Skip to main content
Top
Published in: Molecular Imaging and Biology 2/2019

01-04-2019 | Research Article

In Vivo Evaluation of Magnetic Targeting in Mice Colon Tumors with Ultra-Magnetic Liposomes Monitored by MRI

Authors: Caroline J. Thébault, Grégory Ramniceanu, Aude Michel, Claire Beauvineau, Christian Girard, Johanne Seguin, Nathalie Mignet, Christine Ménager, Bich-Thuy Doan

Published in: Molecular Imaging and Biology | Issue 2/2019

Login to get access

Abstract

Purpose

The development of theranostic nanocarriers as an innovative therapy against cancer has been improved by targeting properties in order to optimize the drug delivery to safely achieve its desired therapeutic effect. The aim of this paper is to evaluate the magnetic targeting (MT) efficiency of ultra-magnetic liposomes (UML) into CT26 murine colon tumor by magnetic resonance imaging (MRI).

Procedures

Dynamic susceptibility contrast MRI was applied to assess the bloodstream circulation time. A novel semi-quantitative method called %I0.25, based on the intensity distribution in T2*-weighted MRI images was developed to compare the accumulation of T2 contrast agent in tumors with or without MT. To evaluate the efficiency of magnetic targeting, the percentage of pixels under the intensity value I0.25 (I0.25 = 0.25(Imax − Imin)) was calculated on the intensity distribution histogram.

Results

This innovative method of processing MRI images showed the MT efficiency by a %I0.25 that was significantly higher in tumors using MT compared to passive accumulation, from 15.3 to 28.6 %. This methodology was validated by ex vivo methods with an iron concentration that is 3-fold higher in tumors using MT.

Conclusions

We have developed a method that allows a semi-quantitative evaluation of targeting efficiency in tumors, which could be applied to different T2 contrast agents.
Appendix
Available only for authorised users
Literature
2.
go back to reference Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003CrossRefPubMed Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003CrossRefPubMed
3.
go back to reference Lammers T, Aime S, Hennink WE, Storm G, Kiessling F (2011) Theranostic nanomedicine. Acc Chem Res 44:1029–1038CrossRefPubMed Lammers T, Aime S, Hennink WE, Storm G, Kiessling F (2011) Theranostic nanomedicine. Acc Chem Res 44:1029–1038CrossRefPubMed
4.
go back to reference Soenen SJ, Velde GV, Ketkar-Atre A, Himmelreich U, de Cuyper M (2011) Magnetoliposomes as magnetic resonance imaging contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:197–211CrossRefPubMed Soenen SJ, Velde GV, Ketkar-Atre A, Himmelreich U, de Cuyper M (2011) Magnetoliposomes as magnetic resonance imaging contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:197–211CrossRefPubMed
5.
go back to reference Pattni BS, Chupin VV, Torchilin VP (2015) New developments in liposomal drug delivery. Chem Rev 115:10938–10966CrossRefPubMed Pattni BS, Chupin VV, Torchilin VP (2015) New developments in liposomal drug delivery. Chem Rev 115:10938–10966CrossRefPubMed
6.
go back to reference Amstad E, Kohlbrecher J, Müller E et al (2011) Triggered release from liposomes through magnetic actuation of Iron oxide nanoparticle containing membranes. Nano Lett 11:1664–1670CrossRefPubMed Amstad E, Kohlbrecher J, Müller E et al (2011) Triggered release from liposomes through magnetic actuation of Iron oxide nanoparticle containing membranes. Nano Lett 11:1664–1670CrossRefPubMed
7.
go back to reference Mikhaylov G, Mikac U, Magaeva AA, Itin VI, Naiden EP, Psakhye I, Babes L, Reinheckel T, Peters C, Zeiser R, Bogyo M, Turk V, Psakhye SG, Turk B, Vasiljeva O (2011) Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nano Technol 6:594–602CrossRef Mikhaylov G, Mikac U, Magaeva AA, Itin VI, Naiden EP, Psakhye I, Babes L, Reinheckel T, Peters C, Zeiser R, Bogyo M, Turk V, Psakhye SG, Turk B, Vasiljeva O (2011) Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nano Technol 6:594–602CrossRef
8.
go back to reference Béalle G, Di Corato R, Kolosnjaj-Tabi J et al (2012) Ultra magnetic liposomes for MR imaging, targeting, and hyperthermia. Langmuir 28:11834–11842CrossRefPubMed Béalle G, Di Corato R, Kolosnjaj-Tabi J et al (2012) Ultra magnetic liposomes for MR imaging, targeting, and hyperthermia. Langmuir 28:11834–11842CrossRefPubMed
9.
go back to reference Marie H, Lemaire L, Franconi F, Lajnef S, Frapart YM, Nicolas V, Frébourg G, Trichet M, Ménager C, Lesieur S (2015) Superparamagnetic liposomes for MRI monitoring and external magnetic field-induced selective targeting of malignant brain tumors. Adv Funct Mater 25:1258–1269CrossRef Marie H, Lemaire L, Franconi F, Lajnef S, Frapart YM, Nicolas V, Frébourg G, Trichet M, Ménager C, Lesieur S (2015) Superparamagnetic liposomes for MRI monitoring and external magnetic field-induced selective targeting of malignant brain tumors. Adv Funct Mater 25:1258–1269CrossRef
10.
go back to reference Fernandez-Sanchez ME, Barbier S, Whitehead J et al (2015) Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure. Nature 523:92–95CrossRefPubMed Fernandez-Sanchez ME, Barbier S, Whitehead J et al (2015) Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure. Nature 523:92–95CrossRefPubMed
11.
go back to reference Ramniceanu G, Doan BT, Vezignol C, Graillot A, Loubat C, Mignet N, Berret JF (2016) Delayed hepatic uptake of multi-phosphonic acid poly(ethylene glycol) coated iron oxide measured by real-time magnetic resonance imaging. RSC Adv 6:63788–63800CrossRef Ramniceanu G, Doan BT, Vezignol C, Graillot A, Loubat C, Mignet N, Berret JF (2016) Delayed hepatic uptake of multi-phosphonic acid poly(ethylene glycol) coated iron oxide measured by real-time magnetic resonance imaging. RSC Adv 6:63788–63800CrossRef
12.
go back to reference Hernando D, Levin YS, Sirlin CB, Reeder SB (2014) Quantification of liver iron with MRI: state of the art and remaining challenges. J Magn Reson Imaging 40:1003–1021CrossRefPubMedPubMedCentral Hernando D, Levin YS, Sirlin CB, Reeder SB (2014) Quantification of liver iron with MRI: state of the art and remaining challenges. J Magn Reson Imaging 40:1003–1021CrossRefPubMedPubMedCentral
13.
go back to reference Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248CrossRef Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248CrossRef
14.
go back to reference Jarzyna PA, Skajaa T, Gianella A, Cormode DP, Samber DD, Dickson SD, Chen W, Griffioen AW, Fayad ZA, Mulder WJM (2009) Iron oxide core oil-in-water emulsions as a multifunctional nanoparticle platform for tumor targeting and imaging. Biomaterials 30:6947–6954CrossRefPubMedPubMedCentral Jarzyna PA, Skajaa T, Gianella A, Cormode DP, Samber DD, Dickson SD, Chen W, Griffioen AW, Fayad ZA, Mulder WJM (2009) Iron oxide core oil-in-water emulsions as a multifunctional nanoparticle platform for tumor targeting and imaging. Biomaterials 30:6947–6954CrossRefPubMedPubMedCentral
15.
go back to reference Wilhelm C, Gazeau F, Bacri JC (2002) Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur Biophys J 31:118–125CrossRefPubMed Wilhelm C, Gazeau F, Bacri JC (2002) Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur Biophys J 31:118–125CrossRefPubMed
16.
go back to reference Heijman E, de Graaf W, Niessen P, Nauerth A, van Eys G, de Graaf L, Nicolay K, Strijkers GJ (2007) Comparison between prospective and retrospective triggering for mouse cardiac MRI. NMR Biomed 20:439–447CrossRefPubMed Heijman E, de Graaf W, Niessen P, Nauerth A, van Eys G, de Graaf L, Nicolay K, Strijkers GJ (2007) Comparison between prospective and retrospective triggering for mouse cardiac MRI. NMR Biomed 20:439–447CrossRefPubMed
17.
go back to reference Bovens SM, te Boekhorst BC, den Ouden K et al (2011) Evaluation of infarcted murine heart function: comparison of prospectively triggered with self-gated MRI. NMR Biomed 24:307–315CrossRefPubMed Bovens SM, te Boekhorst BC, den Ouden K et al (2011) Evaluation of infarcted murine heart function: comparison of prospectively triggered with self-gated MRI. NMR Biomed 24:307–315CrossRefPubMed
18.
go back to reference Seguin J, Doan BT, Latorre Ossa H, Jugé L, Gennisson JL, Tanter M, Scherman D, Chabot GG, Mignet N (2013) Evaluation of nonradiative clinical imaging techniques for the longitudinal assessment of tumour growth in murine CT26 colon carcinoma. Int J Mol Imaging 2013:1–13CrossRef Seguin J, Doan BT, Latorre Ossa H, Jugé L, Gennisson JL, Tanter M, Scherman D, Chabot GG, Mignet N (2013) Evaluation of nonradiative clinical imaging techniques for the longitudinal assessment of tumour growth in murine CT26 colon carcinoma. Int J Mol Imaging 2013:1–13CrossRef
19.
go back to reference Weatherall E, Willmott GR (2015) Applications of tunable resistive pulse sensing. Analyst 140:3318–3334CrossRefPubMed Weatherall E, Willmott GR (2015) Applications of tunable resistive pulse sensing. Analyst 140:3318–3334CrossRefPubMed
20.
go back to reference Martina MS, Fortin JP, Ménager C, Clément O, Barratt G, Grabielle-Madelmont C, Gazeau F, Cabuil V, Lesieur S (2005) Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc 127:10676–10685CrossRefPubMed Martina MS, Fortin JP, Ménager C, Clément O, Barratt G, Grabielle-Madelmont C, Gazeau F, Cabuil V, Lesieur S (2005) Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc 127:10676–10685CrossRefPubMed
21.
go back to reference Bulte JWM, de Cuyper M, Despres D, Frank JA (1999) Preparation, relaxometry, and biokinetics of PEGylated magnetoliposomes as MR contrast agent. J Magn Magn Mater 194:204–209CrossRef Bulte JWM, de Cuyper M, Despres D, Frank JA (1999) Preparation, relaxometry, and biokinetics of PEGylated magnetoliposomes as MR contrast agent. J Magn Magn Mater 194:204–209CrossRef
22.
go back to reference Lorenzato C, Oerlemans C, van Elk M, Geerts WJC, Denis de Senneville B, Moonen C, Bos C (2016) MRI monitoring of nanocarrier accumulation and release using gadolinium-SPIO co-labelled thermosensitive liposomes: Gd-TSM for nanocarrier localization and monitoring of release using MRI. Contrast Media Mol Imaging 11:184–194CrossRefPubMed Lorenzato C, Oerlemans C, van Elk M, Geerts WJC, Denis de Senneville B, Moonen C, Bos C (2016) MRI monitoring of nanocarrier accumulation and release using gadolinium-SPIO co-labelled thermosensitive liposomes: Gd-TSM for nanocarrier localization and monitoring of release using MRI. Contrast Media Mol Imaging 11:184–194CrossRefPubMed
23.
go back to reference Larsen BA, Haag MA, Serkova NJ, Shroyer KR, Stoldt CR (2008) Controlled aggregation of superparamagnetic iron oxide nanoparticles for the development of molecular magnetic resonance imaging probes. Nanotechnology 19:265102CrossRefPubMed Larsen BA, Haag MA, Serkova NJ, Shroyer KR, Stoldt CR (2008) Controlled aggregation of superparamagnetic iron oxide nanoparticles for the development of molecular magnetic resonance imaging probes. Nanotechnology 19:265102CrossRefPubMed
24.
go back to reference Seguin J, Nicolazzi C, Mignet N, Scherman D, Chabot GG (2012) Vascular density and endothelial cell expression of integrin alpha v beta 3 and E-selectin in murine tumours. Tumor Biol 33:1709–1717CrossRef Seguin J, Nicolazzi C, Mignet N, Scherman D, Chabot GG (2012) Vascular density and endothelial cell expression of integrin alpha v beta 3 and E-selectin in murine tumours. Tumor Biol 33:1709–1717CrossRef
25.
go back to reference Malinge J, Géraudie B, Savel P, Nataf V, Prignon A, Provost C, Zhang Y, Ou P, Kerrou K, Talbot JN, Siaugue JM, Sollogoub M, Ménager C (2017) Liposomes for PET and MR imaging and for dual targeting (magnetic field/glucose moiety): synthesis, properties, and in vivo studies. Mol Pharm 14:406–414CrossRefPubMed Malinge J, Géraudie B, Savel P, Nataf V, Prignon A, Provost C, Zhang Y, Ou P, Kerrou K, Talbot JN, Siaugue JM, Sollogoub M, Ménager C (2017) Liposomes for PET and MR imaging and for dual targeting (magnetic field/glucose moiety): synthesis, properties, and in vivo studies. Mol Pharm 14:406–414CrossRefPubMed
26.
go back to reference Seo JW, Zhang H, Kukis DL, Meares CF, Ferrara KW (2008) A novel method to label preformed liposomes with 64Cu for positron emission tomography (PET). Imaging. Bioconjug Chem 19:2577–2584CrossRefPubMedPubMedCentral Seo JW, Zhang H, Kukis DL, Meares CF, Ferrara KW (2008) A novel method to label preformed liposomes with 64Cu for positron emission tomography (PET). Imaging. Bioconjug Chem 19:2577–2584CrossRefPubMedPubMedCentral
27.
go back to reference Petersen AL, Binderup T, Rasmussen P, Henriksen JR, Elema DR, Kjær A, Andresen TL (2011) 64Cu loaded liposomes as positron emission tomography imaging agents. Biomaterials 32:2334–2341CrossRefPubMed Petersen AL, Binderup T, Rasmussen P, Henriksen JR, Elema DR, Kjær A, Andresen TL (2011) 64Cu loaded liposomes as positron emission tomography imaging agents. Biomaterials 32:2334–2341CrossRefPubMed
28.
go back to reference Phillips WT, Goins BA, Bao A (2009) Radioactive liposomes. Wiley Interdiscip Rev Nanomed Nanobiotech 1:69–83CrossRef Phillips WT, Goins BA, Bao A (2009) Radioactive liposomes. Wiley Interdiscip Rev Nanomed Nanobiotech 1:69–83CrossRef
29.
go back to reference Klotz E, König M (1999) Perfusion measurements of the brain: using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke. Eur J Radiol 30:170–184CrossRefPubMed Klotz E, König M (1999) Perfusion measurements of the brain: using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke. Eur J Radiol 30:170–184CrossRefPubMed
30.
go back to reference Pesnel S, Akkoul S, Ledée R, Leconge R, Pillon A, Kruczynski A, Harba R, Lerondel S, le Pape A (2011) Use of an image restoration process to improve spatial resolution in bioluminescence imaging. Mol Imaging 10:446–452CrossRefPubMed Pesnel S, Akkoul S, Ledée R, Leconge R, Pillon A, Kruczynski A, Harba R, Lerondel S, le Pape A (2011) Use of an image restoration process to improve spatial resolution in bioluminescence imaging. Mol Imaging 10:446–452CrossRefPubMed
31.
go back to reference Haacke EM, Brown RW, Thompson MR, et al. (2014) Magnetic properties of tissues: theory and measurement. In: Magnetic resonance imaging: Physical Principles and Sequence Design. Ed. John Wiley & Sons. New York: Wiley-Liss, pp 741–779 Haacke EM, Brown RW, Thompson MR, et al. (2014) Magnetic properties of tissues: theory and measurement. In: Magnetic resonance imaging: Physical Principles and Sequence Design. Ed. John Wiley & Sons. New York: Wiley-Liss, pp 741–779
32.
go back to reference Oakes JM, Breen EC, Scadeng M, Tchantchou GS, Darquenne C (2014) MRI-based measurements of aerosol deposition in the lung of healthy and elastase-treated rats. J Appl Physiol 116:1561–1568CrossRefPubMedPubMedCentral Oakes JM, Breen EC, Scadeng M, Tchantchou GS, Darquenne C (2014) MRI-based measurements of aerosol deposition in the lung of healthy and elastase-treated rats. J Appl Physiol 116:1561–1568CrossRefPubMedPubMedCentral
33.
go back to reference Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, Yang VC (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29:487–496CrossRefPubMed Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, Yang VC (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29:487–496CrossRefPubMed
34.
go back to reference Melemenidis S, Jefferson A, Ruparelia N, Akhtar AM, Xie J, Allen D, Hamilton A, Larkin JR, Perez-Balderas F, Smart SC, Muschel RJ, Chen X, Sibson NR, Choudhury RP (2015) Molecular magnetic resonance imaging of angiogenesis in vivo using polyvalent cyclic RGD-Iron oxide microparticle conjugates. Theranostics 5:515–529CrossRefPubMedPubMedCentral Melemenidis S, Jefferson A, Ruparelia N, Akhtar AM, Xie J, Allen D, Hamilton A, Larkin JR, Perez-Balderas F, Smart SC, Muschel RJ, Chen X, Sibson NR, Choudhury RP (2015) Molecular magnetic resonance imaging of angiogenesis in vivo using polyvalent cyclic RGD-Iron oxide microparticle conjugates. Theranostics 5:515–529CrossRefPubMedPubMedCentral
35.
go back to reference Wang Y, Liu T (2015) Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker: QSM. Magnet Reson Med 73:82–101CrossRef Wang Y, Liu T (2015) Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker: QSM. Magnet Reson Med 73:82–101CrossRef
36.
go back to reference Schleich N, Po C, Jacobs D, Ucakar B, Gallez B, Danhier F, Préat V (2014) Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J Control Release 194:82–91CrossRefPubMed Schleich N, Po C, Jacobs D, Ucakar B, Gallez B, Danhier F, Préat V (2014) Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J Control Release 194:82–91CrossRefPubMed
37.
go back to reference Chen J, Ke X, He Z et al (2012) A MSLN-targeted multifunctional nanoimmunoliposome for MRI and targeting therapy in pancreatic cancer. Int J Nanomedicine 7:5053–5065CrossRefPubMedPubMedCentral Chen J, Ke X, He Z et al (2012) A MSLN-targeted multifunctional nanoimmunoliposome for MRI and targeting therapy in pancreatic cancer. Int J Nanomedicine 7:5053–5065CrossRefPubMedPubMedCentral
38.
go back to reference de Smet M, Heijman E, Langereis S, Hijnen NM, Grüll H (2011) Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J Control Release 150:102–110CrossRefPubMed de Smet M, Heijman E, Langereis S, Hijnen NM, Grüll H (2011) Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J Control Release 150:102–110CrossRefPubMed
39.
go back to reference Di Corato R, Béalle G, Kolosnjaj-Tabi J et al (2015) Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with Photoresponsive magnetic liposomes. ACS Nano 9:2904–2916CrossRefPubMed Di Corato R, Béalle G, Kolosnjaj-Tabi J et al (2015) Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with Photoresponsive magnetic liposomes. ACS Nano 9:2904–2916CrossRefPubMed
Metadata
Title
In Vivo Evaluation of Magnetic Targeting in Mice Colon Tumors with Ultra-Magnetic Liposomes Monitored by MRI
Authors
Caroline J. Thébault
Grégory Ramniceanu
Aude Michel
Claire Beauvineau
Christian Girard
Johanne Seguin
Nathalie Mignet
Christine Ménager
Bich-Thuy Doan
Publication date
01-04-2019
Publisher
Springer International Publishing
Published in
Molecular Imaging and Biology / Issue 2/2019
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-018-1238-3

Other articles of this Issue 2/2019

Molecular Imaging and Biology 2/2019 Go to the issue