Skip to main content
Top
Published in: Journal of Translational Medicine 1/2008

Open Access 01-12-2008 | Research

Implantation of neural stem cells embedded in hyaluronic acid and collagen composite conduit promotes regeneration in a rabbit facial nerve injury model

Authors: Han Zhang, Yue Teng Wei, Kam Sze Tsang, Chong Ran Sun, Jin Li, Hua Huang, Fu Zhai Cui, Yi Hua An

Published in: Journal of Translational Medicine | Issue 1/2008

Login to get access

Abstract

The implantation of neural stem cells (NSCs) in artificial scaffolds for peripheral nerve injuries draws much attention. NSCs were ex-vivo expanded in hyaluronic acid (HA)-collagen composite with neurotrophin-3, and BrdU-labeled NSCs conduit was implanted onto the ends of the transected facial nerve of rabbits. Electromyography demonstrated a progressive decrease of current threshold and increase of voltage amplitude in de-innervated rabbits after implantation for one, four, eight and 12 weeks compared to readouts derived from animals prior to nerve transection. The most remarkable improvement, observed using Electrophysiology, was of de-innervated rabbits implanted with NSCs conduit as opposed to de-innervated counterparts with and without the implantation of HA-collagen, NSCs and HA-collagen, and HA-collagen and neurotrophin-3. Histological examination displayed no nerve fiber in tissue sections of de-innervated rabbits. The arrangement and S-100 immunoreactivity of nerve fibers in the tissue sections of normal rabbits and injured rabbits after implantation of NSCs scaffold for 12 weeks were similar, whereas disorderly arranged minifascicles of various sizes were noted in the other three arms. BrdU+ cells were detected at 12 weeks post-implantation. Data suggested that NSCs embedded in HA-collagen biomaterial could facilitate re-innervations of damaged facial nerve and the artificial conduit of NSCs might offer a potential treatment modality to peripheral nerve injuries.
Appendix
Available only for authorised users
Literature
1.
go back to reference Androutsellis-Theotokis A, Murase S, Boyd JD, Park DM, Hoeppner DJ, Ravin R, McKay RD: Generating neurons from stem cells. Methods Mol Biol. 2008, 438: 31-38.CrossRefPubMed Androutsellis-Theotokis A, Murase S, Boyd JD, Park DM, Hoeppner DJ, Ravin R, McKay RD: Generating neurons from stem cells. Methods Mol Biol. 2008, 438: 31-38.CrossRefPubMed
2.
go back to reference Bain JR, Mackinnon SE, Hudson AR, Wade J, Evans P, Makino A, Hunter D: The peripheral nerve allograft in the primate immunosuppressed with Cyclosporin A: I. Histologic and electrophysiologic assessment. Plast Reconstr Surg. 1992, 90: 1036-1046.CrossRefPubMed Bain JR, Mackinnon SE, Hudson AR, Wade J, Evans P, Makino A, Hunter D: The peripheral nerve allograft in the primate immunosuppressed with Cyclosporin A: I. Histologic and electrophysiologic assessment. Plast Reconstr Surg. 1992, 90: 1036-1046.CrossRefPubMed
3.
go back to reference Brannvall K, Bergman K, Wallenquist U, Svahn S, Bowden T, Hilborn J, Forsberg-Nilsson K: Enhanced neuronal differentiation in a three-dimensional collagen-hyaluronan matrix. J Neurosci Res. 2007, 85: 2138-2146.CrossRefPubMed Brannvall K, Bergman K, Wallenquist U, Svahn S, Bowden T, Hilborn J, Forsberg-Nilsson K: Enhanced neuronal differentiation in a three-dimensional collagen-hyaluronan matrix. J Neurosci Res. 2007, 85: 2138-2146.CrossRefPubMed
4.
go back to reference Chu K, Kim M, Jeong SW, Kim SU, Yoon BW: Human neural stem cells can migrate, differentiate, and integrate after intravenous transplantation in adult rats with transient forebrain ischemia. Neurosci Lett. 2003, 343: 129-133.CrossRefPubMed Chu K, Kim M, Jeong SW, Kim SU, Yoon BW: Human neural stem cells can migrate, differentiate, and integrate after intravenous transplantation in adult rats with transient forebrain ischemia. Neurosci Lett. 2003, 343: 129-133.CrossRefPubMed
5.
go back to reference Evans GR, Brandt K, Katz S, Chauvin P, Otto L, Bogle M, Wang B, Meszlenyi RK, Lu L, Mikos AG, Patrick CW: Bioactive poly(L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration. Biomaterials. 2002, 23: 841-848.CrossRefPubMed Evans GR, Brandt K, Katz S, Chauvin P, Otto L, Bogle M, Wang B, Meszlenyi RK, Lu L, Mikos AG, Patrick CW: Bioactive poly(L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration. Biomaterials. 2002, 23: 841-848.CrossRefPubMed
6.
go back to reference Fansa H, Keilhoff G: Comparison of different biogenic matrices seeded with cultured Schwann cells for bridging peripheral nerve defects. Neurol Res. 2004, 26: 167-173.CrossRefPubMed Fansa H, Keilhoff G: Comparison of different biogenic matrices seeded with cultured Schwann cells for bridging peripheral nerve defects. Neurol Res. 2004, 26: 167-173.CrossRefPubMed
7.
go back to reference Fansa H, Keilhoff G, Wolf G, Schneider W: Tissue engineering of peripheral nerves: A comparison of venous and acellular muscle grafts with cultured Schwann cells. Plast Reconstr Surg. 2001, 107: 485-494.CrossRefPubMed Fansa H, Keilhoff G, Wolf G, Schneider W: Tissue engineering of peripheral nerves: A comparison of venous and acellular muscle grafts with cultured Schwann cells. Plast Reconstr Surg. 2001, 107: 485-494.CrossRefPubMed
8.
go back to reference Fong SP, Tsang KS, Chan AB, Lu G, Poon WS, Li K, Baum LW, Ng HK: Trophism of neural progenitor cells to embryonic stem cells: neural induction and transplantation in a mouse ischemic stroke model. J Neurosci Res. 2007, 85: 1851-1862.CrossRefPubMed Fong SP, Tsang KS, Chan AB, Lu G, Poon WS, Li K, Baum LW, Ng HK: Trophism of neural progenitor cells to embryonic stem cells: neural induction and transplantation in a mouse ischemic stroke model. J Neurosci Res. 2007, 85: 1851-1862.CrossRefPubMed
9.
go back to reference Francel PC, Francel TJ, Mackinnon SE, Hertl C: Enhancing nerve regeneration across a silicone tube conduit by using interposed short-segment nerve grafts. J Neurosurg. 1997, 87: 887-892.CrossRefPubMed Francel PC, Francel TJ, Mackinnon SE, Hertl C: Enhancing nerve regeneration across a silicone tube conduit by using interposed short-segment nerve grafts. J Neurosurg. 1997, 87: 887-892.CrossRefPubMed
10.
go back to reference Frerichs O, Fansa H, Schicht C, Wolf G, Schneider W, Keilhoff G: Reconstruction of peripheral nerves using acellular nerve grafts with implanted cultured Schwann cells. Microsurgery. 2002, 22: 311-315.CrossRefPubMed Frerichs O, Fansa H, Schicht C, Wolf G, Schneider W, Keilhoff G: Reconstruction of peripheral nerves using acellular nerve grafts with implanted cultured Schwann cells. Microsurgery. 2002, 22: 311-315.CrossRefPubMed
12.
go back to reference Hori J, Ng TF, Shatos M, Klassen H, Streilein JW, Young MJ: Neural progenitor cells lack immunogenicity and resist destruction as allografts. 2003. Ocul Immunol Inflamm. 2007, 15: 261-273.CrossRefPubMed Hori J, Ng TF, Shatos M, Klassen H, Streilein JW, Young MJ: Neural progenitor cells lack immunogenicity and resist destruction as allografts. 2003. Ocul Immunol Inflamm. 2007, 15: 261-273.CrossRefPubMed
13.
go back to reference Hou S, Tian W, Xu Q, Cui F, Zhang J, Lu Q, Zhao C: The enhancement of cell adherence and inducement of neurite outgrowth of dorsal root ganglia co-cultured with hyaluronic acid hydrogels modified with Nogo-66 receptor antagonist in vitro. Neuroscience. 2006, 137: 519-529.CrossRefPubMed Hou S, Tian W, Xu Q, Cui F, Zhang J, Lu Q, Zhao C: The enhancement of cell adherence and inducement of neurite outgrowth of dorsal root ganglia co-cultured with hyaluronic acid hydrogels modified with Nogo-66 receptor antagonist in vitro. Neuroscience. 2006, 137: 519-529.CrossRefPubMed
14.
go back to reference Hudson TW, Evans GR, Schmidt CE: Engineering strategies for peripheral nerve repair. Orthop Clin North Am. 2000, 31: 485-498.CrossRefPubMed Hudson TW, Evans GR, Schmidt CE: Engineering strategies for peripheral nerve repair. Orthop Clin North Am. 2000, 31: 485-498.CrossRefPubMed
15.
go back to reference Jeong SW, Chu K, Jung KH, Kim SU, Kim M, Roh JK: Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke. 2003, 34: 2258-2263.CrossRefPubMed Jeong SW, Chu K, Jung KH, Kim SU, Kim M, Roh JK: Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke. 2003, 34: 2258-2263.CrossRefPubMed
16.
go back to reference Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, Masel J, Yenari MA, Weissman IL, Uchida N, Palmer T, Steinberg GK: Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci USA. 2004, 101: 11839-11844.PubMedCentralCrossRefPubMed Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, Masel J, Yenari MA, Weissman IL, Uchida N, Palmer T, Steinberg GK: Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci USA. 2004, 101: 11839-11844.PubMedCentralCrossRefPubMed
17.
go back to reference Le Belle JE, Caldwell MA, Svendsen CN: Improving the survival of human CNS precursor-derived neurons after transplantation. J Neurosci Res. 2004, 76: 174-183.CrossRefPubMed Le Belle JE, Caldwell MA, Svendsen CN: Improving the survival of human CNS precursor-derived neurons after transplantation. J Neurosci Res. 2004, 76: 174-183.CrossRefPubMed
18.
go back to reference Lin WL, Zehr C, Lewis J, Hutton M, Yen SH, Dickson DW: Progressive white matter pathology in the spinal cord of transgenic mice expressing mutant (P301L) human tau. J Neurocytol. 2005, 34: 397-410.CrossRefPubMed Lin WL, Zehr C, Lewis J, Hutton M, Yen SH, Dickson DW: Progressive white matter pathology in the spinal cord of transgenic mice expressing mutant (P301L) human tau. J Neurocytol. 2005, 34: 397-410.CrossRefPubMed
19.
go back to reference Lu P, Jones LL, Snyder EY, Tuszynski MH: Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol. 2003, 181: 115-129.CrossRefPubMed Lu P, Jones LL, Snyder EY, Tuszynski MH: Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol. 2003, 181: 115-129.CrossRefPubMed
20.
go back to reference Ma W, Fitzgerald W, Liu QY, O'Shaughnessy TJ, Maric D, Lin HJ, Alkon DL, Barker JL: CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels. Exp Neurol. 2004, 190: 276-288.CrossRefPubMed Ma W, Fitzgerald W, Liu QY, O'Shaughnessy TJ, Maric D, Lin HJ, Alkon DL, Barker JL: CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels. Exp Neurol. 2004, 190: 276-288.CrossRefPubMed
21.
go back to reference Mackinnon SE, Doolabh VB, Novak CB, Trulock EP: Clinical outcome following nerve allograft transplantation. Plast Reconstr Surg. 2001, 107: 1419-1429.CrossRefPubMed Mackinnon SE, Doolabh VB, Novak CB, Trulock EP: Clinical outcome following nerve allograft transplantation. Plast Reconstr Surg. 2001, 107: 1419-1429.CrossRefPubMed
22.
go back to reference Midha R, Munro CA, Dalton PD, Tator CH, Shoichet MS: Growth factor enhancement of peripheral nerve regeneration through a novel synthetic hydrogel tube. J Neurosurg. 2003, 99: 555-565.CrossRefPubMed Midha R, Munro CA, Dalton PD, Tator CH, Shoichet MS: Growth factor enhancement of peripheral nerve regeneration through a novel synthetic hydrogel tube. J Neurosurg. 2003, 99: 555-565.CrossRefPubMed
23.
go back to reference Millesi H: Techniques for nerve grafting. Hand Clin. 2000, 16: 73-91.PubMed Millesi H: Techniques for nerve grafting. Hand Clin. 2000, 16: 73-91.PubMed
24.
go back to reference Mligiliche N, Endo K, Okamoto K, Fujimoto E, Ide C: Extracellular matrix of human amnion manufactured into tubes as conduits for peripheral nerve regeneration. J Biomed Mater Res. 2002, 63: 591-600.CrossRefPubMed Mligiliche N, Endo K, Okamoto K, Fujimoto E, Ide C: Extracellular matrix of human amnion manufactured into tubes as conduits for peripheral nerve regeneration. J Biomed Mater Res. 2002, 63: 591-600.CrossRefPubMed
25.
go back to reference Rauch U: Extracellular matrix components associated with remodeling processes in brain. Cell Mol Life Sci. 2004, 61: 2031-2045.CrossRefPubMed Rauch U: Extracellular matrix components associated with remodeling processes in brain. Cell Mol Life Sci. 2004, 61: 2031-2045.CrossRefPubMed
26.
go back to reference Tang S, Vickers SM, Hsu HP, Spector M: Fabrication and characterization of porous hyaluronic acid-collagen composite scaffolds. J Biomed Mater Res A. 2007, 82: 323-335.CrossRefPubMed Tang S, Vickers SM, Hsu HP, Spector M: Fabrication and characterization of porous hyaluronic acid-collagen composite scaffolds. J Biomed Mater Res A. 2007, 82: 323-335.CrossRefPubMed
27.
go back to reference Tian WM, Hou SP, Ma J, Zhang CL, Xu QY, Lee IS, Li HD, Spector M, Cui FZ: Hyaluronic acid-poly-D-lysine-based three-dimensional hydrogel for traumatic brain injury. Tissue Eng. 2005, 11: 513-525.CrossRefPubMed Tian WM, Hou SP, Ma J, Zhang CL, Xu QY, Lee IS, Li HD, Spector M, Cui FZ: Hyaluronic acid-poly-D-lysine-based three-dimensional hydrogel for traumatic brain injury. Tissue Eng. 2005, 11: 513-525.CrossRefPubMed
Metadata
Title
Implantation of neural stem cells embedded in hyaluronic acid and collagen composite conduit promotes regeneration in a rabbit facial nerve injury model
Authors
Han Zhang
Yue Teng Wei
Kam Sze Tsang
Chong Ran Sun
Jin Li
Hua Huang
Fu Zhai Cui
Yi Hua An
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2008
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-6-67

Other articles of this Issue 1/2008

Journal of Translational Medicine 1/2008 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.