Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2017

Open Access 01-12-2017 | Research article

Influence of apelin-12 on troponin levels and the rate of MACE in STEMI patients

Authors: Xhevdet Krasniqi, Blerim Berisha, Masar Gashi, Dardan Koçinaj, Fisnik Jashari, Josip Vincelj

Published in: BMC Cardiovascular Disorders | Issue 1/2017

Login to get access

Abstract

Background

During acute myocardial infarction, phosphorylated TnI levels, Ca2+ sensitivity and ATPase activity are decreased in the myocardium, and the subsequent elevation in Ca2+ levels activates protease I (caplain I), leading to the proteolytic degradation of troponins. Concurrently, the levels of apelin and APJ expression are increased by limiting myocardial injury.

Methods

In this prospective observational study, 100 consecutive patients with ST-elevation acute myocardial infarction were included. Patients meeting the following criteria were included in our study: (1) continuous chest pain lasting for >30 min, (2) observation of ST-segment elevation of more than 2 mm in two adjacent leads by electrocardiography (ECG), (3) increased cardiac troponin I levels, and (4) patients who underwent reperfusion therapy. We evaluated the levels of apelin-12 and troponin I on the first and seventh days after reperfusion therapy in all patients.

Results

Apelin-12 was inversely correlated with troponin I levels (Spearman’s correlation = −0.40) with a p value <0.001. There was variability in the apelin values on the seventh day (Kruskal-Wallis test) based on major adverse cardiac events (MACE) (p = 0.012). Using ROC curve analyses, a cut-off value of >2.2 for the association of apelin with MACE was determined, and the AUC was 0.71 (95% CI, 0.58–0.84). Survival analysis using the Kaplan-Meier method showed a lower rate of MACE among patients with apelin levels >2.2 (p = 0.002), and the ROC curve analysis showed a statistically significant difference in the area under the curve (p = 0.004).

Conclusion

The influence of apelin levels on troponin levels in the acute phase of STEMI is inversely correlated, whereas in the non-acute phase, low apelin values were associated with a high rate of MACE.
Literature
1.
go back to reference Chandrasekaran B, Dar O, McDonagh T. The role of apelin in cardiovascular function and heart failure. European J Heart Fail. 2008;10(8):725–32.CrossRef Chandrasekaran B, Dar O, McDonagh T. The role of apelin in cardiovascular function and heart failure. European J Heart Fail. 2008;10(8):725–32.CrossRef
3.
go back to reference Clerico A, Emdin M. Diagnostic accuracy and prognostic relevance of the measurement of cardiac natriuretic peptides: a review. Clin Chemi. 2004;50(1):33–50.CrossRef Clerico A, Emdin M. Diagnostic accuracy and prognostic relevance of the measurement of cardiac natriuretic peptides: a review. Clin Chemi. 2004;50(1):33–50.CrossRef
4.
go back to reference Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Communs. 1998;251(2):471–6.CrossRef Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Communs. 1998;251(2):471–6.CrossRef
5.
go back to reference BF OD, Heiber M, Chan A, Heng HH, Tsui LC, et al. A human gene that shows identity with the gene encoding the angiotension receptor is located on chromosome 11. Gene. 1993;136(1–2):355–60. BF OD, Heiber M, Chan A, Heng HH, Tsui LC, et al. A human gene that shows identity with the gene encoding the angiotension receptor is located on chromosome 11. Gene. 1993;136(1–2):355–60.
6.
go back to reference Japp A, Newby D. The apelin-APJ system in heart failure: pathophysiologic relevance and therapeutic potential. Biochem Pharmacol. 2008;75(10):1882–92.CrossRefPubMed Japp A, Newby D. The apelin-APJ system in heart failure: pathophysiologic relevance and therapeutic potential. Biochem Pharmacol. 2008;75(10):1882–92.CrossRefPubMed
7.
go back to reference Szokodi I, Tavi P, Földes G, Voultilainen-Myllylä S, Ilves M, et al. Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res. 2002;91(5):434–40.CrossRefPubMed Szokodi I, Tavi P, Földes G, Voultilainen-Myllylä S, Ilves M, et al. Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res. 2002;91(5):434–40.CrossRefPubMed
9.
go back to reference Karmazyn M, Gan XT, Humphreys RA, Yoshida H, Kusumoto K. The myocardial Na(+)-H(+) exchange: structure, regulation, and its role in heart disease. Cir Res. 1999;85(9):777–86.CrossRef Karmazyn M, Gan XT, Humphreys RA, Yoshida H, Kusumoto K. The myocardial Na(+)-H(+) exchange: structure, regulation, and its role in heart disease. Cir Res. 1999;85(9):777–86.CrossRef
10.
go back to reference Ronkainen VP, Ronkainen JJ, Hänninen SL, Leskinen H, Ruas JL, et al. Hypoxia inducible factor regulates the cardiac expression and secretion of apelin. FASEB J. 2007;21(8):1821–30.CrossRefPubMed Ronkainen VP, Ronkainen JJ, Hänninen SL, Leskinen H, Ruas JL, et al. Hypoxia inducible factor regulates the cardiac expression and secretion of apelin. FASEB J. 2007;21(8):1821–30.CrossRefPubMed
11.
go back to reference Hus-Citharel A, Bodineau L, Frugière A, Joubert F, Bouby N, Llorens-Cortes C. Apelin counteracts vasopressin-induced water reabsorption via cross talk between apelin and vasopressin receptor signaling pathways in the rat collecting duct. Endocrinology. 2014;155(11):4483–93.CrossRefPubMed Hus-Citharel A, Bodineau L, Frugière A, Joubert F, Bouby N, Llorens-Cortes C. Apelin counteracts vasopressin-induced water reabsorption via cross talk between apelin and vasopressin receptor signaling pathways in the rat collecting duct. Endocrinology. 2014;155(11):4483–93.CrossRefPubMed
12.
go back to reference Taheri S, Murphy K, Cohen M, Sujkovic E, Kennedy A, et al. The effects of centrally administered apelin-13 on food intake, water intake and pituitary hormone release in rats. Bioch Biophys Res Commnun. 2002;291(5):1208–12.CrossRef Taheri S, Murphy K, Cohen M, Sujkovic E, Kennedy A, et al. The effects of centrally administered apelin-13 on food intake, water intake and pituitary hormone release in rats. Bioch Biophys Res Commnun. 2002;291(5):1208–12.CrossRef
13.
go back to reference Zhang Z, Yu B, Tao GZ. Apelin protects against cardiomyocytes apoptosis induced by glucose deprivation. Chin Med J. 2009;122(19):2360–5.PubMed Zhang Z, Yu B, Tao GZ. Apelin protects against cardiomyocytes apoptosis induced by glucose deprivation. Chin Med J. 2009;122(19):2360–5.PubMed
14.
go back to reference Pang H, Han B, Li ZY, Fu Q. Identification of molecular markers in patients with hypertensive heart disease accompanied with coronary artery disease. Genet Mol Res. 2015;14(1):93–100.CrossRefPubMed Pang H, Han B, Li ZY, Fu Q. Identification of molecular markers in patients with hypertensive heart disease accompanied with coronary artery disease. Genet Mol Res. 2015;14(1):93–100.CrossRefPubMed
15.
go back to reference Gonzalez M, Porterfield C, Eilen D, Marzouq RA, Patel HR, et al. Quartiles of peak troponin are associated with long-term risk of death in type 1 and STEMI, but not in type 2 or NSTEMI patients. Clin Cardiol. 2009;32(10):575–83.CrossRefPubMed Gonzalez M, Porterfield C, Eilen D, Marzouq RA, Patel HR, et al. Quartiles of peak troponin are associated with long-term risk of death in type 1 and STEMI, but not in type 2 or NSTEMI patients. Clin Cardiol. 2009;32(10):575–83.CrossRefPubMed
16.
go back to reference Polanczyk C, Lee T, Cook E, Walls R, Wybenga D, et al. Cardiac troponin I as a predictor of major cardiac events in emergency department patients with acute chest pain. J Am Coll Cardiol. 1998;32(1):8–14.CrossRefPubMed Polanczyk C, Lee T, Cook E, Walls R, Wybenga D, et al. Cardiac troponin I as a predictor of major cardiac events in emergency department patients with acute chest pain. J Am Coll Cardiol. 1998;32(1):8–14.CrossRefPubMed
17.
go back to reference Hall TS, Hallén J, Krucoff MW, Roe MT, Brennan DM, et al. Cardiac troponin I for prediction of clinical outcomes and cardiac function through 3-month follow-up after primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Am Heart J. 2015;169(2):257–65.CrossRefPubMed Hall TS, Hallén J, Krucoff MW, Roe MT, Brennan DM, et al. Cardiac troponin I for prediction of clinical outcomes and cardiac function through 3-month follow-up after primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Am Heart J. 2015;169(2):257–65.CrossRefPubMed
18.
go back to reference Keller T, Zeller T, Peetz D, Tzikas S, Roth A, et al. Sensitive troponin I assay in early diagnosis of acute myocardial infarction. N Engl J Med. 2009;361(9):868–77.CrossRefPubMed Keller T, Zeller T, Peetz D, Tzikas S, Roth A, et al. Sensitive troponin I assay in early diagnosis of acute myocardial infarction. N Engl J Med. 2009;361(9):868–77.CrossRefPubMed
19.
go back to reference Javed U, Aftab W, Ambrose JA, Wessel RJ, Mouanoutoua M, et al. Frequency of elevated troponin I and diagnosis of acute myocardial infarction. Am J Cardiol. 2009;104(1):9–13.CrossRefPubMed Javed U, Aftab W, Ambrose JA, Wessel RJ, Mouanoutoua M, et al. Frequency of elevated troponin I and diagnosis of acute myocardial infarction. Am J Cardiol. 2009;104(1):9–13.CrossRefPubMed
20.
go back to reference Auguardo C, Scalise F, Manfredi M, Casali V, Novelli E, et al. The prognostic role of troponin I elevation after elective percutaneous coronary intervention. J Cardiovasc Med (Hagerstown). 2015;16(3):149–55.CrossRef Auguardo C, Scalise F, Manfredi M, Casali V, Novelli E, et al. The prognostic role of troponin I elevation after elective percutaneous coronary intervention. J Cardiovasc Med (Hagerstown). 2015;16(3):149–55.CrossRef
21.
go back to reference Yamamura K, Steenbergen C, Murphy E. Protein kinase C and preconditioning: role of sarcoplasmic reticulum. Am J Physiol Heart Circ Pysiol. 2005;289(6):2484–90.CrossRef Yamamura K, Steenbergen C, Murphy E. Protein kinase C and preconditioning: role of sarcoplasmic reticulum. Am J Physiol Heart Circ Pysiol. 2005;289(6):2484–90.CrossRef
22.
go back to reference Wang C, Du JF, Wu F, Wang HC. Apelin decreases the SR ca 2+ content but enhances the amplitude of [ca 2+]i transient and contractions during twitches in isolated rat cardiac myocytes. Am J Physiol Heart Circ Physiol. 2008;294(6):2540–6.CrossRef Wang C, Du JF, Wu F, Wang HC. Apelin decreases the SR ca 2+ content but enhances the amplitude of [ca 2+]i transient and contractions during twitches in isolated rat cardiac myocytes. Am J Physiol Heart Circ Physiol. 2008;294(6):2540–6.CrossRef
23.
go back to reference Farkasfalvi K, Stagg M, Coppen S, Siedlecka U, Lee J, et al. Direct effects of apelin on cardiomyocyte contractility and electrophysiology. Biochem Biophys Res Commun. 2007;357(4):889–95.CrossRefPubMed Farkasfalvi K, Stagg M, Coppen S, Siedlecka U, Lee J, et al. Direct effects of apelin on cardiomyocyte contractility and electrophysiology. Biochem Biophys Res Commun. 2007;357(4):889–95.CrossRefPubMed
24.
go back to reference Pi YQ, Zhang D, Kemnitz KR, Wang H, Walker JW. Protein kinase C and a sites on troponin I regulate myofilament ca 2+, sensitivity and ATPase activity in the mouse myocardium. J Physiol. 2003;552(Pt3):845–57.CrossRefPubMedPubMedCentral Pi YQ, Zhang D, Kemnitz KR, Wang H, Walker JW. Protein kinase C and a sites on troponin I regulate myofilament ca 2+, sensitivity and ATPase activity in the mouse myocardium. J Physiol. 2003;552(Pt3):845–57.CrossRefPubMedPubMedCentral
25.
go back to reference Bodor GS, Oakeley AE, Allen PD, Crimmins DL, Ladenson JH, et al. Troponin I phosphorylation in the normal and failing adult human heart. Circulation. 1997;96(5):1495–500.CrossRefPubMed Bodor GS, Oakeley AE, Allen PD, Crimmins DL, Ladenson JH, et al. Troponin I phosphorylation in the normal and failing adult human heart. Circulation. 1997;96(5):1495–500.CrossRefPubMed
26.
go back to reference Wijnker PJ, Murphy AM, Stienen GJ, van der Velden J. Troponin I phosphorylation in human myocardium in health and disease. Neth Heart J. 2014;22(10):463–9.CrossRefPubMedPubMedCentral Wijnker PJ, Murphy AM, Stienen GJ, van der Velden J. Troponin I phosphorylation in human myocardium in health and disease. Neth Heart J. 2014;22(10):463–9.CrossRefPubMedPubMedCentral
27.
go back to reference Gao WD, Liu Y, Mellgren R, Marban E. Intrinsic myofilament alterations underlying the decreased contractility of stunned myocardium. A consequence of ca 2+−dependent proteolysis? Circ Res. 1996;78(3):455–65.CrossRefPubMed Gao WD, Liu Y, Mellgren R, Marban E. Intrinsic myofilament alterations underlying the decreased contractility of stunned myocardium. A consequence of ca 2+−dependent proteolysis? Circ Res. 1996;78(3):455–65.CrossRefPubMed
28.
go back to reference Van der Laarse A. Hypothesis: troponin degradation is one of the factors responsible for deterioration of the left ventricular function in heart failure. Cardiovasc Res. 2002;56(1):8–14.CrossRefPubMed Van der Laarse A. Hypothesis: troponin degradation is one of the factors responsible for deterioration of the left ventricular function in heart failure. Cardiovasc Res. 2002;56(1):8–14.CrossRefPubMed
29.
go back to reference Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, et al. ESC/EACTS guidelines on myocardial revascularizations: the task force on myocardial revascularization of the European Society of Cardiology (ESC) and the European association for cardiothoracic surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Intervetions (EAPCI). Eur Heart J. 2014;35(46):2541–619.PubMed Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, et al. ESC/EACTS guidelines on myocardial revascularizations: the task force on myocardial revascularization of the European Society of Cardiology (ESC) and the European association for cardiothoracic surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Intervetions (EAPCI). Eur Heart J. 2014;35(46):2541–619.PubMed
30.
go back to reference Rastaldo R, Cappello S, Folino A, Berta GN, et al. Apelin-13 limits infarct size and improves cardiac postischemic mechanical recovery only if given after ischemia. Am J Physiol Heart Circ Physiol. 2011;300(6):2308–15.CrossRef Rastaldo R, Cappello S, Folino A, Berta GN, et al. Apelin-13 limits infarct size and improves cardiac postischemic mechanical recovery only if given after ischemia. Am J Physiol Heart Circ Physiol. 2011;300(6):2308–15.CrossRef
31.
go back to reference Japp AG, Cruden NL, Barnes G, van Gemeren N, Mathews J, et al. Acute cardiovascular effects of apelin in humans: potential role in patients with chronic heart failure. Circulation. 2010;121(16):1818–27.CrossRefPubMed Japp AG, Cruden NL, Barnes G, van Gemeren N, Mathews J, et al. Acute cardiovascular effects of apelin in humans: potential role in patients with chronic heart failure. Circulation. 2010;121(16):1818–27.CrossRefPubMed
32.
go back to reference Jianqiang P, Ping Z, Xinmin F, Zhenhua Y, Ming Z, et al. Expression of hypoxia-inducible factor 1 alpha ameliorate myocardial ischemia in rat. Biochem Biophys Res Commun. 2015;465(4):691–5.CrossRefPubMed Jianqiang P, Ping Z, Xinmin F, Zhenhua Y, Ming Z, et al. Expression of hypoxia-inducible factor 1 alpha ameliorate myocardial ischemia in rat. Biochem Biophys Res Commun. 2015;465(4):691–5.CrossRefPubMed
33.
go back to reference Cheng C, Li P, Wang YG, Bi MH, Wu PS. Study on the expression of VEGF and HIF-1α in infarct area of rats with AMI. Eur Rev Med Pharmacol Sci. 2016;20(1):115–9.PubMed Cheng C, Li P, Wang YG, Bi MH, Wu PS. Study on the expression of VEGF and HIF-1α in infarct area of rats with AMI. Eur Rev Med Pharmacol Sci. 2016;20(1):115–9.PubMed
34.
go back to reference Schroedl C, McClintock DS, Budinger GRS, Chandel NS. Hypoxic but not anoxic stabilization of HIF-1α requires mitochondrial reactive oxygen species. Am J Physiol Lung Cell Mol Physiol. 2002;283(5):L922–31.CrossRefPubMed Schroedl C, McClintock DS, Budinger GRS, Chandel NS. Hypoxic but not anoxic stabilization of HIF-1α requires mitochondrial reactive oxygen species. Am J Physiol Lung Cell Mol Physiol. 2002;283(5):L922–31.CrossRefPubMed
35.
go back to reference Vaux EC, Metzen E, Yeates KM, Ratcliffe PJ. Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood. 2001;98(2):296–302.CrossRefPubMed Vaux EC, Metzen E, Yeates KM, Ratcliffe PJ. Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood. 2001;98(2):296–302.CrossRefPubMed
36.
go back to reference Wang W, McKinnie SM, Patel VB, et al. Los of Apelin exacerbates myocardial infarction adverse reomdeling and ischaemia reperfusion injury: therapeutic potential of synthetic Apelin analogues. J Am Heart Assoc. 2013;2:e000249.PubMedPubMedCentral Wang W, McKinnie SM, Patel VB, et al. Los of Apelin exacerbates myocardial infarction adverse reomdeling and ischaemia reperfusion injury: therapeutic potential of synthetic Apelin analogues. J Am Heart Assoc. 2013;2:e000249.PubMedPubMedCentral
Metadata
Title
Influence of apelin-12 on troponin levels and the rate of MACE in STEMI patients
Authors
Xhevdet Krasniqi
Blerim Berisha
Masar Gashi
Dardan Koçinaj
Fisnik Jashari
Josip Vincelj
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2017
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-017-0633-z

Other articles of this Issue 1/2017

BMC Cardiovascular Disorders 1/2017 Go to the issue