Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2008

01-12-2008 | NON-THEMATIC REVIEW

Cell cycle control and adhesion signaling pathways in the development of metastatic melanoma

Authors: A. V. Danilov, O. V. Danilova, B. T. Huber

Published in: Cancer and Metastasis Reviews | Issue 4/2008

Login to get access

Abstract

Metastatic melanoma is a fatal malignancy which is remarkably resistant to treatment. It is not entirely clear what determines transition from primary local to metastatic melanoma. Recent gene profiling studies shed light onto the complexity of pathogenesis of melanoma progression. An interaction between cell cycle signaling, adhesion pathways and epithelial–mesenchimal transition program appears to be critical in the development of metastatic disease. An isolated deregulation of either of those pathways may not be sufficient to initiate tumor evolution towards an aggressive phenotype. Here we review how they act in concert to make such a transition possible.
Literature
1.
go back to reference Clark, W. H. (1991). Tumour progression and the nature of cancer. British Journal of Cancer, 64, 631–644.PubMed Clark, W. H. (1991). Tumour progression and the nature of cancer. British Journal of Cancer, 64, 631–644.PubMed
2.
go back to reference Clark Jr., W. H., Elder, D. E., Guerry, D., Epstein, M. N., Greene, M. H., & Van Horn, M. (1984). A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Human Pathology, 15, 1147–1165.PubMedCrossRef Clark Jr., W. H., Elder, D. E., Guerry, D., Epstein, M. N., Greene, M. H., & Van Horn, M. (1984). A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Human Pathology, 15, 1147–1165.PubMedCrossRef
3.
go back to reference Breslow, A. (1970). Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Annals of Surgery, 172, 902–908.PubMedCrossRef Breslow, A. (1970). Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Annals of Surgery, 172, 902–908.PubMedCrossRef
4.
go back to reference Kuehnl-Petzoldt, C., & Fischer, S. (1987). Tumor thickness is not a prognostic factor in thin melanoma. Archives of Dermatological Research, 279, 487–488.PubMedCrossRef Kuehnl-Petzoldt, C., & Fischer, S. (1987). Tumor thickness is not a prognostic factor in thin melanoma. Archives of Dermatological Research, 279, 487–488.PubMedCrossRef
5.
go back to reference Haluska, F. G., & Ibrahim, N. (2006). Therapeutic targets in melanoma: map kinase pathway. Current Oncology Reports, 8, 400–405.PubMedCrossRef Haluska, F. G., & Ibrahim, N. (2006). Therapeutic targets in melanoma: map kinase pathway. Current Oncology Reports, 8, 400–405.PubMedCrossRef
6.
go back to reference Kalinsky, K., & Haluska, F. G. (2007). Novel inhibitors in the treatment of metastatic melanoma. Expert Review of Anticancer Therapy, 7, 715–724.PubMedCrossRef Kalinsky, K., & Haluska, F. G. (2007). Novel inhibitors in the treatment of metastatic melanoma. Expert Review of Anticancer Therapy, 7, 715–724.PubMedCrossRef
7.
go back to reference Monzon, J., Liu, L., Brill, H., Goldstein, A. M., Tucker, M. A., From, L., et al. (1998). CDKN2A mutations in multiple primary melanomas. New England Journal of Medicine, 338, 879–887.PubMedCrossRef Monzon, J., Liu, L., Brill, H., Goldstein, A. M., Tucker, M. A., From, L., et al. (1998). CDKN2A mutations in multiple primary melanomas. New England Journal of Medicine, 338, 879–887.PubMedCrossRef
8.
go back to reference Dissanayake, S. K., Wade, M. S., Johnson, C. E., O’Connell, M. P., Leotlela, P. D., French, A. D., et al. (2007). The WNT5A/PKC pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors, and initiation of an epithelial to mesenchymal transition. Journal of Biological Chemistry, 282(23), 17259–17271.PubMedCrossRef Dissanayake, S. K., Wade, M. S., Johnson, C. E., O’Connell, M. P., Leotlela, P. D., French, A. D., et al. (2007). The WNT5A/PKC pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors, and initiation of an epithelial to mesenchymal transition. Journal of Biological Chemistry, 282(23), 17259–17271.PubMedCrossRef
9.
go back to reference Weeraratna, A. T., Jiang, Y., Hostetter, G., Rosenblatt, K., Duray, P., Bittner, M., et al. (2002). Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell, 1, 279–288.PubMedCrossRef Weeraratna, A. T., Jiang, Y., Hostetter, G., Rosenblatt, K., Duray, P., Bittner, M., et al. (2002). Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell, 1, 279–288.PubMedCrossRef
10.
go back to reference Clark, E. A., Golub, T. R., Lander, E. S., & Hynes, R. O. (2000). Genomic analysis of metastasis reveals an essential role for RhoC. Nature, 406, 532–535.PubMedCrossRef Clark, E. A., Golub, T. R., Lander, E. S., & Hynes, R. O. (2000). Genomic analysis of metastasis reveals an essential role for RhoC. Nature, 406, 532–535.PubMedCrossRef
11.
go back to reference Carr, K. M., Bittner, M., & Trent, J. M. (2003). Gene-expression profiling in human cutaneous melanoma. Oncogene, 22, 3076–3080.PubMedCrossRef Carr, K. M., Bittner, M., & Trent, J. M. (2003). Gene-expression profiling in human cutaneous melanoma. Oncogene, 22, 3076–3080.PubMedCrossRef
12.
go back to reference Cha, H. J., Jeong, M. J., & Kleinman, H. K. (2003). Role of thymosin beta4 in tumor metastasis and angiogenesis. Journal of the National Cancer Institute, 95, 1674–1680.PubMed Cha, H. J., Jeong, M. J., & Kleinman, H. K. (2003). Role of thymosin beta4 in tumor metastasis and angiogenesis. Journal of the National Cancer Institute, 95, 1674–1680.PubMed
13.
go back to reference Ballweber, E., Hannappel, E., Huff, T., Stephan, H., Haener, M., Taschner, N., et al. (2002). Polymerisation of chemically cross-linked actin:thymosin beta(4) complex to filamentous actin: alteration in helical parameters and visualisation of thymosin beta(4) binding on F-actin. Journal of Molecular Biology, 315, 613–625.PubMedCrossRef Ballweber, E., Hannappel, E., Huff, T., Stephan, H., Haener, M., Taschner, N., et al. (2002). Polymerisation of chemically cross-linked actin:thymosin beta(4) complex to filamentous actin: alteration in helical parameters and visualisation of thymosin beta(4) binding on F-actin. Journal of Molecular Biology, 315, 613–625.PubMedCrossRef
14.
go back to reference Bittner, M., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., et al. (2000). Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature, 406, 536–540.PubMedCrossRef Bittner, M., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., et al. (2000). Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature, 406, 536–540.PubMedCrossRef
15.
go back to reference Jaeger, J., Koczan, D., Thiesen, H. J., Ibrahim, S. M., Gross, G., Spang, R., et al. (2007). Gene expression signatures for tumor progression, tumor subtype, and tumor thickness in laser-microdissected melanoma tissues. Clinical Cancer Research, 13, 806–815.PubMedCrossRef Jaeger, J., Koczan, D., Thiesen, H. J., Ibrahim, S. M., Gross, G., Spang, R., et al. (2007). Gene expression signatures for tumor progression, tumor subtype, and tumor thickness in laser-microdissected melanoma tissues. Clinical Cancer Research, 13, 806–815.PubMedCrossRef
16.
go back to reference Winnepenninckx, V., Lazar, V., Michiels, S., Dessen, P., Stas, M., Alonso, S. R., et al. (2006). Gene expression profiling of primary cutaneous melanoma and clinical outcome. Journal of the National Cancer Institute, 98, 472–482.PubMed Winnepenninckx, V., Lazar, V., Michiels, S., Dessen, P., Stas, M., Alonso, S. R., et al. (2006). Gene expression profiling of primary cutaneous melanoma and clinical outcome. Journal of the National Cancer Institute, 98, 472–482.PubMed
17.
go back to reference Haqq, C., Nosrati, M., Sudilovsky, D., Crothers, J., Khodabakhsh, D., Pulliam, B. L., et al. (2005). The gene expression signatures of melanoma progression. Proceedings of the National Academy of Sciences of the United States of America, 102, 6092–6097.PubMedCrossRef Haqq, C., Nosrati, M., Sudilovsky, D., Crothers, J., Khodabakhsh, D., Pulliam, B. L., et al. (2005). The gene expression signatures of melanoma progression. Proceedings of the National Academy of Sciences of the United States of America, 102, 6092–6097.PubMedCrossRef
18.
go back to reference Ryu, B., Kim, D. S., Deluca, A. M., & Alani, R. M. (2007). Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PLoS ONE, 2, e594.PubMedCrossRef Ryu, B., Kim, D. S., Deluca, A. M., & Alani, R. M. (2007). Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PLoS ONE, 2, e594.PubMedCrossRef
19.
go back to reference Alonso, S. R., Tracey, L., Ortiz, P., Perez-Gomez, B., Palacios, J., Pollan, M., et al. (2007). A high-throughput study in melanoma identifies epithelial–mesenchymal transition as a major determinant of metastasis. Cancer Research, 67, 3450–3460.PubMedCrossRef Alonso, S. R., Tracey, L., Ortiz, P., Perez-Gomez, B., Palacios, J., Pollan, M., et al. (2007). A high-throughput study in melanoma identifies epithelial–mesenchymal transition as a major determinant of metastasis. Cancer Research, 67, 3450–3460.PubMedCrossRef
20.
go back to reference Eguchi, T., Takaki, T., Itadani, H., & Kotani, H. (2007). RB silencing compromises the DNA damage-induced G2/M checkpoint and causes deregulated expression of the ECT2 oncogene. Oncogene, 26, 509–520.PubMedCrossRef Eguchi, T., Takaki, T., Itadani, H., & Kotani, H. (2007). RB silencing compromises the DNA damage-induced G2/M checkpoint and causes deregulated expression of the ECT2 oncogene. Oncogene, 26, 509–520.PubMedCrossRef
21.
go back to reference Saito, S., Liu, X. F., Kamijo, K., Raziuddin, R., Tatsumoto, T., Okamoto, I., et al. (2004). Deregulation and mislocalization of the cytokinesis regulator ECT2 activate the Rho signaling pathways leading to malignant transformation. Journal of Biological Chemistry, 279, 7169–7179.PubMedCrossRef Saito, S., Liu, X. F., Kamijo, K., Raziuddin, R., Tatsumoto, T., Okamoto, I., et al. (2004). Deregulation and mislocalization of the cytokinesis regulator ECT2 activate the Rho signaling pathways leading to malignant transformation. Journal of Biological Chemistry, 279, 7169–7179.PubMedCrossRef
22.
go back to reference O’Brien, S. L., Fagan, A., Fox, E. J., Millikan, R. C., Culhane, A. C., Brennan, D. J., et al. (2007). CENP-F expression is associated with poor prognosis and chromosomal instability in patients with primary breast cancer. International Journal of Cancer, 120, 1434–1443.CrossRef O’Brien, S. L., Fagan, A., Fox, E. J., Millikan, R. C., Culhane, A. C., Brennan, D. J., et al. (2007). CENP-F expression is associated with poor prognosis and chromosomal instability in patients with primary breast cancer. International Journal of Cancer, 120, 1434–1443.CrossRef
23.
go back to reference Zhu, X., Mancini, M. A., Chang, K. H., Liu, C. Y., Chen, C. F., Shan, B., et al. (1995). Characterization of a novel 350-kilodalton nuclear phosphoprotein that is specifically involved in mitotic-phase progression. Molecular and Cellular Biology, 15, 5017–5029.PubMed Zhu, X., Mancini, M. A., Chang, K. H., Liu, C. Y., Chen, C. F., Shan, B., et al. (1995). Characterization of a novel 350-kilodalton nuclear phosphoprotein that is specifically involved in mitotic-phase progression. Molecular and Cellular Biology, 15, 5017–5029.PubMed
24.
go back to reference Laoukili, J., Kooistra, M. R., Bras, A., Kauw, J., Kerkhoven, R. M., Morrison, A., et al. (2005). FoxM1 is required for execution of the mitotic programme and chromosome stability. Nature Cell Biology, 7, 126–136.PubMedCrossRef Laoukili, J., Kooistra, M. R., Bras, A., Kauw, J., Kerkhoven, R. M., Morrison, A., et al. (2005). FoxM1 is required for execution of the mitotic programme and chromosome stability. Nature Cell Biology, 7, 126–136.PubMedCrossRef
25.
go back to reference Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., et al. (2002). Mutations of the BRAF gene in human cancer. Nature, 417, 949–954.PubMedCrossRef Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., et al. (2002). Mutations of the BRAF gene in human cancer. Nature, 417, 949–954.PubMedCrossRef
26.
go back to reference Libra, M., Malaponte, G., Navolanic, P. M., Gangemi, P., Bevelacqua, V., Proietti, L., et al. (2005). Analysis of BRAF mutation in primary and metastatic melanoma. Cell Cycle, 4, 1382–1384.PubMed Libra, M., Malaponte, G., Navolanic, P. M., Gangemi, P., Bevelacqua, V., Proietti, L., et al. (2005). Analysis of BRAF mutation in primary and metastatic melanoma. Cell Cycle, 4, 1382–1384.PubMed
27.
go back to reference Pollock, P. M., Harper, U. L., Hansen, K. S., Yudt, L. M., Stark, M., Robbins, C. M., et al. (2003). High frequency of BRAF mutations in nevi. Nature Genetics, 33, 19–20.PubMedCrossRef Pollock, P. M., Harper, U. L., Hansen, K. S., Yudt, L. M., Stark, M., Robbins, C. M., et al. (2003). High frequency of BRAF mutations in nevi. Nature Genetics, 33, 19–20.PubMedCrossRef
28.
go back to reference Dumaz, N., Hayward, R., Martin, J., Ogilvie, L., Hedley, D., Curtin, J. A., et al. (2006). In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Research, 66, 9483–9491.PubMedCrossRef Dumaz, N., Hayward, R., Martin, J., Ogilvie, L., Hedley, D., Curtin, J. A., et al. (2006). In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Research, 66, 9483–9491.PubMedCrossRef
29.
go back to reference Petti, C., Molla, A., Vegetti, C., Ferrone, S., Anichini, A., & Sensi, M. (2006). Coexpression of NRASQ61R and BRAFV600E in human melanoma cells activates senescence and increases susceptibility to cell-mediated cytotoxicity. Cancer Research, 66, 6503–6511.PubMedCrossRef Petti, C., Molla, A., Vegetti, C., Ferrone, S., Anichini, A., & Sensi, M. (2006). Coexpression of NRASQ61R and BRAFV600E in human melanoma cells activates senescence and increases susceptibility to cell-mediated cytotoxicity. Cancer Research, 66, 6503–6511.PubMedCrossRef
30.
go back to reference Bottazzi, M. E., Zhu, X., Bohmer, R. M., & Assoian, R. K. (1999). Regulation of p21(cip1) expression by growth factors and the extracellular matrix reveals a role for transient ERK activity in G1 phase. Journal of Cell Biology, 146, 1255–1264.PubMedCrossRef Bottazzi, M. E., Zhu, X., Bohmer, R. M., & Assoian, R. K. (1999). Regulation of p21(cip1) expression by growth factors and the extracellular matrix reveals a role for transient ERK activity in G1 phase. Journal of Cell Biology, 146, 1255–1264.PubMedCrossRef
31.
go back to reference Zhu, X., Ohtsubo, M., Bohmer, R. M., Roberts, J. M., & Assoian, R. K. (1996). Adhesion-dependent cell cycle progression linked to the expression of cyclin D1, activation of cyclin E-cdk2, and phosphorylation of the retinoblastoma protein. Journal of Cell Biology, 133, 391–403.PubMedCrossRef Zhu, X., Ohtsubo, M., Bohmer, R. M., Roberts, J. M., & Assoian, R. K. (1996). Adhesion-dependent cell cycle progression linked to the expression of cyclin D1, activation of cyclin E-cdk2, and phosphorylation of the retinoblastoma protein. Journal of Cell Biology, 133, 391–403.PubMedCrossRef
32.
go back to reference Bhatt, K. V., Spofford, L. S., Aram, G., McMullen, M., Pumiglia, K., & Aplin, A. E. (2005). Adhesion control of cyclin D1 and p27Kip1 levels is deregulated in melanoma cells through BRAF-MEK-ERK signaling. Oncogene, 24, 3459–3471.PubMedCrossRef Bhatt, K. V., Spofford, L. S., Aram, G., McMullen, M., Pumiglia, K., & Aplin, A. E. (2005). Adhesion control of cyclin D1 and p27Kip1 levels is deregulated in melanoma cells through BRAF-MEK-ERK signaling. Oncogene, 24, 3459–3471.PubMedCrossRef
33.
go back to reference Sumimoto, H., Imabayashi, F., Iwata, T., & Kawakami, Y. (2006). The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. Journal of Experimental Medicine, 203, 1651–1656.PubMedCrossRef Sumimoto, H., Imabayashi, F., Iwata, T., & Kawakami, Y. (2006). The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. Journal of Experimental Medicine, 203, 1651–1656.PubMedCrossRef
34.
go back to reference Byzova, T. V., Goldman, C. K., Pampori, N., Thomas, K. A., Bett, A., Shattil, S. J., et al. (2000). A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Molecular Cell, 6, 851–860.PubMed Byzova, T. V., Goldman, C. K., Pampori, N., Thomas, K. A., Bett, A., Shattil, S. J., et al. (2000). A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Molecular Cell, 6, 851–860.PubMed
35.
go back to reference Michaloglou, C., Vredeveld, L. C., Soengas, M. S., Denoyelle, C., Kuilman, T., van der Horst, C. M., et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature, 436, 720–724.PubMedCrossRef Michaloglou, C., Vredeveld, L. C., Soengas, M. S., Denoyelle, C., Kuilman, T., van der Horst, C. M., et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature, 436, 720–724.PubMedCrossRef
36.
go back to reference Gao, L., Feng, Y., Bowers, R., Becker-Hapak, M., Gardner, J., Council, L., et al. (2006). Ras-associated protein-1 regulates extracellular signal-regulated kinase activation and migration in melanoma cells: two processes important to melanoma tumorigenesis and metastasis. Cancer Research, 66, 7880–7888.PubMedCrossRef Gao, L., Feng, Y., Bowers, R., Becker-Hapak, M., Gardner, J., Council, L., et al. (2006). Ras-associated protein-1 regulates extracellular signal-regulated kinase activation and migration in melanoma cells: two processes important to melanoma tumorigenesis and metastasis. Cancer Research, 66, 7880–7888.PubMedCrossRef
37.
go back to reference Kooistra, M. R., Dube, N., & Bos, J. L. (2007). Rap1: a key regulator in cell–cell junction formation. Journal of Cell Science, 120, 17–22.PubMedCrossRef Kooistra, M. R., Dube, N., & Bos, J. L. (2007). Rap1: a key regulator in cell–cell junction formation. Journal of Cell Science, 120, 17–22.PubMedCrossRef
38.
go back to reference Koistinen, P., Ahonen, M., Kahari, V. M., & Heino, J. (2004). alphaV integrin promotes in vitro and in vivo survival of cells in metastatic melanoma. International Journal of Cancer, 112, 61–70.CrossRef Koistinen, P., Ahonen, M., Kahari, V. M., & Heino, J. (2004). alphaV integrin promotes in vitro and in vivo survival of cells in metastatic melanoma. International Journal of Cancer, 112, 61–70.CrossRef
39.
go back to reference Huntington, J. T., Shields, J. M., Der, C. J., Wyatt, C. A., Benbow, U., & Slingluff Jr., C. L. (2004). Overexpression of collagenase 1 (MMP-1) is mediated by the ERK pathway in invasive melanoma cells: role of BRAF mutation and fibroblast growth factor signaling. Journal of Biological Chemistry, 279, 33168–33176.PubMedCrossRef Huntington, J. T., Shields, J. M., Der, C. J., Wyatt, C. A., Benbow, U., & Slingluff Jr., C. L. (2004). Overexpression of collagenase 1 (MMP-1) is mediated by the ERK pathway in invasive melanoma cells: role of BRAF mutation and fibroblast growth factor signaling. Journal of Biological Chemistry, 279, 33168–33176.PubMedCrossRef
40.
go back to reference Chu, C. L., Reenstra, W. R., Orlow, D. L., & Svoboda, K. K. (2000). Erk and PI-3 kinase are necessary for collagen binding and actin reorganization in corneal epithelia. Investigative Ophthalmology and Visual Science, 41, 3374–3382.PubMed Chu, C. L., Reenstra, W. R., Orlow, D. L., & Svoboda, K. K. (2000). Erk and PI-3 kinase are necessary for collagen binding and actin reorganization in corneal epithelia. Investigative Ophthalmology and Visual Science, 41, 3374–3382.PubMed
41.
go back to reference Hess, A. R., & Hendrix, M. J. (2006). Focal adhesion kinase signaling and the aggressive melanoma phenotype. Cell Cycle, 5, 478–480.PubMed Hess, A. R., & Hendrix, M. J. (2006). Focal adhesion kinase signaling and the aggressive melanoma phenotype. Cell Cycle, 5, 478–480.PubMed
42.
go back to reference Goel, V. K., Lazar, A. J., Warneke, C. L., Redston, M. S., & Haluska, F. G. (2006). Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. Journal of Investigative Dermatology, 126, 154–160.PubMedCrossRef Goel, V. K., Lazar, A. J., Warneke, C. L., Redston, M. S., & Haluska, F. G. (2006). Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. Journal of Investigative Dermatology, 126, 154–160.PubMedCrossRef
43.
go back to reference Kim, A., Oh, J. H., Park, J. M., & Chung, A. S. (2007). Methylselenol generated from selenomethionine by methioninase downregulates integrin expression and induces caspase-mediated apoptosis of B16F10 melanoma cells. Journal of Cellular Physiology, 212, 386–400.PubMedCrossRef Kim, A., Oh, J. H., Park, J. M., & Chung, A. S. (2007). Methylselenol generated from selenomethionine by methioninase downregulates integrin expression and induces caspase-mediated apoptosis of B16F10 melanoma cells. Journal of Cellular Physiology, 212, 386–400.PubMedCrossRef
44.
go back to reference Smalley, K. S., Haass, N. K., Brafford, P. A., Lioni, M., Flaherty, K. T., et al. (2006). Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Molecular Cancer Therapeutics, 5, 1136–1144.PubMedCrossRef Smalley, K. S., Haass, N. K., Brafford, P. A., Lioni, M., Flaherty, K. T., et al. (2006). Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Molecular Cancer Therapeutics, 5, 1136–1144.PubMedCrossRef
45.
go back to reference Sumimoto, H., Miyagishi, M., Miyoshi, H., Yamagata, S., Shimizu, A., et al. (2004). Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene, 23, 6031–6039.PubMedCrossRef Sumimoto, H., Miyagishi, M., Miyoshi, H., Yamagata, S., Shimizu, A., et al. (2004). Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene, 23, 6031–6039.PubMedCrossRef
46.
go back to reference Liu, Z. J., Xiao, M., Balint, K., Smalley, K. S., Brafford, P., Qiu, R., et al. (2006). Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Research, 66, 4182–4190.PubMedCrossRef Liu, Z. J., Xiao, M., Balint, K., Smalley, K. S., Brafford, P., Qiu, R., et al. (2006). Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Research, 66, 4182–4190.PubMedCrossRef
47.
go back to reference Dai, D. L., Martinka, M., & Li, G. (2005). Prognostic significance of activated Akt expression in melanoma: a clinicopathologic study of 292 cases. Journal of Cellular Physiology, 23, 1473–1482. Dai, D. L., Martinka, M., & Li, G. (2005). Prognostic significance of activated Akt expression in melanoma: a clinicopathologic study of 292 cases. Journal of Cellular Physiology, 23, 1473–1482.
48.
go back to reference Hakem, A., Sanchez-Sweatman, O., You-Ten, A., Duncan, G., Wakeham, A., Khokha, R., et al. (2005). RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes & Development, 19, 1974–1979.CrossRef Hakem, A., Sanchez-Sweatman, O., You-Ten, A., Duncan, G., Wakeham, A., Khokha, R., et al. (2005). RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes & Development, 19, 1974–1979.CrossRef
49.
go back to reference Croft, D. R., Sahai, E., Mavria, G., Li, S., Tsai, J., Lee, W. M., et al. (2004). Conditional ROCK activation in vivo induces tumor cell dissemination and angiogenesis. Cancer Research, 64, 8994–9001.PubMedCrossRef Croft, D. R., Sahai, E., Mavria, G., Li, S., Tsai, J., Lee, W. M., et al. (2004). Conditional ROCK activation in vivo induces tumor cell dissemination and angiogenesis. Cancer Research, 64, 8994–9001.PubMedCrossRef
50.
go back to reference Ruth, M. C., Xu, Y., Maxwell, I. H., Ahn, N. G., Norris, D. A., & Shellman, Y. G. (2006). RhoC promotes human melanoma invasion in a PI3K/Akt-dependent pathway. Journal of Investigative Dermatology, 126, 862–868.PubMedCrossRef Ruth, M. C., Xu, Y., Maxwell, I. H., Ahn, N. G., Norris, D. A., & Shellman, Y. G. (2006). RhoC promotes human melanoma invasion in a PI3K/Akt-dependent pathway. Journal of Investigative Dermatology, 126, 862–868.PubMedCrossRef
51.
go back to reference Stashl, J. M., Sharma, A., Cheung, M., Zimmerman, M., Cheng, J. Q., Bosenberg, M. W., et al. (2004). Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Research, 64, 7002–7010.CrossRef Stashl, J. M., Sharma, A., Cheung, M., Zimmerman, M., Cheng, J. Q., Bosenberg, M. W., et al. (2004). Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Research, 64, 7002–7010.CrossRef
52.
go back to reference Govindarajan, B., Sligh, J. E., Vincent, B. J., Li, M., Canter, J. A., Nickoloff, B. J., et al. (2007). Overexpression of Akt converts radial growth melanoma to vertical growth melanoma. Journal of Clinical Investigation, 117, 719–729.PubMedCrossRef Govindarajan, B., Sligh, J. E., Vincent, B. J., Li, M., Canter, J. A., Nickoloff, B. J., et al. (2007). Overexpression of Akt converts radial growth melanoma to vertical growth melanoma. Journal of Clinical Investigation, 117, 719–729.PubMedCrossRef
53.
go back to reference Kleer, C. G., Griffith, K. A., Sabel, M. S., Gallagher, G., van Golen, K. L., Wu, Z. F., et al. (2005). RhoC-GTPase is a novel tissue biomarker associated with biologically aggressive carcinomas of the breast. Breast Cancer Research and Treatment, 93, 101–110.PubMedCrossRef Kleer, C. G., Griffith, K. A., Sabel, M. S., Gallagher, G., van Golen, K. L., Wu, Z. F., et al. (2005). RhoC-GTPase is a novel tissue biomarker associated with biologically aggressive carcinomas of the breast. Breast Cancer Research and Treatment, 93, 101–110.PubMedCrossRef
54.
go back to reference Yao, H., Dashner, E. J., van Golen, C. M., & van Golen, K. L. (2006). RhoC GTPase is required for PC-3 prostate cancer cell invasion but not motility. Oncogene, 25, 2285–2296.PubMedCrossRef Yao, H., Dashner, E. J., van Golen, C. M., & van Golen, K. L. (2006). RhoC GTPase is required for PC-3 prostate cancer cell invasion but not motility. Oncogene, 25, 2285–2296.PubMedCrossRef
55.
go back to reference Shikada, Y., Yoshino, I., Okamoto, T., Fukuyama, S., Kameyama, T., & Maehara, Y. (2003). Higher expression of RhoC is related to invasiveness in non-small cell lung carcinoma. Clinical Cancer Research, 9, 5282–5286.PubMed Shikada, Y., Yoshino, I., Okamoto, T., Fukuyama, S., Kameyama, T., & Maehara, Y. (2003). Higher expression of RhoC is related to invasiveness in non-small cell lung carcinoma. Clinical Cancer Research, 9, 5282–5286.PubMed
56.
go back to reference Thiery, J. P. (2003). Epithelial-mesenchymal transitions in development and pathologies. Current Opinion in Cell Biology, 15, 740–746.PubMedCrossRef Thiery, J. P. (2003). Epithelial-mesenchymal transitions in development and pathologies. Current Opinion in Cell Biology, 15, 740–746.PubMedCrossRef
57.
go back to reference Danen, E. H., de Vries, T. J., Morandini, R., Ghanem, G. G., Ruiter, D. J., & van Muijen, G. N. (1996). E-cadherin expression in human melanoma. Melanoma Research, 6, 127–131.PubMedCrossRef Danen, E. H., de Vries, T. J., Morandini, R., Ghanem, G. G., Ruiter, D. J., & van Muijen, G. N. (1996). E-cadherin expression in human melanoma. Melanoma Research, 6, 127–131.PubMedCrossRef
58.
go back to reference Hsu, M. Y., Wheelock, M. J., Johnson, K. R., & Herlyn, M. (1996). Shifts in cadherin profiles between human normal melanocytes and melanomas. Journal of Investigative Dermatology Symposium Proceedings, 1, 188–194. Hsu, M. Y., Wheelock, M. J., Johnson, K. R., & Herlyn, M. (1996). Shifts in cadherin profiles between human normal melanocytes and melanomas. Journal of Investigative Dermatology Symposium Proceedings, 1, 188–194.
59.
go back to reference Qi, J., Chen, N., Wang, J., & Siu, C. H. (2005). Transendothelial migration of melanoma cells involves N-cadherin-mediated adhesion and activation of the beta-catenin signaling pathway. Molecular Biology of the Cell, 16, 4386–4397.PubMedCrossRef Qi, J., Chen, N., Wang, J., & Siu, C. H. (2005). Transendothelial migration of melanoma cells involves N-cadherin-mediated adhesion and activation of the beta-catenin signaling pathway. Molecular Biology of the Cell, 16, 4386–4397.PubMedCrossRef
60.
go back to reference Sandig, M., Voura, E. B., Kalnins, V. I., & Siu, C. H. (1997). Role of cadherins in the transendothelial migration of melanoma cells in culture. Cell Motility and the Cytoskeleton, 38, 351–364.PubMedCrossRef Sandig, M., Voura, E. B., Kalnins, V. I., & Siu, C. H. (1997). Role of cadherins in the transendothelial migration of melanoma cells in culture. Cell Motility and the Cytoskeleton, 38, 351–364.PubMedCrossRef
61.
go back to reference Qi, J., Wang, J., Romanyuk, O., & Siu, C. H. (2006). Involvement of Src family kinases in N-cadherin phosphorylation and beta-catenin dissociation during transendothelial migration of melanoma cells. Molecular Biology of the Cell, 17, 1261–1272.PubMedCrossRef Qi, J., Wang, J., Romanyuk, O., & Siu, C. H. (2006). Involvement of Src family kinases in N-cadherin phosphorylation and beta-catenin dissociation during transendothelial migration of melanoma cells. Molecular Biology of the Cell, 17, 1261–1272.PubMedCrossRef
62.
go back to reference Watson-Hurst, K., & Becker, D. (2006). The Role of N-Cadherin, MCAM and beta(3) integrin in melanoma progression, proliferation, migration and invasion. Cancer Biotherapy, 5, 1375–1382. Watson-Hurst, K., & Becker, D. (2006). The Role of N-Cadherin, MCAM and beta(3) integrin in melanoma progression, proliferation, migration and invasion. Cancer Biotherapy, 5, 1375–1382.
63.
go back to reference Larue, L., & Delmas, V. (2006). The WNT/Beta-catenin pathway in melanoma. Frontiers in Bioscience, 11, 733–742.PubMedCrossRef Larue, L., & Delmas, V. (2006). The WNT/Beta-catenin pathway in melanoma. Frontiers in Bioscience, 11, 733–742.PubMedCrossRef
64.
go back to reference Miyagishi, M., Fujii, R., Hatta, M., Yoshida, E., Araya, N., Nagafuchi, A., et al. (2000). Regulation of Lef-mediated transcription and p53-dependent pathway by associating beta-catenin with CBP/p300. Journal of Biological Chemistry, 275, 35170–35175.PubMedCrossRef Miyagishi, M., Fujii, R., Hatta, M., Yoshida, E., Araya, N., Nagafuchi, A., et al. (2000). Regulation of Lef-mediated transcription and p53-dependent pathway by associating beta-catenin with CBP/p300. Journal of Biological Chemistry, 275, 35170–35175.PubMedCrossRef
65.
go back to reference Nieto, M. A. (2002). The snail superfamily of zinc-finger transcription factors. Nature Reviews, Molecular Cell Biology, 3, 155–166.CrossRef Nieto, M. A. (2002). The snail superfamily of zinc-finger transcription factors. Nature Reviews, Molecular Cell Biology, 3, 155–166.CrossRef
66.
go back to reference Poser, I., Dominguez, D., de Herreros, A. G., Varnai, A., Buettner, R., & Bosserhoff, A. K. (2001). Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. Journal of Biological Chemistry, 276, 24661–24666.PubMedCrossRef Poser, I., Dominguez, D., de Herreros, A. G., Varnai, A., Buettner, R., & Bosserhoff, A. K. (2001). Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. Journal of Biological Chemistry, 276, 24661–24666.PubMedCrossRef
67.
go back to reference Kippenberger, S., Loitsch, S., Thaci, D., Muller, J., Guschel, M., Kaufmann, R., et al. (2006). Restoration of E-cadherin sensitizes human melanoma cells for apoptosis. Melanoma Research, 16, 393–403.PubMedCrossRef Kippenberger, S., Loitsch, S., Thaci, D., Muller, J., Guschel, M., Kaufmann, R., et al. (2006). Restoration of E-cadherin sensitizes human melanoma cells for apoptosis. Melanoma Research, 16, 393–403.PubMedCrossRef
68.
go back to reference Kuphal, S., Palm, H. G., Poser, I., & Bosserhoff, A. K. (2005). Snail-regulated genes in malignant melanoma. Melanoma Research, 15, 305–313.PubMedCrossRef Kuphal, S., Palm, H. G., Poser, I., & Bosserhoff, A. K. (2005). Snail-regulated genes in malignant melanoma. Melanoma Research, 15, 305–313.PubMedCrossRef
69.
go back to reference Cano, A., Perez-Moreno, M. A., Rodrigo, I., Locascio, A., Blanco, M. J., del Barrio, M. G., et al. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2, 76–83.PubMedCrossRef Cano, A., Perez-Moreno, M. A., Rodrigo, I., Locascio, A., Blanco, M. J., del Barrio, M. G., et al. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2, 76–83.PubMedCrossRef
70.
go back to reference Bienz, M. (2005). beta-Catenin: a pivot between cell adhesion and Wnt signalling. Current Biology, 15, R64–R67.PubMedCrossRef Bienz, M. (2005). beta-Catenin: a pivot between cell adhesion and Wnt signalling. Current Biology, 15, R64–R67.PubMedCrossRef
71.
go back to reference Smith, A. P., Hoek, K., & Becker, D. (2005). Whole-genome expression profiling of the melanoma progression pathway reveals marked molecular differences between nevi/melanoma in situ and advanced-stage melanomas. Cancer Biotherapy, 4, 1018–1029. Smith, A. P., Hoek, K., & Becker, D. (2005). Whole-genome expression profiling of the melanoma progression pathway reveals marked molecular differences between nevi/melanoma in situ and advanced-stage melanomas. Cancer Biotherapy, 4, 1018–1029.
72.
go back to reference Ma, H., Nguyen, C., Lee, K. S., & Kahn, M. (2005). Differential roles for the coactivators CBP and p300 on TCF/beta-catenin-mediated survivin gene expression. Oncogene, 24, 3619–3631.PubMedCrossRef Ma, H., Nguyen, C., Lee, K. S., & Kahn, M. (2005). Differential roles for the coactivators CBP and p300 on TCF/beta-catenin-mediated survivin gene expression. Oncogene, 24, 3619–3631.PubMedCrossRef
73.
go back to reference Garraway, L. A., Widlund, H. R., Rubin, M. A., Getz, G., Berger, A. J., Ramaswamy, S., et al. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature, 436, 117–122.PubMedCrossRef Garraway, L. A., Widlund, H. R., Rubin, M. A., Getz, G., Berger, A. J., Ramaswamy, S., et al. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature, 436, 117–122.PubMedCrossRef
74.
go back to reference Loercher, A. E., Tank, E. M., Delston, R. B., & Harbour, J. W. (2005). MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. Journal of Cell Biology, 168, 35–40.PubMedCrossRef Loercher, A. E., Tank, E. M., Delston, R. B., & Harbour, J. W. (2005). MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. Journal of Cell Biology, 168, 35–40.PubMedCrossRef
75.
go back to reference Levy, C., Khaled, M., & Fisher, D. E. (2006). MITF: master regulator of melanocyte development and melanoma oncogene. Trends in Molecular Medicine, 12, 406–414.PubMedCrossRef Levy, C., Khaled, M., & Fisher, D. E. (2006). MITF: master regulator of melanocyte development and melanoma oncogene. Trends in Molecular Medicine, 12, 406–414.PubMedCrossRef
76.
go back to reference Schepsky, A., Bruser, K., Gunnarsson, G. J., Goodall, J., Hallsson, J. H., Goding, C. R., et al. (2006). The microphthalmia-associated transcription factor Mitf interacts with beta-catenin to determine target gene expression. Molecular and Cellular Biology, 26, 8914–8927.PubMedCrossRef Schepsky, A., Bruser, K., Gunnarsson, G. J., Goodall, J., Hallsson, J. H., Goding, C. R., et al. (2006). The microphthalmia-associated transcription factor Mitf interacts with beta-catenin to determine target gene expression. Molecular and Cellular Biology, 26, 8914–8927.PubMedCrossRef
77.
go back to reference Hemesath, T. J., Price, E. R., Takemoto, C., Badalian, T., & Fisher, D. E. (1998). MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature, 391, 298–301.PubMedCrossRef Hemesath, T. J., Price, E. R., Takemoto, C., Badalian, T., & Fisher, D. E. (1998). MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature, 391, 298–301.PubMedCrossRef
Metadata
Title
Cell cycle control and adhesion signaling pathways in the development of metastatic melanoma
Authors
A. V. Danilov
O. V. Danilova
B. T. Huber
Publication date
01-12-2008
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2008
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9159-2

Other articles of this Issue 4/2008

Cancer and Metastasis Reviews 4/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine