW, Cusack S. The 2.2 A resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. EMBO J. 1992;11(1):49–56.PubMedPubMedCentral Burmeister WP, Ruigrok RW, Cusack S. The 2.2 A resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. EMBO J. 1992;11(1):49–56.PubMedPubMedCentral
37.
go back to reference Xu X, Zhu X, Dwek RA, Stevens J, et al. Structural characterization of the 1918 influenza virus H1N1 neuraminidase. J Virol. 2008;82(21):10493–501.PubMedPubMedCentral Xu X, Zhu X, Dwek RA, Stevens J, et al. Structural characterization of the 1918 influenza virus H1N1 neuraminidase. J Virol. 2008;82(21):10493–501.PubMedPubMedCentral
38.
go back to reference Russell RJ, Haire LF, Stevens DJ, Collins PJ, et al. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature. 2006;443(7107):45–9.PubMed Russell RJ, Haire LF, Stevens DJ, Collins PJ, et al. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature. 2006;443(7107):45–9.PubMed
39.
go back to reference Zhu X, Turner HL, Lang S, McBride R, et al. Structural basis of protection against H7N9 influenza virus by human anti-N9 neuraminidase antibodies. Cell Host Microbe. 2019;26(6):729–38.PubMedPubMedCentral Zhu X, Turner HL, Lang S, McBride R, et al. Structural basis of protection against H7N9 influenza virus by human anti-N9 neuraminidase antibodies. Cell Host Microbe. 2019;26(6):729–38.PubMedPubMedCentral
41.
go back to reference Wu R, Zhang H, Yang K, Liang W, et al. Multiple amino acid substitutions are involved in the adaptation of H9N2 avian influenza virus to mice. Vet Microbiol. 2009;138(1–2):85–91.PubMed Wu R, Zhang H, Yang K, Liang W, et al. Multiple amino acid substitutions are involved in the adaptation of H9N2 avian influenza virus to mice. Vet Microbiol. 2009;138(1–2):85–91.PubMed
42.
go back to reference Zhang Z, Hu S, Li Z, Wang X, et al. Multiple amino acid substitutions involved in enhanced pathogenicity of LPAI H9N2 in mice. Infect Genet Evol. 2011;11(7):1790–7.PubMed Zhang Z, Hu S, Li Z, Wang X, et al. Multiple amino acid substitutions involved in enhanced pathogenicity of LPAI H9N2 in mice. Infect Genet Evol. 2011;11(7):1790–7.PubMed
43.
go back to reference Kim H, Webster RG, Webby RJ. Influenza virus: dealing with a drifting and shifting pathogen. Viral Immunol. 2018;31(2):174–83.PubMed Kim H, Webster RG, Webby RJ. Influenza virus: dealing with a drifting and shifting pathogen. Viral Immunol. 2018;31(2):174–83.PubMed
44.
go back to reference Morens DM, Taubenberger JK. Making universal influenza vaccines: lessons from the 1918 pandemic. J Infect Dis. 2019;219(Suppl_1):S5–13.PubMed Morens DM, Taubenberger JK. Making universal influenza vaccines: lessons from the 1918 pandemic. J Infect Dis. 2019;219(Suppl_1):S5–13.PubMed
45.
go back to reference Heaton NS, Sachs D, Chen CJ, Hai R, et al. Genome-wide mutagenesis of influenza virus reveals unique plasticity of the hemagglutinin and NS1 proteins. Proc Natl Acad Sci U S A. 2013;110(50):20248–53.PubMedPubMedCentral Heaton NS, Sachs D, Chen CJ, Hai R, et al. Genome-wide mutagenesis of influenza virus reveals unique plasticity of the hemagglutinin and NS1 proteins. Proc Natl Acad Sci U S A. 2013;110(50):20248–53.PubMedPubMedCentral
46.
go back to reference Das SR, Hensley SE, Ince WL, Brooke CB, et al. Defining influenza A virus hemagglutinin antigenic drift by sequential monoclonal antibody selection. Cell Host Microbe. 2013;13(3):314–23.PubMedPubMedCentral Das SR, Hensley SE, Ince WL, Brooke CB, et al. Defining influenza A virus hemagglutinin antigenic drift by sequential monoclonal antibody selection. Cell Host Microbe. 2013;13(3):314–23.PubMedPubMedCentral
47.
go back to reference Sandbulte MR, Westgeest KB, Gao J, Xu X, et al. Discordant antigenic drift of neuraminidase and hemagglutinin in H1N1 and H3N2 influenza viruses. Proc Natl Acad Sci U S A. 2011;108(51):20748–53.PubMedPubMedCentral Sandbulte MR, Westgeest KB, Gao J, Xu X, et al. Discordant antigenic drift of neuraminidase and hemagglutinin in H1N1 and H3N2 influenza viruses. Proc Natl Acad Sci U S A. 2011;108(51):20748–53.PubMedPubMedCentral
48.
go back to reference Sandbulte MR, Gao J, Straight TM, Eichelberger MC. A miniaturized assay for influenza neuraminidase-inhibiting antibodies utilizing reverse genetics-derived antigens. Influenza Other Respir Viruses. 2009;3(5):233–40.PubMedPubMedCentral Sandbulte MR, Gao J, Straight TM, Eichelberger MC. A miniaturized assay for influenza neuraminidase-inhibiting antibodies utilizing reverse genetics-derived antigens. Influenza Other Respir Viruses. 2009;3(5):233–40.PubMedPubMedCentral
49.
go back to reference Zeller MA, Chang J, Vincent AL, Gauger PC, et al. Spatial and temporal coevolution of N2 neuraminidase and H1 and H3 hemagglutinin genes of influenza A virus in US swine. Virus Evol. 2021;7(2):veab090.PubMedPubMedCentral Zeller MA, Chang J, Vincent AL, Gauger PC, et al. Spatial and temporal coevolution of N2 neuraminidase and H1 and H3 hemagglutinin genes of influenza A virus in US swine. Virus Evol. 2021;7(2):veab090.PubMedPubMedCentral
50.
go back to reference Kirkpatrick Roubidoux E, McMahon M, Carreno JM, Capuano C, et al. Identification and characterization of novel antibody epitopes on the N2 neuraminidase. mSphere. 2021;6(1):e00958-20.PubMedPubMedCentral Kirkpatrick Roubidoux E, McMahon M, Carreno JM, Capuano C, et al. Identification and characterization of novel antibody epitopes on the N2 neuraminidase. mSphere. 2021;6(1):e00958-20.PubMedPubMedCentral
51.
go back to reference Benton DJ, Martin SR, Wharton SA, McCauley JW. Biophysical measurement of the balance of influenza a hemagglutinin and neuraminidase activities. J Biol Chem. 2015;290(10):6516–21.PubMedPubMedCentral Benton DJ, Martin SR, Wharton SA, McCauley JW. Biophysical measurement of the balance of influenza a hemagglutinin and neuraminidase activities. J Biol Chem. 2015;290(10):6516–21.PubMedPubMedCentral
52.
go back to reference Arai Y, Elgendy EM, Daidoji T, Ibrahim MS, et al. H9N2 influenza virus infections in human cells require a balance between neuraminidase sialidase activity and hemagglutinin receptor affinity. J Virol. 2020;94(18):10–1128. Arai Y, Elgendy EM, Daidoji T, Ibrahim MS, et al. H9N2 influenza virus infections in human cells require a balance between neuraminidase sialidase activity and hemagglutinin receptor affinity. J Virol. 2020;94(18):10–1128.
53.
go back to reference Benton DJ, Gamblin SJ, Rosenthal PB, Skehel JJ. Structural transitions in influenza haemagglutinin at membrane fusion pH. Nature. 2020;583(7814):150–3.PubMedPubMedCentral Benton DJ, Gamblin SJ, Rosenthal PB, Skehel JJ. Structural transitions in influenza haemagglutinin at membrane fusion pH. Nature. 2020;583(7814):150–3.PubMedPubMedCentral
54.
go back to reference de Vries E, Du W, Guo H, de Haan CAM. Influenza A virus hemagglutinin-neuraminidase-receptor balance: preserving virus motility. Trends Microbiol. 2020;28(1):57–67.PubMed de Vries E, Du W, Guo H, de Haan CAM. Influenza A virus hemagglutinin-neuraminidase-receptor balance: preserving virus motility. Trends Microbiol. 2020;28(1):57–67.PubMed
55.
go back to reference Cohen M, Zhang XQ, Senaati HP, Chen HW, et al. Influenza A penetrates host mucus by cleaving sialic acids with neuraminidase. Virol J. 2013;10:321.PubMedPubMedCentral Cohen M, Zhang XQ, Senaati HP, Chen HW, et al. Influenza A penetrates host mucus by cleaving sialic acids with neuraminidase. Virol J. 2013;10:321.PubMedPubMedCentral
56.
go back to reference Byrd-Leotis L, Cummings RD, Steinhauer DA. The interplay between the host receptor and influenza virus hemagglutinin and neuraminidase. Int J Mol Sci. 2017;18(7):1541.PubMedPubMedCentral Byrd-Leotis L, Cummings RD, Steinhauer DA. The interplay between the host receptor and influenza virus hemagglutinin and neuraminidase. Int J Mol Sci. 2017;18(7):1541.PubMedPubMedCentral
57.
go back to reference Creytens S, Pascha MN, Ballegeer M, Saelens X, et al. Influenza neuraminidase characteristics and potential as a vaccine target. Front Immunol. 2021;12:786617.PubMedPubMedCentral Creytens S, Pascha MN, Ballegeer M, Saelens X, et al. Influenza neuraminidase characteristics and potential as a vaccine target. Front Immunol. 2021;12:786617.PubMedPubMedCentral
58.
59.
go back to reference Julkunen I, Melen K, Nyqvist M, Pirhonen J, et al. Inflammatory responses in influenza A virus infection. Vaccine. 2000;19(Suppl 1):S32-7.PubMed Julkunen I, Melen K, Nyqvist M, Pirhonen J, et al. Inflammatory responses in influenza A virus infection. Vaccine. 2000;19(Suppl 1):S32-7.PubMed
60.
go back to reference Fitzgerald-Bocarsly P, Dai J, Singh S. Plasmacytoid dendritic cells and type I IFN: 50 years of convergent history. Cytokine Growth Factor Rev. 2008;19(1):3–19.PubMedPubMedCentral Fitzgerald-Bocarsly P, Dai J, Singh S. Plasmacytoid dendritic cells and type I IFN: 50 years of convergent history. Cytokine Growth Factor Rev. 2008;19(1):3–19.PubMedPubMedCentral
61.
go back to reference Saenz RA, Quinlivan M, Elton D, Macrae S, et al. Dynamics of influenza virus infection and pathology. J Virol. 2010;84(8):3974–83.PubMedPubMedCentral Saenz RA, Quinlivan M, Elton D, Macrae S, et al. Dynamics of influenza virus infection and pathology. J Virol. 2010;84(8):3974–83.PubMedPubMedCentral
62.
go back to reference Gu Y, Hsu AC, Pang Z, Pan H, et al. Role of the innate cytokine storm induced by the influenza A virus. Viral Immunol. 2019;32(6):244–51.PubMed Gu Y, Hsu AC, Pang Z, Pan H, et al. Role of the innate cytokine storm induced by the influenza A virus. Viral Immunol. 2019;32(6):244–51.PubMed
63.
go back to reference Liu Q, Zhou YH, Yang ZQ. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol. 2016;13(1):3–10.PubMed Liu Q, Zhou YH, Yang ZQ. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol. 2016;13(1):3–10.PubMed
64.
go back to reference Teijaro JR. The role of cytokine responses during influenza virus pathogenesis and potential therapeutic options. Curr Top Microbiol Immunol. 2015;386:3–22.PubMed Teijaro JR. The role of cytokine responses during influenza virus pathogenesis and potential therapeutic options. Curr Top Microbiol Immunol. 2015;386:3–22.PubMed
65.
66.
go back to reference Li X, Shao M, Zeng X, Qian P, et al. Signaling pathways in the regulation of cytokine release syndrome in human diseases and intervention therapy. Signal Transduct Target Ther. 2021;6(1):367.PubMedPubMedCentral Li X, Shao M, Zeng X, Qian P, et al. Signaling pathways in the regulation of cytokine release syndrome in human diseases and intervention therapy. Signal Transduct Target Ther. 2021;6(1):367.PubMedPubMedCentral
68.
go back to reference Karki R, Kanneganti TD. The “cytokine storm”: molecular mechanisms and therapeutic prospects. Trends Immunol. 2021;42(8):681–705.PubMedPubMedCentral Karki R, Kanneganti TD. The “cytokine storm”: molecular mechanisms and therapeutic prospects. Trends Immunol. 2021;42(8):681–705.PubMedPubMedCentral
69.
70.
go back to reference Le VB, Schneider JG, Boergeling Y, Berri F, et al. Platelet activation and aggregation promote lung inflammation and influenza virus pathogenesis. Am J Respir Crit Care Med. 2015;191(7):804–19.PubMed Le VB, Schneider JG, Boergeling Y, Berri F, et al. Platelet activation and aggregation promote lung inflammation and influenza virus pathogenesis. Am J Respir Crit Care Med. 2015;191(7):804–19.PubMed
71.
go back to reference Joseph C, Togawa Y, Shindo N. Bacterial and viral infections associated with influenza. Influenza Other Respir Viruses. 2013;7(Suppl 2):105–13.PubMedPubMedCentral Joseph C, Togawa Y, Shindo N. Bacterial and viral infections associated with influenza. Influenza Other Respir Viruses. 2013;7(Suppl 2):105–13.PubMedPubMedCentral
72.
go back to reference Zhou Y, Fu X, Liu X, Huang C, et al. Use of corticosteroids in influenza-associated acute respiratory distress syndrome and severe pneumonia: a systemic review and meta-analysis. Sci Rep. 2020;10(1):3044.PubMedPubMedCentral Zhou Y, Fu X, Liu X, Huang C, et al. Use of corticosteroids in influenza-associated acute respiratory distress syndrome and severe pneumonia: a systemic review and meta-analysis. Sci Rep. 2020;10(1):3044.PubMedPubMedCentral
73.
go back to reference Klomp M, Ghosh S, Mohammed S, Nadeem KM. From virus to inflammation, how influenza promotes lung damage. J Leukoc Biol. 2021;110(1):115–22.PubMed Klomp M, Ghosh S, Mohammed S, Nadeem KM. From virus to inflammation, how influenza promotes lung damage. J Leukoc Biol. 2021;110(1):115–22.PubMed
74.
go back to reference Keef E, Zhang LA, Swigon D, Urbano A, et al. Discrete dynamical modeling of influenza virus infection suggests age-dependent differences in immunity. J Virol. 2017;91(23):10–1128. Keef E, Zhang LA, Swigon D, Urbano A, et al. Discrete dynamical modeling of influenza virus infection suggests age-dependent differences in immunity. J Virol. 2017;91(23):10–1128.
75.
go back to reference Tanner AR, Dorey RB, Brendish NJ, Clark TW. Influenza vaccination: protecting the most vulnerable. Eur Respir Rev. 2021;30(159):200258.PubMedPubMedCentral Tanner AR, Dorey RB, Brendish NJ, Clark TW. Influenza vaccination: protecting the most vulnerable. Eur Respir Rev. 2021;30(159):200258.PubMedPubMedCentral
76.
go back to reference Thompson WW, Shay DK, Weintraub E, Brammer L, et al. Influenza-associated hospitalizations in the United States. JAMA. 2004;292(11):1333–40.PubMed Thompson WW, Shay DK, Weintraub E, Brammer L, et al. Influenza-associated hospitalizations in the United States. JAMA. 2004;292(11):1333–40.PubMed
77.
go back to reference Jefferson T, Jones MA, Doshi P, Del Mar CB, et al. Neuraminidase inhibitors for preventing and treating influenza in adults and children. Cochrane Database Syst Rev. 2014;4:CD008965. Jefferson T, Jones MA, Doshi P, Del Mar CB, et al. Neuraminidase inhibitors for preventing and treating influenza in adults and children. Cochrane Database Syst Rev. 2014;4:CD008965.
78.
go back to reference Coates BM, Staricha KL, Koch CM, Cheng Y, et al. Inflammatory monocytes drive influenza A virus-mediated lung injury in juvenile mice. J Immunol. 2018;200(7):2391–404.PubMed Coates BM, Staricha KL, Koch CM, Cheng Y, et al. Inflammatory monocytes drive influenza A virus-mediated lung injury in juvenile mice. J Immunol. 2018;200(7):2391–404.PubMed
79.
go back to reference Jefferson T, Rivetti A, Di Pietrantonj C, Demicheli V. Vaccines for preventing influenza in healthy children. Cochrane Database Syst Rev. 2018;2:CD004879.PubMed Jefferson T, Rivetti A, Di Pietrantonj C, Demicheli V. Vaccines for preventing influenza in healthy children. Cochrane Database Syst Rev. 2018;2:CD004879.PubMed
80.
go back to reference Lim HK, Huang SXL, Chen J, Kerner G, et al. Severe influenza pneumonitis in children with inherited TLR3 deficiency. J Exp Med. 2019;216(9):2038–56.PubMedPubMedCentral Lim HK, Huang SXL, Chen J, Kerner G, et al. Severe influenza pneumonitis in children with inherited TLR3 deficiency. J Exp Med. 2019;216(9):2038–56.PubMedPubMedCentral
81.
go back to reference Hulme KD, Noye EC, Short KR, Labzin LI. Dysregulated inflammation during obesity: driving disease severity in influenza virus and SARS-CoV-2 infections. Front Immunol. 2021;12:770066.PubMedPubMedCentral Hulme KD, Noye EC, Short KR, Labzin LI. Dysregulated inflammation during obesity: driving disease severity in influenza virus and SARS-CoV-2 infections. Front Immunol. 2021;12:770066.PubMedPubMedCentral
82.
83.
go back to reference Shaikh S, Haas K, Beck M, Teague H. The effects of diet-induced obesity on B cell function. Clin Exp Immunol. 2015;179(1):90–9.PubMed Shaikh S, Haas K, Beck M, Teague H. The effects of diet-induced obesity on B cell function. Clin Exp Immunol. 2015;179(1):90–9.PubMed
84.
go back to reference Bhattacharya I, Ghayor C, Perez Dominguez A, Weber FE. From influenza virus to novel corona virus (SARS-CoV-2)—the contribution of obesity. Front Endocrinol (Lausanne). 2020;11:556962.PubMed Bhattacharya I, Ghayor C, Perez Dominguez A, Weber FE. From influenza virus to novel corona virus (SARS-CoV-2)—the contribution of obesity. Front Endocrinol (Lausanne). 2020;11:556962.PubMed
85.
go back to reference Brooke CB, Ince WL, Wrammert J, Ahmed R, et al. Most influenza a virions fail to express at least one essential viral protein. J Virol. 2013;87(6):3155–62.PubMedPubMedCentral Brooke CB, Ince WL, Wrammert J, Ahmed R, et al. Most influenza a virions fail to express at least one essential viral protein. J Virol. 2013;87(6):3155–62.PubMedPubMedCentral
86.
go back to reference Kosik I, Yewdell JW. Influenza hemagglutinin and neuraminidase: Yin(–)Yang Proteins coevolving to thwart immunity. Viruses. 2019;11(4):346.PubMedPubMedCentral Kosik I, Yewdell JW. Influenza hemagglutinin and neuraminidase: Yin(–)Yang Proteins coevolving to thwart immunity. Viruses. 2019;11(4):346.PubMedPubMedCentral
87.
go back to reference McCraw DM, Gallagher JR, Torian U, Myers ML, et al. Structural analysis of influenza vaccine virus-like particles reveals a multicomponent organization. Sci Rep. 2018;8(1):10342.PubMedPubMedCentral McCraw DM, Gallagher JR, Torian U, Myers ML, et al. Structural analysis of influenza vaccine virus-like particles reveals a multicomponent organization. Sci Rep. 2018;8(1):10342.PubMedPubMedCentral
88.
go back to reference Smith BJ, Huyton T, Joosten RP, McKimm-Breschkin JL, et al. Structure of a calcium-deficient form of influenza virus neuraminidase: implications for substrate binding. Acta Crystallogr D Biol Crystallogr. 2006;62(Pt 9):947–52.PubMed Smith BJ, Huyton T, Joosten RP, McKimm-Breschkin JL, et al. Structure of a calcium-deficient form of influenza virus neuraminidase: implications for substrate binding. Acta Crystallogr D Biol Crystallogr. 2006;62(Pt 9):947–52.PubMed
89.
go back to reference Long JS, Mistry B, Haslam SM, Barclay WS. Host and viral determinants of influenza A virus species specificity. Nat Rev Microbiol. 2019;17(2):67–81.PubMed Long JS, Mistry B, Haslam SM, Barclay WS. Host and viral determinants of influenza A virus species specificity. Nat Rev Microbiol. 2019;17(2):67–81.PubMed
90.
go back to reference Li N, Parrish M, Chan TK, Yin L, et al. Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration. Cell Mol Life Sci. 2015;72(15):2973–88.PubMedPubMedCentral Li N, Parrish M, Chan TK, Yin L, et al. Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration. Cell Mol Life Sci. 2015;72(15):2973–88.PubMedPubMedCentral
91.
go back to reference Yip TF, Selim ASM, Lian I, Lee SM. Advancements in host-based interventions for influenza treatment. Front Immunol. 2018;9:1547.PubMedPubMedCentral Yip TF, Selim ASM, Lian I, Lee SM. Advancements in host-based interventions for influenza treatment. Front Immunol. 2018;9:1547.PubMedPubMedCentral
92.
go back to reference Martin BE, Harris JD, Sun J, Koelle K, et al. Cellular co-infection can modulate the efficiency of influenza A virus production and shape the interferon response. PLoS Pathog. 2020;16(10):e1008974.PubMedPubMedCentral Martin BE, Harris JD, Sun J, Koelle K, et al. Cellular co-infection can modulate the efficiency of influenza A virus production and shape the interferon response. PLoS Pathog. 2020;16(10):e1008974.PubMedPubMedCentral
93.
go back to reference Teijaro JR, Walsh KB, Cahalan S, Fremgen DM, et al. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell. 2011;146(6):980–91.PubMedPubMedCentral Teijaro JR, Walsh KB, Cahalan S, Fremgen DM, et al. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell. 2011;146(6):980–91.PubMedPubMedCentral
94.
go back to reference Robinson KM, Kolls JK, Alcorn JF. The immunology of influenza virus-associated bacterial pneumonia. Curr Opin Immunol. 2015;34:59–67.PubMedPubMedCentral Robinson KM, Kolls JK, Alcorn JF. The immunology of influenza virus-associated bacterial pneumonia. Curr Opin Immunol. 2015;34:59–67.PubMedPubMedCentral
95.
go back to reference Gallucci RM, Sloan DK, Heck JM, Murray AR, et al. Interleukin 6 indirectly induces keratinocyte migration. J Invest Dermatol. 2004;122(3):764–72.PubMed Gallucci RM, Sloan DK, Heck JM, Murray AR, et al. Interleukin 6 indirectly induces keratinocyte migration. J Invest Dermatol. 2004;122(3):764–72.PubMed
96.
97.
go back to reference Crane MJ, Xu Y, Henry WL Jr, Gillis SP, et al. Pulmonary influenza A virus infection leads to suppression of the innate immune response to dermal injury. PLoS Pathog. 2018;14(8):e1007212.PubMedPubMedCentral Crane MJ, Xu Y, Henry WL Jr, Gillis SP, et al. Pulmonary influenza A virus infection leads to suppression of the innate immune response to dermal injury. PLoS Pathog. 2018;14(8):e1007212.PubMedPubMedCentral
98.
go back to reference Boniakowski AE, Kimball AS, Joshi A, Schaller M, et al. Murine macrophage chemokine receptor CCR2 plays a crucial role in macrophage recruitment and regulated inflammation in wound healing. Eur J Immunol. 2018;48(9):1445–55.PubMedPubMedCentral Boniakowski AE, Kimball AS, Joshi A, Schaller M, et al. Murine macrophage chemokine receptor CCR2 plays a crucial role in macrophage recruitment and regulated inflammation in wound healing. Eur J Immunol. 2018;48(9):1445–55.PubMedPubMedCentral
99.
go back to reference Voelker DR, Numata M. Phospholipid regulation of innate immunity and respiratory viral infection. J Biol Chem. 2019;294(12):4282–9.PubMedPubMedCentral Voelker DR, Numata M. Phospholipid regulation of innate immunity and respiratory viral infection. J Biol Chem. 2019;294(12):4282–9.PubMedPubMedCentral
100.
go back to reference Li N, Ren A, Wang X, Fan X, et al. Influenza viral neuraminidase primes bacterial coinfection through TGF-beta-mediated expression of host cell receptors. Proc Natl Acad Sci U S A. 2015;112(1):238–43.PubMed Li N, Ren A, Wang X, Fan X, et al. Influenza viral neuraminidase primes bacterial coinfection through TGF-beta-mediated expression of host cell receptors. Proc Natl Acad Sci U S A. 2015;112(1):238–43.PubMed
101.
go back to reference Koutsakos M, Kedzierska K, Subbarao K. Immune responses to avian influenza viruses. J Immunol. 2019;202(2):382–91.PubMed Koutsakos M, Kedzierska K, Subbarao K. Immune responses to avian influenza viruses. J Immunol. 2019;202(2):382–91.PubMed
102.
go back to reference Ma C, Li Y, Zong Y, Velkov T, et al. p21 restricts influenza A virus by perturbing the viral polymerase complex and upregulating type I interferon signaling. PLoS Pathog. 2022;18(2):e1010295.PubMedPubMedCentral Ma C, Li Y, Zong Y, Velkov T, et al. p21 restricts influenza A virus by perturbing the viral polymerase complex and upregulating type I interferon signaling. PLoS Pathog. 2022;18(2):e1010295.PubMedPubMedCentral
103.
go back to reference Liu S, Yan R, Chen B, Pan Q, et al. Influenza virus-induced robust expression of SOCS3 contributes to excessive production of IL-6. Front Immunol. 2019;10:1843.PubMedPubMedCentral Liu S, Yan R, Chen B, Pan Q, et al. Influenza virus-induced robust expression of SOCS3 contributes to excessive production of IL-6. Front Immunol. 2019;10:1843.PubMedPubMedCentral
104.
go back to reference Cyster JG. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol. 2005;23:127–59.PubMed Cyster JG. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol. 2005;23:127–59.PubMed
105.
go back to reference Walsh KB, Teijaro JR, Wilker PR, Jatzek A, et al. Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proc Natl Acad Sci U S A. 2011;108(29):12018–23.PubMedPubMedCentral Walsh KB, Teijaro JR, Wilker PR, Jatzek A, et al. Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proc Natl Acad Sci U S A. 2011;108(29):12018–23.PubMedPubMedCentral
106.
go back to reference Teijaro JR, Walsh KB, Rice S, Rosen H, et al. Mapping the innate signaling cascade essential for cytokine storm during influenza virus infection. Proc Natl Acad Sci U S A. 2014;111(10):3799–804.PubMedPubMedCentral Teijaro JR, Walsh KB, Rice S, Rosen H, et al. Mapping the innate signaling cascade essential for cytokine storm during influenza virus infection. Proc Natl Acad Sci U S A. 2014;111(10):3799–804.PubMedPubMedCentral
107.
go back to reference Smee DF, Huffman JH, Morrison AC, Barnard DL, et al. Cyclopentane neuraminidase inhibitors with potent in vitro anti-influenza virus activities. Antimicrob Agents Chemother. 2001;45(3):743–8.PubMedPubMedCentral Smee DF, Huffman JH, Morrison AC, Barnard DL, et al. Cyclopentane neuraminidase inhibitors with potent in vitro anti-influenza virus activities. Antimicrob Agents Chemother. 2001;45(3):743–8.PubMedPubMedCentral
108.
go back to reference Jia R, Zhang J, Bertagnin C, Cherukupalli S, et al. Discovery of highly potent and selective influenza virus neuraminidase inhibitors targeting 150-cavity. Eur J Med Chem. 2021;212:113097.PubMed Jia R, Zhang J, Bertagnin C, Cherukupalli S, et al. Discovery of highly potent and selective influenza virus neuraminidase inhibitors targeting 150-cavity. Eur J Med Chem. 2021;212:113097.PubMed
109.
go back to reference Wang HX, Zeng MS, Ye Y, Liu JY, et al. Antiviral activity of puerarin as potent inhibitor of influenza virus neuraminidase. Phytother Res. 2021;35(1):324–36.PubMed Wang HX, Zeng MS, Ye Y, Liu JY, et al. Antiviral activity of puerarin as potent inhibitor of influenza virus neuraminidase. Phytother Res. 2021;35(1):324–36.PubMed
111.
go back to reference Wang W, Wu J, Zhang X, Hao C, et al. Inhibition of influenza A virus infection by fucoidan targeting viral neuraminidase and cellular EGFR pathway. Sci Rep. 2017;7:40760.PubMedPubMedCentral Wang W, Wu J, Zhang X, Hao C, et al. Inhibition of influenza A virus infection by fucoidan targeting viral neuraminidase and cellular EGFR pathway. Sci Rep. 2017;7:40760.PubMedPubMedCentral
112.
go back to reference Dormitzer PR, Galli G, Castellino F, Golding H, et al. Influenza vaccine immunology. Immunol Rev. 2011;239(1):167–77.PubMed Dormitzer PR, Galli G, Castellino F, Golding H, et al. Influenza vaccine immunology. Immunol Rev. 2011;239(1):167–77.PubMed
113.
go back to reference Pliasas VC, Menne Z, Aida V, Yin JH, et al. A novel neuraminidase virus-like particle vaccine offers protection against heterologous H3N2 influenza virus infection in the porcine model. Front Immunol. 2022;13:915364.PubMedPubMedCentral Pliasas VC, Menne Z, Aida V, Yin JH, et al. A novel neuraminidase virus-like particle vaccine offers protection against heterologous H3N2 influenza virus infection in the porcine model. Front Immunol. 2022;13:915364.PubMedPubMedCentral
114.
go back to reference Kosik I, Angeletti D, Gibbs JS, Angel M, et al. Neuraminidase inhibition contributes to influenza A virus neutralization by anti-hemagglutinin stem antibodies. J Exp Med. 2019;216(2):304–16.PubMedPubMedCentral Kosik I, Angeletti D, Gibbs JS, Angel M, et al. Neuraminidase inhibition contributes to influenza A virus neutralization by anti-hemagglutinin stem antibodies. J Exp Med. 2019;216(2):304–16.PubMedPubMedCentral
115.
go back to reference Broecker F, Zheng A, Suntronwong N, Sun W, et al. Extending the stalk enhances immunogenicity of the influenza virus neuraminidase. J Virol. 2019;93(18):10–1128. Broecker F, Zheng A, Suntronwong N, Sun W, et al. Extending the stalk enhances immunogenicity of the influenza virus neuraminidase. J Virol. 2019;93(18):10–1128.
116.
go back to reference Stadlbauer D, Zhu X, McMahon M, Turner JS, et al. Broadly protective human antibodies that target the active site of influenza virus neuraminidase. Science. 2019;366(6464):499–504.PubMedPubMedCentral Stadlbauer D, Zhu X, McMahon M, Turner JS, et al. Broadly protective human antibodies that target the active site of influenza virus neuraminidase. Science. 2019;366(6464):499–504.PubMedPubMedCentral
117.
go back to reference Krammer F, Fouchier RAM, Eichelberger MC, Webby RJ, et al. NAction! How can neuraminidase-based immunity contribute to better influenza virus vaccines? MBio. 2018;9(2):10–128. Krammer F, Fouchier RAM, Eichelberger MC, Webby RJ, et al. NAction! How can neuraminidase-based immunity contribute to better influenza virus vaccines? MBio. 2018;9(2):10–128.
118.
go back to reference Eichelberger MC, Wan H. Influenza neuraminidase as a vaccine antigen. Curr Top Microbiol Immunol. 2015;386:275–99.PubMed Eichelberger MC, Wan H. Influenza neuraminidase as a vaccine antigen. Curr Top Microbiol Immunol. 2015;386:275–99.PubMed
119.
go back to reference Wang Y, Lei R, Nourmohammad A, Wu NC. Antigenic evolution of human influenza H3N2 neuraminidase is constrained by charge balancing. Elife. 2021;10:e72516.PubMedPubMedCentral Wang Y, Lei R, Nourmohammad A, Wu NC. Antigenic evolution of human influenza H3N2 neuraminidase is constrained by charge balancing. Elife. 2021;10:e72516.PubMedPubMedCentral
120.
go back to reference Liu X, Luo W, Zhang B, Lee YG, et al. Design of neuraminidase-targeted imaging and therapeutic agents for the diagnosis and treatment of influenza virus infections. Bioconjug Chem. 2021;32(8):1548–53.PubMed Liu X, Luo W, Zhang B, Lee YG, et al. Design of neuraminidase-targeted imaging and therapeutic agents for the diagnosis and treatment of influenza virus infections. Bioconjug Chem. 2021;32(8):1548–53.PubMed
121.
go back to reference Strohmeier S, Amanat F, Zhu X, McMahon M, et al. A novel recombinant influenza virus neuraminidase vaccine candidate stabilized by a measles virus phosphoprotein tetramerization domain provides robust protection from virus challenge in the mouse model. MBio. 2021;12(6):e0224121.PubMed Strohmeier S, Amanat F, Zhu X, McMahon M, et al. A novel recombinant influenza virus neuraminidase vaccine candidate stabilized by a measles virus phosphoprotein tetramerization domain provides robust protection from virus challenge in the mouse model. MBio. 2021;12(6):e0224121.PubMed
122.
go back to reference Tan J, O’Dell G, Hernandez MM, Sordillo EM, et al. Human anti-neuraminidase antibodies reduce airborne transmission of clinical influenza virus isolates in the guinea pig model. J Virol. 2022;96(2):e0142121.PubMed Tan J, O’Dell G, Hernandez MM, Sordillo EM, et al. Human anti-neuraminidase antibodies reduce airborne transmission of clinical influenza virus isolates in the guinea pig model. J Virol. 2022;96(2):e0142121.PubMed
123.
go back to reference Strohmeier S, Amanat F, Carreno JM, Krammer F. Monoclonal antibodies targeting the influenza virus N6 neuraminidase. Front Immunol. 2022;13:944907.PubMedPubMedCentral Strohmeier S, Amanat F, Carreno JM, Krammer F. Monoclonal antibodies targeting the influenza virus N6 neuraminidase. Front Immunol. 2022;13:944907.PubMedPubMedCentral
124.
go back to reference Wong SS, DeBeauchamp J, Zanin M, Sun Y, et al. H5N1 influenza vaccine induces a less robust neutralizing antibody response than seasonal trivalent and H7N9 influenza vaccines. NPJ Vaccines. 2017;2:16.PubMedPubMedCentral Wong SS, DeBeauchamp J, Zanin M, Sun Y, et al. H5N1 influenza vaccine induces a less robust neutralizing antibody response than seasonal trivalent and H7N9 influenza vaccines. NPJ Vaccines. 2017;2:16.PubMedPubMedCentral
125.
go back to reference Kirkpatrick Roubidoux E, Sano K, McMahon M, Carreno JM, et al. Novel epitopes of the influenza virus N1 neuraminidase targeted by human monoclonal antibodies. J Virol. 2022;96(9):e0033222.PubMed Kirkpatrick Roubidoux E, Sano K, McMahon M, Carreno JM, et al. Novel epitopes of the influenza virus N1 neuraminidase targeted by human monoclonal antibodies. J Virol. 2022;96(9):e0033222.PubMed
126.
go back to reference Kutkat O, Kandeil A, Moatasim Y, Elshaier Y, et al. In vitro and in vivo antiviral studies of new heteroannulated 1,2,3-triazole glycosides targeting the neuraminidase of influenza A viruses. Pharmaceuticals (Basel). 2022;15(3):351.PubMed Kutkat O, Kandeil A, Moatasim Y, Elshaier Y, et al. In vitro and in vivo antiviral studies of new heteroannulated 1,2,3-triazole glycosides targeting the neuraminidase of influenza A viruses. Pharmaceuticals (Basel). 2022;15(3):351.PubMed
127.
go back to reference Xiao M, Xu L, Lin D, Lian W, et al. Design, synthesis, and bioassay of 4-thiazolinone derivatives as influenza neuraminidase inhibitors. Eur J Med Chem. 2021;213:113161.PubMed Xiao M, Xu L, Lin D, Lian W, et al. Design, synthesis, and bioassay of 4-thiazolinone derivatives as influenza neuraminidase inhibitors. Eur J Med Chem. 2021;213:113161.PubMed
128.
go back to reference Li Z, Ju X, Silveira PA, Abadir E, et al. CD83: activation marker for antigen presenting cells and its therapeutic potential. Front Immunol. 2019;10:1312.PubMedPubMedCentral Li Z, Ju X, Silveira PA, Abadir E, et al. CD83: activation marker for antigen presenting cells and its therapeutic potential. Front Immunol. 2019;10:1312.PubMedPubMedCentral
129.
go back to reference Lechmann M, Berchtold S, Hauber J, Steinkasserer A. CD83 on dendritic cells: more than just a marker for maturation. Trends Immunol. 2002;23(6):273–5.PubMed Lechmann M, Berchtold S, Hauber J, Steinkasserer A. CD83 on dendritic cells: more than just a marker for maturation. Trends Immunol. 2002;23(6):273–5.PubMed
130.
go back to reference Scholler N, Hayden-Ledbetter M, Hellstrom KE, Hellstrom I, et al. CD83 is an I-type lectin adhesion receptor that binds monocytes and a subset of activated CD8+ T cells [corrected]. J Immunol. 2001;166(6):3865–72.PubMed Scholler N, Hayden-Ledbetter M, Hellstrom KE, Hellstrom I, et al. CD83 is an I-type lectin adhesion receptor that binds monocytes and a subset of activated CD8+ T cells [corrected]. J Immunol. 2001;166(6):3865–72.PubMed
131.
go back to reference Zhou LJ, Tedder TF. Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J Immunol. 1995;154(8):3821–35.PubMed Zhou LJ, Tedder TF. Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J Immunol. 1995;154(8):3821–35.PubMed
132.
go back to reference Breloer M, Fleischer B. CD83 regulates lymphocyte maturation, activation and homeostasis. Trends Immunol. 2008;29(4):186–94.PubMed Breloer M, Fleischer B. CD83 regulates lymphocyte maturation, activation and homeostasis. Trends Immunol. 2008;29(4):186–94.PubMed
133.
go back to reference Akauliya M, Gautam A, Maharjan S, Park BK, et al. CD83 expression regulates antibody production in response to influenza A virus infection. Virol J. 2020;17(1):194.PubMedPubMedCentral Akauliya M, Gautam A, Maharjan S, Park BK, et al. CD83 expression regulates antibody production in response to influenza A virus infection. Virol J. 2020;17(1):194.PubMedPubMedCentral
134.
go back to reference Wu Y, Mao H, Ling MT, Chow KH, et al. Successive influenza virus infection and Streptococcus pneumoniae stimulation alter human dendritic cell function. BMC Infect Dis. 2011;11:201.PubMedPubMedCentral Wu Y, Mao H, Ling MT, Chow KH, et al. Successive influenza virus infection and Streptococcus pneumoniae stimulation alter human dendritic cell function. BMC Infect Dis. 2011;11:201.PubMedPubMedCentral
135.
go back to reference Ma N, Li X, Jiang H, Dai Y, et al. Influenza virus neuraminidase engages CD83 and promotes pulmonary injury. J Virol. 2021;95(3):10–128. Ma N, Li X, Jiang H, Dai Y, et al. Influenza virus neuraminidase engages CD83 and promotes pulmonary injury. J Virol. 2021;95(3):10–128.
Metadata
Title
Immune response in influenza virus infection and modulation of immune injury by viral neuraminidase
Authors
Hongyu Jiang
Zongde Zhang
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2023
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-023-02164-2

Other articles of this Issue 1/2023

Virology Journal 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.