Skip to main content
Top
Published in: Molecular Imaging and Biology 2/2019

01-04-2019 | Research Article

In Vivo Mapping and Quantification of Creatine Using Chemical Exchange Saturation Transfer Imaging in Rat Models of Epileptic Seizure

Authors: Dong-Hoon Lee, Do-Wan Lee, Jae-Im Kwon, Chul-Woong Woo, Sang-Tae Kim, Jin Seong Lee, Choong Gon Choi, Kyung Won Kim, Jeong Kon Kim, Dong-Cheol Woo

Published in: Molecular Imaging and Biology | Issue 2/2019

Login to get access

Abstract

Purpose

To evaluate signal changes in the hippocampus of epileptic seizure rat models, based on quantified creatine chemical exchange saturation transfer (CrCEST) signals.

Procedures

CEST data and 1H magnetic resonance spectroscopy (1H MRS) data were obtained for the two imaging groups: control (CTRL) and epileptic seizure-induced (ES; via kainic acid [KA] injection) groups. CrCEST signals in the hippocampal regions were quantitatively evaluated; correlations between CrCEST signals and phosphocreatine (PCr) and total creatine (tCr; PCr + Cr) concentrations, derived from the analysis of 1H MRS data, were investigated as a function of time changes (before KA injection, 3 and 5 h after KA injection).

Results

Measured CrCEST signals were exhibited significant differences between before and after KA injection in the ES group. At each time point, CrCEST signals showed significant correlations with PCr concentration (all |r| > 0.59; all P < 0.05); no significant correlations were found between CrCEST signals and tCr concentrations (all |r| < 0.22; all P > 0.05).

Conclusions

CrCEST can adequately detect changes in the concentration of Cr as a result of energy metabolism, and may serve as a potentially useful tool for diagnosis and assessment of prognosis in epilepsy.
Literature
1.
2.
go back to reference Mikati MA, Kurdit RM, Rahmeh AA et al (2004) Effects of creatine and cyclocreatine supplementation on kainate induced injury in pre-pubescent rats. Brain Inj 18:1229–1241CrossRefPubMed Mikati MA, Kurdit RM, Rahmeh AA et al (2004) Effects of creatine and cyclocreatine supplementation on kainate induced injury in pre-pubescent rats. Brain Inj 18:1229–1241CrossRefPubMed
3.
go back to reference Tokumitsu T, Mancuso A, Weinstein PR, Weiner MW, Naruse S, Maudsley AA (1997) Metabolic and pathological effects of temporal lobe epilepsy in rat brain detected by proton spectroscopy and imaging. Brain Res 744:57–67CrossRefPubMedPubMedCentral Tokumitsu T, Mancuso A, Weinstein PR, Weiner MW, Naruse S, Maudsley AA (1997) Metabolic and pathological effects of temporal lobe epilepsy in rat brain detected by proton spectroscopy and imaging. Brain Res 744:57–67CrossRefPubMedPubMedCentral
4.
go back to reference Tai XY, Bernhardt B, Thom M, Thompson P, Baxendale S, Koepp M, Bernasconi N (2018) Review: neurodegenerative processes in temporal lobe epilepsy with hippocampal sclerosis: clinical, pathological and neuroimaging evidence. Neuropathol Appl Neurobiol 44:70–90CrossRefPubMed Tai XY, Bernhardt B, Thom M, Thompson P, Baxendale S, Koepp M, Bernasconi N (2018) Review: neurodegenerative processes in temporal lobe epilepsy with hippocampal sclerosis: clinical, pathological and neuroimaging evidence. Neuropathol Appl Neurobiol 44:70–90CrossRefPubMed
6.
go back to reference Deleo F, Thom M, Concha L et al (2017) Histological and MRI markers of white matter damage in focal epilepsy. Epilepsy Res 140:29–38CrossRefPubMed Deleo F, Thom M, Concha L et al (2017) Histological and MRI markers of white matter damage in focal epilepsy. Epilepsy Res 140:29–38CrossRefPubMed
7.
go back to reference Ruber T, David B, Elger CE (2018) MRI in epilepsy: clinical standard and evolution. Curr Opin Neurol 31:223–231CrossRefPubMed Ruber T, David B, Elger CE (2018) MRI in epilepsy: clinical standard and evolution. Curr Opin Neurol 31:223–231CrossRefPubMed
8.
go back to reference Wong-Kisiel LC, Tovar Quiroga DF, Kenney-Jung DL, Witte RJ, Santana-Almansa A, Worrell GA, Britton J, Brinkmann BH (2018) Morphometric analysis on T1-weighted MRI complements visual MRI review in focal cortical dysplasia. Epilepsy Res 140:184–191CrossRefPubMed Wong-Kisiel LC, Tovar Quiroga DF, Kenney-Jung DL, Witte RJ, Santana-Almansa A, Worrell GA, Britton J, Brinkmann BH (2018) Morphometric analysis on T1-weighted MRI complements visual MRI review in focal cortical dysplasia. Epilepsy Res 140:184–191CrossRefPubMed
9.
go back to reference Fei P, Soucy JP, Obaid S et al (2018) The value of regional cerebral blood flow SPECT and FDG PET in Operculo-insular epilepsy. Clin Nucl Med 43:e67–e73CrossRefPubMed Fei P, Soucy JP, Obaid S et al (2018) The value of regional cerebral blood flow SPECT and FDG PET in Operculo-insular epilepsy. Clin Nucl Med 43:e67–e73CrossRefPubMed
10.
go back to reference Jafari-Khouzani K, Elisevich K, Karvelis KC, Soltanian-Zadeh H (2011) Quantitative multi-compartmental SPECT image analysis for lateralization of temporal lobe epilepsy. Epilepsy Res 95:35–50CrossRefPubMedPubMedCentral Jafari-Khouzani K, Elisevich K, Karvelis KC, Soltanian-Zadeh H (2011) Quantitative multi-compartmental SPECT image analysis for lateralization of temporal lobe epilepsy. Epilepsy Res 95:35–50CrossRefPubMedPubMedCentral
11.
go back to reference Long Z, Hanson DP, Mullan BP, Hunt CH, Holmes DR III, Brinkmann BH, O'Connor MK (2018) Analysis of brain SPECT images coregistered with MRI in patients with epilepsy: comparison of three methods. J Neuroimaging 28:307–312CrossRefPubMed Long Z, Hanson DP, Mullan BP, Hunt CH, Holmes DR III, Brinkmann BH, O'Connor MK (2018) Analysis of brain SPECT images coregistered with MRI in patients with epilepsy: comparison of three methods. J Neuroimaging 28:307–312CrossRefPubMed
12.
go back to reference Shiga T, Suzuki A, Sakurai K, Kurita T, Takeuchi W, Toyonaga T, Hirata K, Kobashi K, Katoh C, Kubo N, Tamaki N (2017) Dual isotope SPECT study with epilepsy patients using semiconductor SPECT system. Clin Nucl Med 42:663–668CrossRefPubMed Shiga T, Suzuki A, Sakurai K, Kurita T, Takeuchi W, Toyonaga T, Hirata K, Kobashi K, Katoh C, Kubo N, Tamaki N (2017) Dual isotope SPECT study with epilepsy patients using semiconductor SPECT system. Clin Nucl Med 42:663–668CrossRefPubMed
13.
go back to reference Calabria FF, Cascini GL, Gambardella A et al (2017) Ictal 18F-FDG PET/MRI in a patient with cortical heterotopia and focal epilepsy. Clin Nucl Med 42:768–769CrossRefPubMed Calabria FF, Cascini GL, Gambardella A et al (2017) Ictal 18F-FDG PET/MRI in a patient with cortical heterotopia and focal epilepsy. Clin Nucl Med 42:768–769CrossRefPubMed
14.
go back to reference Nardetto L, Zoccarato M, Santelli L, Tiberio I, Cecchin D, Giometto B (2017) 18F-FDG PET/MRI in cryptogenic new-onset refractory status epilepticus: a potential marker of disease location, activity and prognosis? J Neurol Sci 381:100–102CrossRefPubMed Nardetto L, Zoccarato M, Santelli L, Tiberio I, Cecchin D, Giometto B (2017) 18F-FDG PET/MRI in cryptogenic new-onset refractory status epilepticus: a potential marker of disease location, activity and prognosis? J Neurol Sci 381:100–102CrossRefPubMed
15.
go back to reference House PM, Lanz M, Holst B, Martens T, Stodieck S, Huppertz HJ (2013) Comparison of morphometric analysis based on T1-and T2-weighted MRI data for visualization of focal cortical dysplasia. Epilepsy Res 106:403–409CrossRefPubMed House PM, Lanz M, Holst B, Martens T, Stodieck S, Huppertz HJ (2013) Comparison of morphometric analysis based on T1-and T2-weighted MRI data for visualization of focal cortical dysplasia. Epilepsy Res 106:403–409CrossRefPubMed
16.
go back to reference Sone D, Sato N, Maikusa N, Ota M, Sumida K, Yokoyama K, Kimura Y, Imabayashi E, Watanabe Y, Watanabe M, Okazaki M, Onuma T, Matsuda H (2016) Automated subfield volumetric analysis of hippocampus in temporal lobe epilepsy using high-resolution T2-weighed MR imaging. Neuroimage Clin 12:57–64CrossRefPubMedPubMedCentral Sone D, Sato N, Maikusa N, Ota M, Sumida K, Yokoyama K, Kimura Y, Imabayashi E, Watanabe Y, Watanabe M, Okazaki M, Onuma T, Matsuda H (2016) Automated subfield volumetric analysis of hippocampus in temporal lobe epilepsy using high-resolution T2-weighed MR imaging. Neuroimage Clin 12:57–64CrossRefPubMedPubMedCentral
17.
go back to reference Wolf OT, Dyakin V, Patel A, Vadasz C, de Leon MJ, McEwen BS, Bulloch K (2002) Volumetric structural magnetic resonance imaging (MRI) of the rat hippocampus following kainic acid (KA) treatment. Brain Res 934:87–96CrossRefPubMed Wolf OT, Dyakin V, Patel A, Vadasz C, de Leon MJ, McEwen BS, Bulloch K (2002) Volumetric structural magnetic resonance imaging (MRI) of the rat hippocampus following kainic acid (KA) treatment. Brain Res 934:87–96CrossRefPubMed
18.
go back to reference Bartnik-Olson BL, Ding D, Howe J, Shah A, Losey T (2017) Glutamate metabolism in temporal lobe epilepsy as revealed by dynamic proton MRS following the infusion of [U-13-C] glucose. Epilepsy Res 136:46–53CrossRefPubMed Bartnik-Olson BL, Ding D, Howe J, Shah A, Losey T (2017) Glutamate metabolism in temporal lobe epilepsy as revealed by dynamic proton MRS following the infusion of [U-13-C] glucose. Epilepsy Res 136:46–53CrossRefPubMed
19.
go back to reference Xu MY, Ergene E, Zagardo M, Tracy PT, Wang H, Liu WC, Machens NA (2015) Proton MR spectroscopy in patients with structural MRI-negative temporal lobe epilepsy. J Neuroimaging 25:1030–1037CrossRefPubMed Xu MY, Ergene E, Zagardo M, Tracy PT, Wang H, Liu WC, Machens NA (2015) Proton MR spectroscopy in patients with structural MRI-negative temporal lobe epilepsy. J Neuroimaging 25:1030–1037CrossRefPubMed
20.
21.
go back to reference Bessman SP, Carpenter CL (1985) The Creatine-Creatine phosphate energy shuttle. Annu Rev Biochem 54:831–862CrossRefPubMed Bessman SP, Carpenter CL (1985) The Creatine-Creatine phosphate energy shuttle. Annu Rev Biochem 54:831–862CrossRefPubMed
22.
go back to reference Dulinska J, Setkowicz Z, Janeczko K, Sandt C, Dumas P, Uram L, Gzielo-Jurek K, Chwiej J (2012) Synchrotron radiation Fourier-transform infrared and Raman microspectroscopy study showing an increased frequency of creatine inclusions in the rat hippocampal formation following pilocarpine-induced seizures. Anal Bioanal Chem 402:2267–2274CrossRefPubMed Dulinska J, Setkowicz Z, Janeczko K, Sandt C, Dumas P, Uram L, Gzielo-Jurek K, Chwiej J (2012) Synchrotron radiation Fourier-transform infrared and Raman microspectroscopy study showing an increased frequency of creatine inclusions in the rat hippocampal formation following pilocarpine-induced seizures. Anal Bioanal Chem 402:2267–2274CrossRefPubMed
23.
go back to reference Rambo LM, Ribeiro LR, Schramm VG, Berch AM, Stamm DN, Della-Pace ID, Silva LFA, Furian AF, Oliveira MS, Fighera MR, Royes LFF (2012) Creatine increases hippocampal Na(+), K(+)-ATPase activity via NMDA-calcineurin pathway. Brain Res Bull 88:553–559CrossRefPubMed Rambo LM, Ribeiro LR, Schramm VG, Berch AM, Stamm DN, Della-Pace ID, Silva LFA, Furian AF, Oliveira MS, Fighera MR, Royes LFF (2012) Creatine increases hippocampal Na(+), K(+)-ATPase activity via NMDA-calcineurin pathway. Brain Res Bull 88:553–559CrossRefPubMed
24.
go back to reference Guivel-Scharen V, Sinnwell T, Wolff SD, Balaban RS (1998) Detection of proton chemical exchange between metabolites and water in biological tissues. J Magn Reson 133:36–45CrossRefPubMed Guivel-Scharen V, Sinnwell T, Wolff SD, Balaban RS (1998) Detection of proton chemical exchange between metabolites and water in biological tissues. J Magn Reson 133:36–45CrossRefPubMed
25.
go back to reference Kogan F, Haris M, Debrosse C, Singh A, Nanga RP, Cai K, Hariharan H, Reddy R (2014) In vivo chemical exchange saturation transfer imaging of creatine (CrCEST) in skeletal muscle at 3T. J Magn Reson Imaging 40:596–602CrossRefPubMed Kogan F, Haris M, Debrosse C, Singh A, Nanga RP, Cai K, Hariharan H, Reddy R (2014) In vivo chemical exchange saturation transfer imaging of creatine (CrCEST) in skeletal muscle at 3T. J Magn Reson Imaging 40:596–602CrossRefPubMed
26.
go back to reference Kogan F, Haris M, Singh A, Cai K, Debrosse C, Nanga RPR, Hariharan H, Reddy R (2014) Method for high-resolution imaging of creatine in vivo using chemical exchange saturation transfer. Magn Reson Med 71:164–172CrossRefPubMed Kogan F, Haris M, Singh A, Cai K, Debrosse C, Nanga RPR, Hariharan H, Reddy R (2014) Method for high-resolution imaging of creatine in vivo using chemical exchange saturation transfer. Magn Reson Med 71:164–172CrossRefPubMed
27.
go back to reference Wolff SD, Balaban RS (1990) Nmr imaging of labile proton-exchange. J Magn Reson 86:164–169 Wolff SD, Balaban RS (1990) Nmr imaging of labile proton-exchange. J Magn Reson 86:164–169
28.
go back to reference Hellier JL, Patrylo PR, Buckmaster PS, Dudek FE (1998) Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy. Epilepsy Res 31:73–84CrossRefPubMed Hellier JL, Patrylo PR, Buckmaster PS, Dudek FE (1998) Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy. Epilepsy Res 31:73–84CrossRefPubMed
29.
30.
go back to reference Singh A, Cai KJ, Haris M, Hariharan H, Reddy R (2013) On B1 inhomogeneity correction of in vivo human brain glutamate chemical exchange saturation transfer contrast at 7T. Magn Reson Med 69:818–824CrossRefPubMed Singh A, Cai KJ, Haris M, Hariharan H, Reddy R (2013) On B1 inhomogeneity correction of in vivo human brain glutamate chemical exchange saturation transfer contrast at 7T. Magn Reson Med 69:818–824CrossRefPubMed
31.
go back to reference Tkac I, Starcuk Z, Choi IY, Gruetter R (1999) In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41:649–656CrossRef Tkac I, Starcuk Z, Choi IY, Gruetter R (1999) In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41:649–656CrossRef
32.
go back to reference Paxinos GWC (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier Academic, London Paxinos GWC (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier Academic, London
33.
go back to reference Nasrallah FA, Pages G, Kuchel PW et al (2013) Imaging brain deoxyglucose uptake and metabolism by glucoCEST MRI. J Cereb Blood Flow Metabol 33:1270–1278CrossRef Nasrallah FA, Pages G, Kuchel PW et al (2013) Imaging brain deoxyglucose uptake and metabolism by glucoCEST MRI. J Cereb Blood Flow Metabol 33:1270–1278CrossRef
35.
go back to reference Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PCM (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50:1120–1126CrossRefPubMed Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PCM (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50:1120–1126CrossRefPubMed
36.
go back to reference DeFrance JF, McCandless DW (1991) Energy metabolism in rat hippocampus during and following seizure activity. Metab Brain Dis 6:83–91CrossRefPubMed DeFrance JF, McCandless DW (1991) Energy metabolism in rat hippocampus during and following seizure activity. Metab Brain Dis 6:83–91CrossRefPubMed
37.
go back to reference Petroff OA, Prichard JW, Behar KL et al (1984) In vivo phosphorus nuclear magnetic resonance spectroscopy in status epilepticus. Ann Neurol 16:169–177CrossRefPubMed Petroff OA, Prichard JW, Behar KL et al (1984) In vivo phosphorus nuclear magnetic resonance spectroscopy in status epilepticus. Ann Neurol 16:169–177CrossRefPubMed
38.
go back to reference Connelly A, Jackson GD, Duncan JS, King MD, Gadian DG (1994) Magnetic resonance spectroscopy in temporal lobe epilepsy. Neurology 44:1411–1417CrossRefPubMed Connelly A, Jackson GD, Duncan JS, King MD, Gadian DG (1994) Magnetic resonance spectroscopy in temporal lobe epilepsy. Neurology 44:1411–1417CrossRefPubMed
39.
go back to reference Gadian DG, Connelly A, Duncan JS, Cross JH, Kirkham FJ, Johnson CL, Vargha-Khadem F, Nevile BG, Jackson GD (1994) 1H magnetic resonance spectroscopy in the investigation of intractable epilepsy. Acta Neurol Scand Suppl 152:116–121CrossRefPubMed Gadian DG, Connelly A, Duncan JS, Cross JH, Kirkham FJ, Johnson CL, Vargha-Khadem F, Nevile BG, Jackson GD (1994) 1H magnetic resonance spectroscopy in the investigation of intractable epilepsy. Acta Neurol Scand Suppl 152:116–121CrossRefPubMed
Metadata
Title
In Vivo Mapping and Quantification of Creatine Using Chemical Exchange Saturation Transfer Imaging in Rat Models of Epileptic Seizure
Authors
Dong-Hoon Lee
Do-Wan Lee
Jae-Im Kwon
Chul-Woong Woo
Sang-Tae Kim
Jin Seong Lee
Choong Gon Choi
Kyung Won Kim
Jeong Kon Kim
Dong-Cheol Woo
Publication date
01-04-2019
Publisher
Springer International Publishing
Published in
Molecular Imaging and Biology / Issue 2/2019
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-018-1243-6

Other articles of this Issue 2/2019

Molecular Imaging and Biology 2/2019 Go to the issue