Skip to main content
Top
Published in: Respiratory Research 1/2006

Open Access 01-12-2006 | Research

IgE sensitisation in relation to flow-independent nitric oxide exchange parameters

Authors: Andrei Malinovschi, Christer Janson, Thomas Holmkvist, Dan Norbäck, Pekka Meriläinen, Marieann Högman

Published in: Respiratory Research | Issue 1/2006

Login to get access

Abstract

Background

A positive association between IgE sensitisation and exhaled NO levels has been found in several studies, but there are no reports on the compartment of the lung that is responsible for the increase in exhaled NO levels seen in IgE-sensitised subjects.

Methods

The present study comprised 288 adult subjects from the European Community Respiratory Health Survey II who were investigated in terms of lung function, IgE sensitisation (sum of specific IgE), smoking history and presence of rhinitis and asthma. Mean airway tissue concentration of NO (CawNO), airway transfer factor for NO (DawNO), mean alveolar concentration of NO (CalvNO) and fractional exhaled concentration of NO at a flow rate of 50 mL s-1 (FENO 0.05) were determined using the extended NO analysis.

Results

IgE-sensitised subjects had higher levels (geometric mean) of FENO 0.05 (24.9 vs. 17.3 ppb) (p < 0.001), DawNO (10.5 vs. 8 mL s-1) (p = 0.02) and CawNO (124 vs. 107 ppb) (p < 0.001) and positive correlations were found between the sum of specific IgE and FENO 0.05, CawNO and DawNO levels (p < 0.001 for all correlations). Sensitisation to cat allergen was the major determinant of exhaled NO when adjusting for type of sensitisation. Rhinitis and asthma were not associated with the increase in exhaled NO variables after adjusting for the degree of IgE sensitisation.

Conclusion

The presence of IgE sensitisation and the degree of allergic sensitisation were related to the increase in airway NO transfer factor and the increase in NO concentration in the airway wall. Sensitisation to cat allergen was related to the highest increases in exhaled NO parameters. Our data suggest that exhaled NO is more a specific marker of allergic inflammation than a marker of asthma or rhinitis.
Literature
1.
go back to reference Adisesh LA, Kharitonov SA, Yates DH, Snashell DC, Newman-Taylor AJ, Barnes PJ: Exhaled and nasal nitric oxide is increased in laboratory animal allergy. Clin Exp Allergy 1998, 28:876–880.CrossRefPubMed Adisesh LA, Kharitonov SA, Yates DH, Snashell DC, Newman-Taylor AJ, Barnes PJ: Exhaled and nasal nitric oxide is increased in laboratory animal allergy. Clin Exp Allergy 1998, 28:876–880.CrossRefPubMed
2.
go back to reference Horvath I, Barnes PJ: Exhaled monoxides in asymptomatic atopic subjects. Clin Exp Allergy 1999, 29:1276–1280.CrossRefPubMed Horvath I, Barnes PJ: Exhaled monoxides in asymptomatic atopic subjects. Clin Exp Allergy 1999, 29:1276–1280.CrossRefPubMed
3.
go back to reference Franklin PJ, Taplin R, Stick SM: A community study of exhaled nitric oxide in healthy children. Am J Respir Crit Care Med 1999, 159:69–73.CrossRefPubMed Franklin PJ, Taplin R, Stick SM: A community study of exhaled nitric oxide in healthy children. Am J Respir Crit Care Med 1999, 159:69–73.CrossRefPubMed
4.
go back to reference Barreto M, Villa MP, Martella S, Ronchetti F, Darder MT, Falasca C, Pagani J, Massa F, Ronchetti R: Exhaled nitric oxide in asthmatic and non-asthmatic children: influence of type of allergen sensitization and exposure to tobacco smoke. Pediatr Allergy Immunol 2001, 12:247–256.CrossRefPubMed Barreto M, Villa MP, Martella S, Ronchetti F, Darder MT, Falasca C, Pagani J, Massa F, Ronchetti R: Exhaled nitric oxide in asthmatic and non-asthmatic children: influence of type of allergen sensitization and exposure to tobacco smoke. Pediatr Allergy Immunol 2001, 12:247–256.CrossRefPubMed
5.
go back to reference Barreto M, Villa MP, Monti F, Bohmerova Z, Martella S, Montesano M, Darder MT, Ronchetti R: Additive effect of eosinophilia and atopy on exhaled nitric oxide levels in children with or without a history of respiratory symptoms. Pediatr Allergy Immunol 2005, 16:52–58.CrossRefPubMed Barreto M, Villa MP, Monti F, Bohmerova Z, Martella S, Montesano M, Darder MT, Ronchetti R: Additive effect of eosinophilia and atopy on exhaled nitric oxide levels in children with or without a history of respiratory symptoms. Pediatr Allergy Immunol 2005, 16:52–58.CrossRefPubMed
6.
go back to reference Janson C, Kalm-Stephens P, Foucard T, Norback D, Alving K, Nordvall SL: Exhaled nitric oxide levels in school children in relation to IgE sensitisation and window pane condensation. Respir Med 2005, 99:1015–1021.CrossRefPubMed Janson C, Kalm-Stephens P, Foucard T, Norback D, Alving K, Nordvall SL: Exhaled nitric oxide levels in school children in relation to IgE sensitisation and window pane condensation. Respir Med 2005, 99:1015–1021.CrossRefPubMed
7.
go back to reference Chng SY, Van Bever HP, Lian D, Lee SX, Xu XN, Wang XS, Goh DY: Relationship between exhaled nitric oxide and atopy in Asian young adults. Respirology 2005, 10:40–45.CrossRefPubMed Chng SY, Van Bever HP, Lian D, Lee SX, Xu XN, Wang XS, Goh DY: Relationship between exhaled nitric oxide and atopy in Asian young adults. Respirology 2005, 10:40–45.CrossRefPubMed
8.
go back to reference Wickman M, Lilja G, Soderstrom L, van HageHamsten M, Ahlstedt S: Quantitative analysis of IgE antibodies to food and inhalant allergens in 4-year-old children reflects their likelihood of allergic disease. Allergy 2005, 60:650–657.CrossRefPubMed Wickman M, Lilja G, Soderstrom L, van HageHamsten M, Ahlstedt S: Quantitative analysis of IgE antibodies to food and inhalant allergens in 4-year-old children reflects their likelihood of allergic disease. Allergy 2005, 60:650–657.CrossRefPubMed
9.
go back to reference Syk J, Alving K: Correlation between specific serum IgE and exhaled NO levels at low and high inhaled corticosteroid use in allergic asthma. Eur Respir J Suppl 2005, 49:276s. Syk J, Alving K: Correlation between specific serum IgE and exhaled NO levels at low and high inhaled corticosteroid use in allergic asthma. Eur Respir J Suppl 2005, 49:276s.
10.
go back to reference Djukanovic R, Lai CK, Wilson JW, Britten KM, Wilson SJ, Roche WR, Howarth PH, Holgate ST: Bronchial mucosal manifestations of atopy: a comparison of markers of inflammation between atopic asthmatics, atopic nonasthmatics and healthy controls. Eur Respir J 1992, 5:538–544.PubMed Djukanovic R, Lai CK, Wilson JW, Britten KM, Wilson SJ, Roche WR, Howarth PH, Holgate ST: Bronchial mucosal manifestations of atopy: a comparison of markers of inflammation between atopic asthmatics, atopic nonasthmatics and healthy controls. Eur Respir J 1992, 5:538–544.PubMed
11.
go back to reference Ricciardolo FL, Timmers MC, Geppetti P, van Schadewijk A, Brahim JJ, Sont JK, de Gouw HW, Hiemstra PS, van Krieken JH, Sterk PJ: Allergen-induced impairment of bronchoprotective nitric oxide synthesis in asthma. J Allergy Clin Immunol 2001, 108:198–204.CrossRefPubMed Ricciardolo FL, Timmers MC, Geppetti P, van Schadewijk A, Brahim JJ, Sont JK, de Gouw HW, Hiemstra PS, van Krieken JH, Sterk PJ: Allergen-induced impairment of bronchoprotective nitric oxide synthesis in asthma. J Allergy Clin Immunol 2001, 108:198–204.CrossRefPubMed
12.
go back to reference A genome-wide search for asthma susceptibility loci in ethnically diverse populations. The Collaborative Study on the Genetics of Asthma (CSGA)Nat Genet 1997, 15:389–392. A genome-wide search for asthma susceptibility loci in ethnically diverse populations. The Collaborative Study on the Genetics of Asthma (CSGA)Nat Genet 1997, 15:389–392.
13.
go back to reference Lane C, Knight D, Burgess S, Franklin P, Horak F, Legg J, Moeller A, Stick S: Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. Thorax 2004, 59:757–760.CrossRefPubMedPubMedCentral Lane C, Knight D, Burgess S, Franklin P, Horak F, Legg J, Moeller A, Stick S: Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. Thorax 2004, 59:757–760.CrossRefPubMedPubMedCentral
14.
go back to reference George SC, Hogman M, Permutt S, Silkoff PE: Modeling pulmonary nitric oxide exchange. J Appl Physiol 2004, 96:831–839.CrossRefPubMed George SC, Hogman M, Permutt S, Silkoff PE: Modeling pulmonary nitric oxide exchange. J Appl Physiol 2004, 96:831–839.CrossRefPubMed
15.
go back to reference Silkoff PE, Sylvester JT, Zamel N, Permutt S: Airway nitric oxide diffusion in asthma: Role in pulmonary function and bronchial responsiveness. Am J Respir Crit Care Med 2000, 161:1218–1228.CrossRefPubMed Silkoff PE, Sylvester JT, Zamel N, Permutt S: Airway nitric oxide diffusion in asthma: Role in pulmonary function and bronchial responsiveness. Am J Respir Crit Care Med 2000, 161:1218–1228.CrossRefPubMed
16.
go back to reference Lehtimaki L, Turjanmaa V, Kankaanranta H, Saarelainen S, Hahtola P, Moilanen E: Increased bronchial nitric oxide production in patients with asthma measured with a novel method of different exhalation flow rates. Ann Med 2000, 32:417–423.CrossRefPubMed Lehtimaki L, Turjanmaa V, Kankaanranta H, Saarelainen S, Hahtola P, Moilanen E: Increased bronchial nitric oxide production in patients with asthma measured with a novel method of different exhalation flow rates. Ann Med 2000, 32:417–423.CrossRefPubMed
17.
go back to reference Hogman M, Holmkvist T, Wegener T, Emtner M, Andersson M, Hedenstrom H, Merilainen P: Extended NO analysis applied to patients with COPD, allergic asthma and allergic rhinitis. Respir Med 2002, 96:24–30.CrossRefPubMed Hogman M, Holmkvist T, Wegener T, Emtner M, Andersson M, Hedenstrom H, Merilainen P: Extended NO analysis applied to patients with COPD, allergic asthma and allergic rhinitis. Respir Med 2002, 96:24–30.CrossRefPubMed
18.
go back to reference Burney PG, Luczynska C, Chinn S, Jarvis D: The European Community Respiratory Health Survey. Eur Respir J 1994, 7:954–960.CrossRefPubMed Burney PG, Luczynska C, Chinn S, Jarvis D: The European Community Respiratory Health Survey. Eur Respir J 1994, 7:954–960.CrossRefPubMed
19.
go back to reference The European Community Respiratory Health Survey IIEur Respir J 2002, 20:1071–1079. The European Community Respiratory Health Survey IIEur Respir J 2002, 20:1071–1079.
20.
go back to reference Hogman M, Drca N, Ehrstedt C, Merilainen P: Exhaled nitric oxide partitioned into alveolar, lower airways and nasal contributions. Respir Med 2000, 94:985–991.CrossRefPubMed Hogman M, Drca N, Ehrstedt C, Merilainen P: Exhaled nitric oxide partitioned into alveolar, lower airways and nasal contributions. Respir Med 2000, 94:985–991.CrossRefPubMed
21.
go back to reference ATS/ERS Recommendations for Standardized Procedures for the Online and Offline Measurement of Exhaled Lower Respiratory Nitric Oxide and Nasal Nitric Oxide, 2005Am J Respir Crit Care Med 2005, 171:912–930. ATS/ERS Recommendations for Standardized Procedures for the Online and Offline Measurement of Exhaled Lower Respiratory Nitric Oxide and Nasal Nitric Oxide, 2005Am J Respir Crit Care Med 2005, 171:912–930.
22.
go back to reference Standardization of Spirometry, 1994 Update. American Thoracic SocietyAm J Respir Crit Care Med 1995, 152:1107–1136. Standardization of Spirometry, 1994 Update. American Thoracic SocietyAm J Respir Crit Care Med 1995, 152:1107–1136.
23.
go back to reference Standardized lung function testing. Report working partyBull Eur Physiopathol Respir 1983, 19 Suppl 5:1–95. Standardized lung function testing. Report working partyBull Eur Physiopathol Respir 1983, 19 Suppl 5:1–95.
24.
go back to reference Olafsdottir IS, Gislason T, Thjodleifsson B, Olafsson I, Gislason D, Jogi R, Janson C: C reactive protein levels are increased in non-allergic but not allergic asthma: a multicentre epidemiological study. Thorax 2005, 60:451–454.CrossRefPubMedPubMedCentral Olafsdottir IS, Gislason T, Thjodleifsson B, Olafsson I, Gislason D, Jogi R, Janson C: C reactive protein levels are increased in non-allergic but not allergic asthma: a multicentre epidemiological study. Thorax 2005, 60:451–454.CrossRefPubMedPubMedCentral
25.
go back to reference Fang K, Johns R, Macdonald T, Kinter M, Gaston B: S-nitrosoglutathione breakdown prevents airway smooth muscle relaxation in the guinea pig. Am J Physiol Lung Cell Mol Physiol 2000, 279:L716-L721.PubMed Fang K, Johns R, Macdonald T, Kinter M, Gaston B: S-nitrosoglutathione breakdown prevents airway smooth muscle relaxation in the guinea pig. Am J Physiol Lung Cell Mol Physiol 2000, 279:L716-L721.PubMed
26.
go back to reference Hunt JF, Fang K, Malik R, Snyder A, Malhotra N, Platts-Mills TA, Gaston B: Endogenous airway acidification. Implications for asthma pathophysiology. Am J Respir Crit Care Med 2000, 161:694–699.CrossRefPubMed Hunt JF, Fang K, Malik R, Snyder A, Malhotra N, Platts-Mills TA, Gaston B: Endogenous airway acidification. Implications for asthma pathophysiology. Am J Respir Crit Care Med 2000, 161:694–699.CrossRefPubMed
27.
go back to reference Hamid Q, Song Y, Kotsimbos TC, Minshall E, Bai TR, Hegele RG, Hogg JC: Inflammation of small airways in asthma. J Allergy Clin Immunol 1997, 100:44–51.CrossRefPubMed Hamid Q, Song Y, Kotsimbos TC, Minshall E, Bai TR, Hegele RG, Hogg JC: Inflammation of small airways in asthma. J Allergy Clin Immunol 1997, 100:44–51.CrossRefPubMed
28.
go back to reference Amin K, Ludviksdottir D, Janson C, Nettelbladt O, Bjornsson E, Roomans GM, Boman G, Seveus L, Venge P: Inflammation and structural changes in the airways of patients with atopic and nonatopic asthma. BHR Group. Am J Respir Crit Care Med 2000, 162:2295–2301.CrossRefPubMed Amin K, Ludviksdottir D, Janson C, Nettelbladt O, Bjornsson E, Roomans GM, Boman G, Seveus L, Venge P: Inflammation and structural changes in the airways of patients with atopic and nonatopic asthma. BHR Group. Am J Respir Crit Care Med 2000, 162:2295–2301.CrossRefPubMed
29.
go back to reference Braunstahl GJ, Fokkens WJ, Overbeek SE, KleinJan A, Hoogsteden HC, Prins JB: Mucosal and systemic inflammatory changes in allergic rhinitis and asthma: a comparison between upper and lower airways. Clin Exp Allergy 2003, 33:579–587.CrossRefPubMed Braunstahl GJ, Fokkens WJ, Overbeek SE, KleinJan A, Hoogsteden HC, Prins JB: Mucosal and systemic inflammatory changes in allergic rhinitis and asthma: a comparison between upper and lower airways. Clin Exp Allergy 2003, 33:579–587.CrossRefPubMed
30.
go back to reference Blyth DI, Wharton TF, Pedrick MS, Savage TJ, Sanjar S: Airway subepithelial fibrosis in a murine model of atopic asthma: suppression by dexamethasone or anti-interleukin-5 antibody. Am J Respir Cell Mol Biol 2000, 23:241–246.CrossRefPubMed Blyth DI, Wharton TF, Pedrick MS, Savage TJ, Sanjar S: Airway subepithelial fibrosis in a murine model of atopic asthma: suppression by dexamethasone or anti-interleukin-5 antibody. Am J Respir Cell Mol Biol 2000, 23:241–246.CrossRefPubMed
31.
go back to reference Lehtimaki L, Kankaanranta H, Saarelainen S, Turjanmaa V, Moilanen E: Increased alveolar nitric oxide concentration in asthmatic patients with nocturnal symptoms. Eur Respir J 2002, 20:841–845.CrossRefPubMed Lehtimaki L, Kankaanranta H, Saarelainen S, Turjanmaa V, Moilanen E: Increased alveolar nitric oxide concentration in asthmatic patients with nocturnal symptoms. Eur Respir J 2002, 20:841–845.CrossRefPubMed
32.
go back to reference Mahut B, Delacourt C, Zerah-Lancner F, De Blic J, Harf A, Delclaux C: Increase in alveolar nitric oxide in the presence of symptoms in childhood asthma. Chest 2004, 125:1012–1018.CrossRefPubMed Mahut B, Delacourt C, Zerah-Lancner F, De Blic J, Harf A, Delclaux C: Increase in alveolar nitric oxide in the presence of symptoms in childhood asthma. Chest 2004, 125:1012–1018.CrossRefPubMed
33.
go back to reference Cardinale F, de Benedictis FM, Muggeo V, Giordano P, Loffredo MS, Iacoviello G, Armenio L: Exhaled nitric oxide, total serum IgE and allergic sensitization in childhood asthma and allergic rhinitis. Pediatr Allergy Immunol 2005, 16:236–242.CrossRefPubMed Cardinale F, de Benedictis FM, Muggeo V, Giordano P, Loffredo MS, Iacoviello G, Armenio L: Exhaled nitric oxide, total serum IgE and allergic sensitization in childhood asthma and allergic rhinitis. Pediatr Allergy Immunol 2005, 16:236–242.CrossRefPubMed
34.
go back to reference Henriksen AH, Sue-Chu M, Holmen TL, Langhammer A, Bjermer L: Exhaled and nasal NO levels in allergic rhinitis: relation to sensitization, pollen season and bronchial hyperresponsiveness. Eur Respir J 1999, 13:301–306.CrossRefPubMed Henriksen AH, Sue-Chu M, Holmen TL, Langhammer A, Bjermer L: Exhaled and nasal NO levels in allergic rhinitis: relation to sensitization, pollen season and bronchial hyperresponsiveness. Eur Respir J 1999, 13:301–306.CrossRefPubMed
35.
go back to reference van Amsterdam JG, Janssen NA, de Meer G, Fischer PH, Nierkens S, van Loveren H, Opperhuizen A, Steerenberg PA, Brunekreef B: The relationship between exhaled nitric oxide and allergic sensitization in a random sample of school children. Clin Exp Allergy 2003, 33:187–191.CrossRefPubMed van Amsterdam JG, Janssen NA, de Meer G, Fischer PH, Nierkens S, van Loveren H, Opperhuizen A, Steerenberg PA, Brunekreef B: The relationship between exhaled nitric oxide and allergic sensitization in a random sample of school children. Clin Exp Allergy 2003, 33:187–191.CrossRefPubMed
36.
go back to reference Chinn S, Burney P, Sunyer J, Jarvis D, Luczynska C: Sensitization to individual allergens and bronchial responsiveness in the ECRHS. European Community Respiratory Health Survey. Eur Respir J 1999, 14:876–884.CrossRefPubMed Chinn S, Burney P, Sunyer J, Jarvis D, Luczynska C: Sensitization to individual allergens and bronchial responsiveness in the ECRHS. European Community Respiratory Health Survey. Eur Respir J 1999, 14:876–884.CrossRefPubMed
37.
go back to reference Simpson A, Custovic A, Pipis S, Adisesh A, Faragher B, Woodcock A: Exhaled nitric oxide, sensitization, and exposure to allergens in patients with asthma who are not taking inhaled steroids. Am J Respir Crit Care Med 1999, 160:45–49.CrossRefPubMed Simpson A, Custovic A, Pipis S, Adisesh A, Faragher B, Woodcock A: Exhaled nitric oxide, sensitization, and exposure to allergens in patients with asthma who are not taking inhaled steroids. Am J Respir Crit Care Med 1999, 160:45–49.CrossRefPubMed
38.
go back to reference Langley SJ, Goldthorpe S, Craven M, Morris J, Woodcock A, Custovic A: Exposure and sensitization to indoor allergens: association with lung function, bronchial reactivity, and exhaled nitric oxide measures in asthma. J Allergy Clin Immunol 2003, 112:362–368.CrossRefPubMed Langley SJ, Goldthorpe S, Craven M, Morris J, Woodcock A, Custovic A: Exposure and sensitization to indoor allergens: association with lung function, bronchial reactivity, and exhaled nitric oxide measures in asthma. J Allergy Clin Immunol 2003, 112:362–368.CrossRefPubMed
39.
go back to reference Munir AK, Bjorksten B, Einarsson R, Schou C, Ekstrand-Tobin A, Warner A, Kjellman NI: Cat (Fel d I), dog (Can f I), and cockroach allergens in homes of asthmatic children from three climatic zones in Sweden. Allergy 1994, 49:508–516.CrossRefPubMed Munir AK, Bjorksten B, Einarsson R, Schou C, Ekstrand-Tobin A, Warner A, Kjellman NI: Cat (Fel d I), dog (Can f I), and cockroach allergens in homes of asthmatic children from three climatic zones in Sweden. Allergy 1994, 49:508–516.CrossRefPubMed
40.
go back to reference Franklin PJ, Stick SM, Le Souef PN, Ayres JG, Turner SW: Measuring exhaled nitric oxide levels in adults: the importance of atopy and airway responsiveness. Chest 2004, 126:1540–1545.CrossRefPubMed Franklin PJ, Stick SM, Le Souef PN, Ayres JG, Turner SW: Measuring exhaled nitric oxide levels in adults: the importance of atopy and airway responsiveness. Chest 2004, 126:1540–1545.CrossRefPubMed
41.
go back to reference Olin AC, Alving K, Toren K: Exhaled nitric oxide: relation to sensitization and respiratory symptoms. Clin Exp Allergy 2004, 34:221–226.CrossRefPubMed Olin AC, Alving K, Toren K: Exhaled nitric oxide: relation to sensitization and respiratory symptoms. Clin Exp Allergy 2004, 34:221–226.CrossRefPubMed
42.
go back to reference Smith AD, Cowan JO, Brassett KP, Herbison GP, Taylor DR: Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. N Engl J Med 2005, 352:2163–2173.CrossRefPubMed Smith AD, Cowan JO, Brassett KP, Herbison GP, Taylor DR: Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. N Engl J Med 2005, 352:2163–2173.CrossRefPubMed
43.
go back to reference Burney P, Malmberg E, Chinn S, Jarvis D, Luczynska C, Lai E: The distribution of total and specific serum IgE in the European Community Respiratory Health Survey. J Allergy Clin Immunol 1997, 99:314–322.CrossRefPubMed Burney P, Malmberg E, Chinn S, Jarvis D, Luczynska C, Lai E: The distribution of total and specific serum IgE in the European Community Respiratory Health Survey. J Allergy Clin Immunol 1997, 99:314–322.CrossRefPubMed
44.
go back to reference de Marco R, Cerveri I, Bugiani M, Ferrari M, Verlato G: An undetected burden of asthma in Italy: the relationship between clinical and epidemiological diagnosis of asthma. Eur Respir J 1998, 11:599–605.PubMed de Marco R, Cerveri I, Bugiani M, Ferrari M, Verlato G: An undetected burden of asthma in Italy: the relationship between clinical and epidemiological diagnosis of asthma. Eur Respir J 1998, 11:599–605.PubMed
45.
go back to reference Smith AD, Cowan JO, Filsell S, McLachlan C, Monti-Sheehan G, Jackson P, Taylor DR: Diagnosing asthma: comparisons between exhaled nitric oxide measurements and conventional tests. Am J Respir Crit Care Med 2004, 169:473–478.CrossRefPubMed Smith AD, Cowan JO, Filsell S, McLachlan C, Monti-Sheehan G, Jackson P, Taylor DR: Diagnosing asthma: comparisons between exhaled nitric oxide measurements and conventional tests. Am J Respir Crit Care Med 2004, 169:473–478.CrossRefPubMed
Metadata
Title
IgE sensitisation in relation to flow-independent nitric oxide exchange parameters
Authors
Andrei Malinovschi
Christer Janson
Thomas Holmkvist
Dan Norbäck
Pekka Meriläinen
Marieann Högman
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2006
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-7-92

Other articles of this Issue 1/2006

Respiratory Research 1/2006 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.