Skip to main content
Top
Published in: Molecular Imaging and Biology 2/2019

01-04-2019 | Research Article

Mapping Bone Marrow Response in the Vertebral Column by Positron Emission Tomography Following Radiotherapy and Erlotinib Therapy of Lung Cancer

Authors: Azadeh Abravan, Hanne Astrid Eide, Ayca Muftuler Løndalen, Åslaug Helland, Eirik Malinen

Published in: Molecular Imaging and Biology | Issue 2/2019

Login to get access

Abstract

Purpose

To map functional bone marrow (BM) by 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) positron emission tomography (PET) in the vertebral column of lung cancer patients prior to, during, and after treatment. Moreover, to identify radiation- and erlotinib-induced changes in the BM.

Procedures

Twenty-six patients with advanced non-small cell lung cancer, receiving radiotherapy (RT) alone or concomitantly with erlotinib, were examined by [18F]FDG PET before, during, and after treatment. A total of 61 [18F]FDG PET scans were analyzed. Vertebral column BM [18F]FDG standardized uptake value normalized to the liver (SUVBMLR) was used as uptake measure. Wilcoxon signed-rank test was used to assess changes in BM uptake of [18F]FDG between sessions. Effects of erlotinib on the BM activity during and after treatment were assessed using Mann-Whitney U test.

Results

A homogeneous uptake of [18F]FDG was observed within the vertebral column prior to treatment. Mean SUVBMLR (± S.E.M) in the body of thoracic vertebrae receiving a total RT dose of 10 Gy or higher was 0.64 ± 0.01, 0.56 ± 0.01, and 0.59 ± 0.01 at pre-, mid-, and post-therapy, respectively. A significant reduction in the mean SUVBMLR was observed from pre- to both mid- and post-therapy (p < 0.05). Mean SUVBMLR was significantly higher at post-therapy compared to mid-therapy for patients receiving erlotinib in addition to RT (p < 0.05).

Conclusions

RT reduces BM [18F]FDG uptake in the vertebral column, especially in the high-dose region. Concomitant erlotinib may stimulate a recovery in BM [18F]FDG uptake from mid- to post-therapy.
Trial registration: NCT02714530. Registered 10 September 2015.
Appendix
Available only for authorised users
Literature
1.
go back to reference Delaney G, Jacob S, Featherstone C, Barton M (2005) The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 104(6):1129–1137CrossRefPubMed Delaney G, Jacob S, Featherstone C, Barton M (2005) The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 104(6):1129–1137CrossRefPubMed
2.
go back to reference Begg AC, Stewart FA, Vens C (2011) Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer 11(4):239–253CrossRefPubMed Begg AC, Stewart FA, Vens C (2011) Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer 11(4):239–253CrossRefPubMed
3.
go back to reference van Baardwijk A, Bosmans G, Boersma L, Wanders S, Dekker A, Dingemans AMC, Bootsma G, Geraedts W, Pitz C, Simons J, Lambin P, de Ruysscher D (2008) Individualized radical radiotherapy of non–small-cell lung cancer based on normal tissue dose constraints: a feasibility study. Int J Radiat Oncol Biol Phys 71(5):1394–1401CrossRefPubMed van Baardwijk A, Bosmans G, Boersma L, Wanders S, Dekker A, Dingemans AMC, Bootsma G, Geraedts W, Pitz C, Simons J, Lambin P, de Ruysscher D (2008) Individualized radical radiotherapy of non–small-cell lung cancer based on normal tissue dose constraints: a feasibility study. Int J Radiat Oncol Biol Phys 71(5):1394–1401CrossRefPubMed
4.
go back to reference Berg JM, Tymoczko JL, Stryer L (2006) Each organ has a unique metabolic profile. In: Biochemistry. W.H.Freeman & Co Ltd, New York, pp 851–854 Berg JM, Tymoczko JL, Stryer L (2006) Each organ has a unique metabolic profile. In: Biochemistry. W.H.Freeman & Co Ltd, New York, pp 851–854
5.
go back to reference Fan C, Hernandez-Pampaloni M, Houseni M, Chamroonrat W, Basu S, Kumar R, Dadparvar S, Torigian DA, Alavi A (2007) Age-related changes in the metabolic activity and distribution of the red marrow as demonstrated by 2-deoxy-2-[F-18]fluoro-D-glucose-positron emission tomography. Mol Imaging Biol 9(5):300–307CrossRefPubMed Fan C, Hernandez-Pampaloni M, Houseni M, Chamroonrat W, Basu S, Kumar R, Dadparvar S, Torigian DA, Alavi A (2007) Age-related changes in the metabolic activity and distribution of the red marrow as demonstrated by 2-deoxy-2-[F-18]fluoro-D-glucose-positron emission tomography. Mol Imaging Biol 9(5):300–307CrossRefPubMed
6.
go back to reference Dudek A, Mahaseth H (2005) Circulating angiogenic cytokines in patients with advanced non-small cell lung cancer: correlation with treatment response and survival. Cancer Invest 23(3):193–200 Dudek A, Mahaseth H (2005) Circulating angiogenic cytokines in patients with advanced non-small cell lung cancer: correlation with treatment response and survival. Cancer Invest 23(3):193–200
7.
go back to reference Colasante A, Mascetra N, Brunetti M et al (1997) Transforming growth factor beta 1, interleukin-8 and interleukin-1, in non-small-cell lung tumors. Am J Respir Crit Care Med 156(3):968–973CrossRefPubMed Colasante A, Mascetra N, Brunetti M et al (1997) Transforming growth factor beta 1, interleukin-8 and interleukin-1, in non-small-cell lung tumors. Am J Respir Crit Care Med 156(3):968–973CrossRefPubMed
8.
go back to reference Patchen ML, MacVittie TJ, Williams JL, Schwartz GN, Souza LM (1991) Administration of interleukin-6 stimulates multilineage hematopoiesis and accelerates recovery from radiation-induced hematopoietic depression. Blood 77(3):472–480PubMed Patchen ML, MacVittie TJ, Williams JL, Schwartz GN, Souza LM (1991) Administration of interleukin-6 stimulates multilineage hematopoiesis and accelerates recovery from radiation-induced hematopoietic depression. Blood 77(3):472–480PubMed
9.
go back to reference Ramadori G, Van Damme J, Rieder H, Meyer zum Büschenfelde KH (1988) Interleukin 6, the third mediator of acute-phase reaction, modulates hepatic protein synthesis in human and mouse. Comparison with interleukin 1 p and tumor necrosis factor-a. Eur. J. Immuno 18:1259–1264 Ramadori G, Van Damme J, Rieder H, Meyer zum Büschenfelde KH (1988) Interleukin 6, the third mediator of acute-phase reaction, modulates hepatic protein synthesis in human and mouse. Comparison with interleukin 1 p and tumor necrosis factor-a. Eur. J. Immuno 18:1259–1264
10.
go back to reference Deek MP, Benenati B, Kim S, Chen T, Ahmed I, Zou W, Aisner J, Jabbour SK (2016) Thoracic vertebral body irradiation contributes to acute hematologic toxicity during chemoradiation therapy for non-small cell lung cancer. Int J Radiat Oncol Biol Phys 94(1):147–154CrossRefPubMed Deek MP, Benenati B, Kim S, Chen T, Ahmed I, Zou W, Aisner J, Jabbour SK (2016) Thoracic vertebral body irradiation contributes to acute hematologic toxicity during chemoradiation therapy for non-small cell lung cancer. Int J Radiat Oncol Biol Phys 94(1):147–154CrossRefPubMed
11.
go back to reference Fairchild A, Harris K, Barnes E, Wong R, Lutz S, Bezjak A, Cheung P, Chow E (2008) Palliative thoracic radiotherapy for lung cancer: a systematic review. J Clin Oncol 26(24):4001–4011CrossRefPubMed Fairchild A, Harris K, Barnes E, Wong R, Lutz S, Bezjak A, Cheung P, Chow E (2008) Palliative thoracic radiotherapy for lung cancer: a systematic review. J Clin Oncol 26(24):4001–4011CrossRefPubMed
12.
go back to reference Chen X, Liu Y, Røe OD, Qian Y, Guo R, Zhu L, Yin Y, Shu Y (2013) Gefitinib or erlotinib as maintenance therapy in patients with advanced stage non-small cell lung cancer: a systematic review. PLoS One 8(3):e59314CrossRefPubMedPubMedCentral Chen X, Liu Y, Røe OD, Qian Y, Guo R, Zhu L, Yin Y, Shu Y (2013) Gefitinib or erlotinib as maintenance therapy in patients with advanced stage non-small cell lung cancer: a systematic review. PLoS One 8(3):e59314CrossRefPubMedPubMedCentral
13.
go back to reference Hicks RJ, Kalff V, MacManus MP, Ware RE, Hogg A, McKenzie A, Matthews JP, Ball DL (2001) 18F-FDG PET provides high-impact and powerful prognostic stratification in staging newly diagnosed non-small cell lung cancer. J Nucl Med 42(11):1596–1604PubMed Hicks RJ, Kalff V, MacManus MP, Ware RE, Hogg A, McKenzie A, Matthews JP, Ball DL (2001) 18F-FDG PET provides high-impact and powerful prognostic stratification in staging newly diagnosed non-small cell lung cancer. J Nucl Med 42(11):1596–1604PubMed
14.
go back to reference Jiménez-Bonilla JF, Quirce R, Martínez-Rodríguez I, Banzo I, Rubio-Vassallo AS, del Castillo-Matos R, Ortega-Nava F, Martínez-Amador N, Ibáñez-Bravo S, Carril JM (2013) Diagnosis of recurrence and assessment of post-recurrence survival in patients with extracranial non-small cell lung cancer evaluated by 18F-FDG PET/CT. Lung Cancer 81(1):71–76CrossRefPubMed Jiménez-Bonilla JF, Quirce R, Martínez-Rodríguez I, Banzo I, Rubio-Vassallo AS, del Castillo-Matos R, Ortega-Nava F, Martínez-Amador N, Ibáñez-Bravo S, Carril JM (2013) Diagnosis of recurrence and assessment of post-recurrence survival in patients with extracranial non-small cell lung cancer evaluated by 18F-FDG PET/CT. Lung Cancer 81(1):71–76CrossRefPubMed
15.
go back to reference Gordon BA, Flanagan FL, Dehdashti F (1997) Whole-body positron emission tomography: normal variations, pitfalls, and technical considerations. AJR Am J Roentgenol 169(6):1675–1680CrossRefPubMed Gordon BA, Flanagan FL, Dehdashti F (1997) Whole-body positron emission tomography: normal variations, pitfalls, and technical considerations. AJR Am J Roentgenol 169(6):1675–1680CrossRefPubMed
16.
go back to reference Lee JW, Seo KH, Kim E-S, Lee SM (2016) The role of 18F-fluorodeoxyglucose uptake of bone marrow on PET/CT in predicting clinical outcomes in non-small cell lung cancer patients treated with chemoradiotherapy. Eur Radiol 27(5):1912–1921CrossRefPubMed Lee JW, Seo KH, Kim E-S, Lee SM (2016) The role of 18F-fluorodeoxyglucose uptake of bone marrow on PET/CT in predicting clinical outcomes in non-small cell lung cancer patients treated with chemoradiotherapy. Eur Radiol 27(5):1912–1921CrossRefPubMed
17.
go back to reference Rose BS, Liang Y, Lau SK, Jensen LG, Yashar CM, Hoh CK, Mell LK (2012) Correlation between radiation dose to 18F-FDG-PET defined active bone marrow subregions and acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy. Int J Radiat Oncol Biol Phys 83(4):1185–1191CrossRefPubMed Rose BS, Liang Y, Lau SK, Jensen LG, Yashar CM, Hoh CK, Mell LK (2012) Correlation between radiation dose to 18F-FDG-PET defined active bone marrow subregions and acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy. Int J Radiat Oncol Biol Phys 83(4):1185–1191CrossRefPubMed
18.
go back to reference Liang Y, Bydder M, Yashar CM, Rose BS, Cornell M, Hoh CK, Lawson JD, Einck J, Saenz C, Fanta P, Mundt AJ, Bydder GM, Mell LK (2013) Prospective study of functional bone marrow-sparing intensity modulated radiation therapy with concurrent chemotherapy for pelvic malignancies. Int J Radiat Oncol Biol Phys 85(2):406–414CrossRefPubMed Liang Y, Bydder M, Yashar CM, Rose BS, Cornell M, Hoh CK, Lawson JD, Einck J, Saenz C, Fanta P, Mundt AJ, Bydder GM, Mell LK (2013) Prospective study of functional bone marrow-sparing intensity modulated radiation therapy with concurrent chemotherapy for pelvic malignancies. Int J Radiat Oncol Biol Phys 85(2):406–414CrossRefPubMed
19.
go back to reference Franco P, Arcadipane F, Ragona R, Lesca A, Gallio E, Mistrangelo M, Cassoni P, Arena V, Bustreo S, Faletti R, Rondi N, Morino M, Ricardi U (2016) Dose to specific subregions of pelvic bone marrow defined with FDG-PET as a predictor of hematologic nadirs during concomitant chemoradiation in anal cancer patients. Med Oncol 33(7):72CrossRefPubMed Franco P, Arcadipane F, Ragona R, Lesca A, Gallio E, Mistrangelo M, Cassoni P, Arena V, Bustreo S, Faletti R, Rondi N, Morino M, Ricardi U (2016) Dose to specific subregions of pelvic bone marrow defined with FDG-PET as a predictor of hematologic nadirs during concomitant chemoradiation in anal cancer patients. Med Oncol 33(7):72CrossRefPubMed
20.
go back to reference Rose BS, Jee KW, Niemierko A, Murphy JE, Blaszkowsky LS, Allen JN, Lee LK, Wang Y, Drapek LC, Hong TS, Wo JY (2016) Irradiation of FDG-PET-defined active bone marrow subregions and acute hematologic toxicity in anal cancer patients undergoing chemoradiation. Int J Radiat Oncol Biol Phys 94(4):747–754CrossRefPubMed Rose BS, Jee KW, Niemierko A, Murphy JE, Blaszkowsky LS, Allen JN, Lee LK, Wang Y, Drapek LC, Hong TS, Wo JY (2016) Irradiation of FDG-PET-defined active bone marrow subregions and acute hematologic toxicity in anal cancer patients undergoing chemoradiation. Int J Radiat Oncol Biol Phys 94(4):747–754CrossRefPubMed
21.
go back to reference Yagi M, Froelich J, Arentsen L, Shanley R, Ghebre R, Yee D, Hui S (2015) Longitudinal FDG-PET revealed regional functional heterogeneity of bone marrow, site-dependent response to treatment and correlation with hematological parameters. J Cancer 6(6):531–537CrossRefPubMedPubMedCentral Yagi M, Froelich J, Arentsen L, Shanley R, Ghebre R, Yee D, Hui S (2015) Longitudinal FDG-PET revealed regional functional heterogeneity of bone marrow, site-dependent response to treatment and correlation with hematological parameters. J Cancer 6(6):531–537CrossRefPubMedPubMedCentral
22.
go back to reference Noticewala SS, Li N, Williamson CW et al (2017) Longitudinal changes in active bone marrow for cervical cancer patients treated with concurrent chemoradiation therapy. Int J Radiat Oncol Biol Phys 97(4):797–805CrossRefPubMed Noticewala SS, Li N, Williamson CW et al (2017) Longitudinal changes in active bone marrow for cervical cancer patients treated with concurrent chemoradiation therapy. Int J Radiat Oncol Biol Phys 97(4):797–805CrossRefPubMed
23.
go back to reference Hayman JA, Callahan JW, Herschtal A, Everitt S, Binns DS, Hicks RJ, Mac Manus M (2011) Distribution of proliferating bone marrow in adult cancer patients determined using FLT-PET imaging. Int J Radiat Oncol Biol Phys 79(3):847–852CrossRefPubMed Hayman JA, Callahan JW, Herschtal A, Everitt S, Binns DS, Hicks RJ, Mac Manus M (2011) Distribution of proliferating bone marrow in adult cancer patients determined using FLT-PET imaging. Int J Radiat Oncol Biol Phys 79(3):847–852CrossRefPubMed
24.
go back to reference Inoue K, Goto R, Okada K, Kinomura S, Fukuda H (2009) A bone marrow F-18 FDG uptake exceeding the liver uptake may indicate bone marrow hyperactivity. Ann Nucl Med 23(7):643–649CrossRefPubMed Inoue K, Goto R, Okada K, Kinomura S, Fukuda H (2009) A bone marrow F-18 FDG uptake exceeding the liver uptake may indicate bone marrow hyperactivity. Ann Nucl Med 23(7):643–649CrossRefPubMed
25.
go back to reference Abravan A, Eide HA, Knudtsen I, Løndalen A, Helland Å, Malinen E (2017) Assessment of pulmonary 18F-FDG-PET uptake and cytokine profiles in non-small cell lung cancer patients treated with radiotherapy and erlotinib. Clin Transl Radiat Oncol 4:57–63CrossRefPubMedPubMedCentral Abravan A, Eide HA, Knudtsen I, Løndalen A, Helland Å, Malinen E (2017) Assessment of pulmonary 18F-FDG-PET uptake and cytokine profiles in non-small cell lung cancer patients treated with radiotherapy and erlotinib. Clin Transl Radiat Oncol 4:57–63CrossRefPubMedPubMedCentral
26.
27.
go back to reference Mauch P, Constine L, Greenberger J, Knospe W, Sullivan J, Liesveld JL, Deeg HJ (1995) Hematopoietic stem cell compartment: acute and late effects of radiation therapy and chemotherapy. Int J Radiat Oncol Biol Phys 31(5):1319–1339CrossRefPubMed Mauch P, Constine L, Greenberger J, Knospe W, Sullivan J, Liesveld JL, Deeg HJ (1995) Hematopoietic stem cell compartment: acute and late effects of radiation therapy and chemotherapy. Int J Radiat Oncol Biol Phys 31(5):1319–1339CrossRefPubMed
28.
go back to reference Hall EJ, Giaccia AJ (2006) Dose–response relationships for model normal tissues. In: Mitchell CW (ed) Radiobiology for the radiologist. Lippincott Williams & Wilkins, Philadelphia, pp 303–326 Hall EJ, Giaccia AJ (2006) Dose–response relationships for model normal tissues. In: Mitchell CW (ed) Radiobiology for the radiologist. Lippincott Williams & Wilkins, Philadelphia, pp 303–326
30.
go back to reference Heylmann D, Rödel F, Kindler T, Kaina B (2014) Radiation sensitivity of human and murine peripheral blood lymphocytes, stem and progenitor cells. Biochim Biophys Acta 1846(1):121–129 Heylmann D, Rödel F, Kindler T, Kaina B (2014) Radiation sensitivity of human and murine peripheral blood lymphocytes, stem and progenitor cells. Biochim Biophys Acta 1846(1):121–129
31.
go back to reference Higashi T, Fisher SJ, Brown RS, Nakada K, Walter GL, Wahl RL (2000) Evaluation of the early effect of local irradiation on normal rodent bone marrow metabolism using FDG: preclinical PET studies. J Nucl Med 41(12):2026–2035PubMed Higashi T, Fisher SJ, Brown RS, Nakada K, Walter GL, Wahl RL (2000) Evaluation of the early effect of local irradiation on normal rodent bone marrow metabolism using FDG: preclinical PET studies. J Nucl Med 41(12):2026–2035PubMed
32.
go back to reference Ryan MA, Nattamai KJ, Xing E, Schleimer D, Daria D, Sengupta A, Köhler A, Liu W, Gunzer M, Jansen M, Ratner N, le Cras TD, Waterstrat A, van Zant G, Cancelas JA, Zheng Y, Geiger H (2010) Pharmacological inhibition of EGFR signaling enhances G-CSF–induced hematopoietic stem cell mobilization. Nat Med 16:1141–1146CrossRefPubMedPubMedCentral Ryan MA, Nattamai KJ, Xing E, Schleimer D, Daria D, Sengupta A, Köhler A, Liu W, Gunzer M, Jansen M, Ratner N, le Cras TD, Waterstrat A, van Zant G, Cancelas JA, Zheng Y, Geiger H (2010) Pharmacological inhibition of EGFR signaling enhances G-CSF–induced hematopoietic stem cell mobilization. Nat Med 16:1141–1146CrossRefPubMedPubMedCentral
33.
go back to reference Doan PL, Himburg HA, Helms K, Russell JL, Fixsen E, Quarmyne M, Harris JR, Deoliviera D, Sullivan JM, Chao NJ, Kirsch DG, Chute JP (2013) Epidermal growth factor regulates hematopoietic regeneration following radiation injury. Nat Med 19(3):295–304CrossRefPubMedPubMedCentral Doan PL, Himburg HA, Helms K, Russell JL, Fixsen E, Quarmyne M, Harris JR, Deoliviera D, Sullivan JM, Chao NJ, Kirsch DG, Chute JP (2013) Epidermal growth factor regulates hematopoietic regeneration following radiation injury. Nat Med 19(3):295–304CrossRefPubMedPubMedCentral
34.
go back to reference Bernad A, Kopf M, Kulbacki R, Weich N, Koehler G, Gutierrez-Ramos JC Interleukin-6 is required in vivo for the regulation of stem cells and committed progenitors of the hematopoietic system. Immunity 1(9):725–731 Bernad A, Kopf M, Kulbacki R, Weich N, Koehler G, Gutierrez-Ramos JC Interleukin-6 is required in vivo for the regulation of stem cells and committed progenitors of the hematopoietic system. Immunity 1(9):725–731
35.
go back to reference Fletcher EVM, Love-Homan L, Sobhakumari A, et al. (2013) Epidermal growth factor receptor inhibition induces pro-inflammatory cytokines via NOX4 in head and neck cancer cells. Mol Cancer Res Fletcher EVM, Love-Homan L, Sobhakumari A, et al. (2013) Epidermal growth factor receptor inhibition induces pro-inflammatory cytokines via NOX4 in head and neck cancer cells. Mol Cancer Res
Metadata
Title
Mapping Bone Marrow Response in the Vertebral Column by Positron Emission Tomography Following Radiotherapy and Erlotinib Therapy of Lung Cancer
Authors
Azadeh Abravan
Hanne Astrid Eide
Ayca Muftuler Løndalen
Åslaug Helland
Eirik Malinen
Publication date
01-04-2019
Publisher
Springer International Publishing
Published in
Molecular Imaging and Biology / Issue 2/2019
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-018-1226-7

Other articles of this Issue 2/2019

Molecular Imaging and Biology 2/2019 Go to the issue