Skip to main content
Top
Published in: Respiratory Research 1/2024

Open Access 01-12-2024 | Idiopathic Pulmonary Fibrosis | Research

Identifying a survival-associated cell type based on multi-level transcriptome analysis in idiopathic pulmonary fibrosis

Authors: Fei Xu, Yun Tong, Wenjun Yang, Yiyang Cai, Meini Yu, Lei Liu, Qingkang Meng

Published in: Respiratory Research | Issue 1/2024

Login to get access

Abstract

Background

Idiopathic pulmonary fibrosis (IPF) is a progressive disease with a five-year survival rate of less than 40%. There is significant variability in survival time among IPF patients, but the underlying mechanisms for this are not clear yet.

Methods and results

We collected single-cell RNA sequence data of 13,223 epithelial cells taken from 32 IPF patients and bulk RNA sequence data from 456 IPF patients in GEO. Based on unsupervised clustering analysis at the single-cell level and deconvolution algorithm at bulk RNA sequence data, we discovered a special alveolar type 2 cell subtype characterized by high expression of CCL20 (referred to as ATII-CCL20), and found that IPF patients with a higher proportion of ATII-CCL20 had worse prognoses. Furthermore, we uncovered the upregulation of immune cell infiltration and metabolic functions in IPF patients with a higher proportion of ATII-CCL20. Finally, the comprehensive decision tree and nomogram were constructed to optimize the risk stratification of IPF patients and provide a reference for accurate prognosis evaluation.

Conclusions

Our study by integrating single-cell and bulk RNA sequence data from IPF patients identified a special subtype of ATII cells, ATII-CCL20, which was found to be a risk cell subtype associated with poor prognosis in IPF patients. More importantly, the ATII-CCL20 cell subtype was linked with metabolic functions and immune infiltration.
Appendix
Available only for authorised users
Literature
1.
go back to reference Joo S, et al. Clinical results of sublobar resection versus lobectomy or more extensive resection for lung cancer patients with idiopathic pulmonary fibrosis. J Thorac Dis. 2016;8(5):977–84.ADSPubMedPubMedCentralCrossRef Joo S, et al. Clinical results of sublobar resection versus lobectomy or more extensive resection for lung cancer patients with idiopathic pulmonary fibrosis. J Thorac Dis. 2016;8(5):977–84.ADSPubMedPubMedCentralCrossRef
2.
go back to reference King TE Jr, et al. All-cause mortality rate in patients with idiopathic pulmonary fibrosis. Implications for the design and execution of clinical trials. Am J Respir Crit Care Med. 2014;189(7):825–31.PubMedCrossRef King TE Jr, et al. All-cause mortality rate in patients with idiopathic pulmonary fibrosis. Implications for the design and execution of clinical trials. Am J Respir Crit Care Med. 2014;189(7):825–31.PubMedCrossRef
3.
go back to reference Ley B, Collard HR, King TE Jr. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;183(4):431–40.PubMedCrossRef Ley B, Collard HR, King TE Jr. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;183(4):431–40.PubMedCrossRef
4.
go back to reference Navaratnam V, et al. The rising incidence of idiopathic pulmonary fibrosis in the UK. Thorax. 2011;66(6):462–7.PubMedCrossRef Navaratnam V, et al. The rising incidence of idiopathic pulmonary fibrosis in the UK. Thorax. 2011;66(6):462–7.PubMedCrossRef
5.
go back to reference Cai M, et al. Clinical features and outcomes of 210 patients with idiopathic pulmonary fibrosis. Chin Med J (Engl). 2014;127(10):1868–73.PubMedCrossRef Cai M, et al. Clinical features and outcomes of 210 patients with idiopathic pulmonary fibrosis. Chin Med J (Engl). 2014;127(10):1868–73.PubMedCrossRef
6.
go back to reference Bargagli E, et al. The effect of cigarette smoking on bronchoalveolar lavage protein profiles from patients with different interstitial lung diseases. Panminerva Med. 2020;62(2):109–15.PubMedCrossRef Bargagli E, et al. The effect of cigarette smoking on bronchoalveolar lavage protein profiles from patients with different interstitial lung diseases. Panminerva Med. 2020;62(2):109–15.PubMedCrossRef
7.
go back to reference McDonough JE, et al. Gene correlation network analysis to identify regulatory factors in idiopathic pulmonary fibrosis. Thorax. 2019;74(2):132–40.PubMedCrossRef McDonough JE, et al. Gene correlation network analysis to identify regulatory factors in idiopathic pulmonary fibrosis. Thorax. 2019;74(2):132–40.PubMedCrossRef
8.
9.
go back to reference Zhao J, et al. A prognostic model based on clusters of molecules related to epithelial-mesenchymal transition for idiopathic pulmonary fibrosis. Front Genet. 2022;13:1109903.PubMedCrossRef Zhao J, et al. A prognostic model based on clusters of molecules related to epithelial-mesenchymal transition for idiopathic pulmonary fibrosis. Front Genet. 2022;13:1109903.PubMedCrossRef
11.
go back to reference Nam JG, et al. Prognostic value of deep learning-based fibrosis quantification on chest CT in idiopathic pulmonary fibrosis. Eur Radiol. 2023;33:3144.PubMedCrossRef Nam JG, et al. Prognostic value of deep learning-based fibrosis quantification on chest CT in idiopathic pulmonary fibrosis. Eur Radiol. 2023;33:3144.PubMedCrossRef
12.
go back to reference Richeldi L, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2071–82.PubMedCrossRef Richeldi L, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2071–82.PubMedCrossRef
13.
go back to reference King TE Jr, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2083–92.PubMedCrossRef King TE Jr, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2083–92.PubMedCrossRef
15.
go back to reference Fernandez Perez ER, et al. Incidence, prevalence, and clinical course of idiopathic pulmonary fibrosis: a population-based study. Chest. 2010;137(1):129–37.PubMedCrossRef Fernandez Perez ER, et al. Incidence, prevalence, and clinical course of idiopathic pulmonary fibrosis: a population-based study. Chest. 2010;137(1):129–37.PubMedCrossRef
16.
go back to reference Martinez FJ, et al. The clinical course of patients with idiopathic pulmonary fibrosis. Ann Intern Med. 2005;142(12 Pt 1):963–7.ADSPubMedCrossRef Martinez FJ, et al. The clinical course of patients with idiopathic pulmonary fibrosis. Ann Intern Med. 2005;142(12 Pt 1):963–7.ADSPubMedCrossRef
17.
go back to reference Selman M, Pardo A. The leading role of epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis. Cell Signal. 2020;66: 109482.PubMedCrossRef Selman M, Pardo A. The leading role of epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis. Cell Signal. 2020;66: 109482.PubMedCrossRef
18.
19.
go back to reference Xu Y, et al. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight. 2016;1(20): e90558.PubMedPubMedCentralCrossRef Xu Y, et al. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight. 2016;1(20): e90558.PubMedPubMedCentralCrossRef
20.
21.
go back to reference Reyfman PA, et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am J Respir Crit Care Med. 2019;199(12):1517–36.PubMedPubMedCentralCrossRef Reyfman PA, et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am J Respir Crit Care Med. 2019;199(12):1517–36.PubMedPubMedCentralCrossRef
22.
go back to reference Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet. 2017;389(10082):1941–52.PubMedCrossRef Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet. 2017;389(10082):1941–52.PubMedCrossRef
23.
go back to reference Selman M, Pardo A. Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers. Proc Am Thorac Soc. 2006;3(4):364–72.PubMedCrossRef Selman M, Pardo A. Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers. Proc Am Thorac Soc. 2006;3(4):364–72.PubMedCrossRef
24.
go back to reference Selman M, et al. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med. 2001;134(2):136–51.PubMedCrossRef Selman M, et al. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med. 2001;134(2):136–51.PubMedCrossRef
25.
go back to reference Selman M, Pardo A. Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis an integral model. Am J Respir Crit Care Med. 2014;189(10):1161–72.PubMedCrossRef Selman M, Pardo A. Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis an integral model. Am J Respir Crit Care Med. 2014;189(10):1161–72.PubMedCrossRef
26.
go back to reference Habiel DM, et al. CCR10+ epithelial cells from idiopathic pulmonary fibrosis lungs drive remodeling. JCI Insight. 2018; 3(16). Habiel DM, et al. CCR10+ epithelial cells from idiopathic pulmonary fibrosis lungs drive remodeling. JCI Insight. 2018; 3(16).
27.
go back to reference Gokey JJ, et al. MEG3 is increased in idiopathic pulmonary fibrosis and regulates epithelial cell differentiation. JCI Insight. 2018; 3(17). Gokey JJ, et al. MEG3 is increased in idiopathic pulmonary fibrosis and regulates epithelial cell differentiation. JCI Insight. 2018; 3(17).
28.
go back to reference Lee JM, et al. Involvement of alveolar epithelial cell necroptosis in idiopathic pulmonary fibrosis pathogenesis. Am J Respir Cell Mol Biol. 2018;59(2):215–24.PubMedCrossRef Lee JM, et al. Involvement of alveolar epithelial cell necroptosis in idiopathic pulmonary fibrosis pathogenesis. Am J Respir Cell Mol Biol. 2018;59(2):215–24.PubMedCrossRef
29.
go back to reference Habermann AC, et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci Adv. 2020;6(28):eaba1972.ADSPubMedPubMedCentralCrossRef Habermann AC, et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci Adv. 2020;6(28):eaba1972.ADSPubMedPubMedCentralCrossRef
30.
go back to reference Barrett T, et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 2013;41:D991–5.PubMedCrossRef Barrett T, et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 2013;41:D991–5.PubMedCrossRef
31.
go back to reference Hao Y, et al. Integrated analysis of multimodal single-cell data. Cell. 2021. Hao Y, et al. Integrated analysis of multimodal single-cell data. Cell. 2021.
32.
go back to reference Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev Comput Stat. 2010;2(4):433–59.CrossRef Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev Comput Stat. 2010;2(4):433–59.CrossRef
33.
go back to reference Van der Maaten L, Hinton GJ. Visualizing data using t-SNE. 2008; 9(11). Van der Maaten L, Hinton GJ. Visualizing data using t-SNE. 2008; 9(11).
34.
go back to reference Herazo-Maya JD, et al. Peripheral blood mononuclear cell gene expression profiles predict poor outcome in idiopathic pulmonary fibrosis. Sci Transl Med. 2013;5(205):205ra136.PubMedPubMedCentralCrossRef Herazo-Maya JD, et al. Peripheral blood mononuclear cell gene expression profiles predict poor outcome in idiopathic pulmonary fibrosis. Sci Transl Med. 2013;5(205):205ra136.PubMedPubMedCentralCrossRef
35.
go back to reference Prasse A, et al. BAL cell gene expression is indicative of outcome and airway basal cell involvement in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2019;199(5):622–30.PubMedPubMedCentralCrossRef Prasse A, et al. BAL cell gene expression is indicative of outcome and airway basal cell involvement in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2019;199(5):622–30.PubMedPubMedCentralCrossRef
36.
go back to reference Leek JT, et al. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–3.PubMedPubMedCentralCrossRef Leek JT, et al. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–3.PubMedPubMedCentralCrossRef
37.
go back to reference Kim S, et al. Integrative phenotyping framework (iPF): integrative clustering of multiple omics data identifies novel lung disease subphenotypes. BMC Genomics. 2015;16:924.PubMedPubMedCentralCrossRef Kim S, et al. Integrative phenotyping framework (iPF): integrative clustering of multiple omics data identifies novel lung disease subphenotypes. BMC Genomics. 2015;16:924.PubMedPubMedCentralCrossRef
38.
39.
go back to reference Kassambara A, et al. Package ‘survminer’. Drawing Survival Curves using ‘ggplot2’(R package version 03 1), 2017. Kassambara A, et al. Package ‘survminer’. Drawing Survival Curves using ‘ggplot2’(R package version 03 1), 2017.
40.
go back to reference Therneau TM, Lumley T. Package ‘survival.’ R Top Doc. 2015;128(10):28–33. Therneau TM, Lumley T. Package ‘survival.’ R Top Doc. 2015;128(10):28–33.
41.
go back to reference Trapnell C, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32(4):381–6.PubMedPubMedCentralCrossRef Trapnell C, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32(4):381–6.PubMedPubMedCentralCrossRef
42.
go back to reference Wu Y, et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 2022;12(1):134–53.MathSciNetPubMedCrossRef Wu Y, et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 2022;12(1):134–53.MathSciNetPubMedCrossRef
44.
go back to reference Browaeys R, Saelens W, Saeys Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods. 2020;17(2):159–62.PubMedCrossRef Browaeys R, Saelens W, Saeys Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods. 2020;17(2):159–62.PubMedCrossRef
45.
go back to reference Wu T, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb). 2021;2(3):100141.PubMed Wu T, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb). 2021;2(3):100141.PubMed
46.
49.
go back to reference Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.ADSPubMedPubMedCentralCrossRef Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.ADSPubMedPubMedCentralCrossRef
50.
go back to reference Becht E, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016;17(1):218.PubMedPubMedCentralCrossRef Becht E, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016;17(1):218.PubMedPubMedCentralCrossRef
51.
go back to reference Charoentong P, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017;18(1):248–62.PubMedCrossRef Charoentong P, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017;18(1):248–62.PubMedCrossRef
52.
go back to reference Nunez E, Steyerberg EW, Nunez J. Regression modeling strategies. Rev Esp Cardiol. 2011;64(6):501–7.PubMed Nunez E, Steyerberg EW, Nunez J. Regression modeling strategies. Rev Esp Cardiol. 2011;64(6):501–7.PubMed
55.
go back to reference Reibman J, et al. Airway epithelial cells release MIP-3alpha/CCL20 in response to cytokines and ambient particulate matter. Am J Respir Cell Mol Biol. 2003;28(6):648–54.PubMedCrossRef Reibman J, et al. Airway epithelial cells release MIP-3alpha/CCL20 in response to cytokines and ambient particulate matter. Am J Respir Cell Mol Biol. 2003;28(6):648–54.PubMedCrossRef
56.
57.
go back to reference Zhao X, et al. Targeting metabolic dysregulation for fibrosis therapy. Nat Rev Drug Discov. 2020;19(1):57–75.PubMedCrossRef Zhao X, et al. Targeting metabolic dysregulation for fibrosis therapy. Nat Rev Drug Discov. 2020;19(1):57–75.PubMedCrossRef
59.
go back to reference Tian Y, et al. Roles of lipid metabolism and its regulatory mechanism in idiopathic pulmonary fibrosis: a review. Int J Biochem Cell Biol. 2023;155: 106361.PubMedCrossRef Tian Y, et al. Roles of lipid metabolism and its regulatory mechanism in idiopathic pulmonary fibrosis: a review. Int J Biochem Cell Biol. 2023;155: 106361.PubMedCrossRef
63.
go back to reference Wang J, et al. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm Sin B. 2022;12(1):18–32.ADSPubMedCrossRef Wang J, et al. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm Sin B. 2022;12(1):18–32.ADSPubMedCrossRef
64.
go back to reference Hou J, et al. TNF-alpha-induced NF-kappaB activation promotes myofibroblast differentiation of LR-MSCs and exacerbates bleomycin-induced pulmonary fibrosis. J Cell Physiol. 2018;233(3):2409–19.PubMedCrossRef Hou J, et al. TNF-alpha-induced NF-kappaB activation promotes myofibroblast differentiation of LR-MSCs and exacerbates bleomycin-induced pulmonary fibrosis. J Cell Physiol. 2018;233(3):2409–19.PubMedCrossRef
67.
go back to reference Confalonieri P, et al. Regeneration or repair? The role of alveolar epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Cells. 2022;11(13):2095.PubMedPubMedCentralCrossRef Confalonieri P, et al. Regeneration or repair? The role of alveolar epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Cells. 2022;11(13):2095.PubMedPubMedCentralCrossRef
68.
go back to reference Guillot L, et al. Alveolar epithelial cells: master regulators of lung homeostasis. Int J Biochem Cell Biol. 2013;45(11):2568–73.PubMedCrossRef Guillot L, et al. Alveolar epithelial cells: master regulators of lung homeostasis. Int J Biochem Cell Biol. 2013;45(11):2568–73.PubMedCrossRef
69.
70.
71.
go back to reference Zhang Q, Yang X, Liu H. Extracellular vesicles in cancer metabolism: implications for cancer diagnosis and treatment. Technol Cancer Res Treat. 2021;20:15330338211037820.PubMedPubMedCentralCrossRef Zhang Q, Yang X, Liu H. Extracellular vesicles in cancer metabolism: implications for cancer diagnosis and treatment. Technol Cancer Res Treat. 2021;20:15330338211037820.PubMedPubMedCentralCrossRef
73.
go back to reference Yao Y, et al. Chop deficiency protects mice against bleomycin-induced pulmonary fibrosis by attenuating M2 macrophage production. Mol Ther. 2016;24(5):915–25.PubMedPubMedCentralCrossRef Yao Y, et al. Chop deficiency protects mice against bleomycin-induced pulmonary fibrosis by attenuating M2 macrophage production. Mol Ther. 2016;24(5):915–25.PubMedPubMedCentralCrossRef
74.
go back to reference Li Q, et al. Inhibition of ROCK ameliorates pulmonary fibrosis by suppressing M2 macrophage polarisation through phosphorylation of STAT3. Clin Transl Med. 2022;12(10): e1036.ADSPubMedPubMedCentralCrossRef Li Q, et al. Inhibition of ROCK ameliorates pulmonary fibrosis by suppressing M2 macrophage polarisation through phosphorylation of STAT3. Clin Transl Med. 2022;12(10): e1036.ADSPubMedPubMedCentralCrossRef
75.
go back to reference Misharin AV, et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med. 2017;214(8):2387–404.PubMedPubMedCentralCrossRef Misharin AV, et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med. 2017;214(8):2387–404.PubMedPubMedCentralCrossRef
76.
go back to reference Murray LA, et al. TGF-beta driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P. Int J Biochem Cell Biol. 2011;43(1):154–62.PubMedCrossRef Murray LA, et al. TGF-beta driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P. Int J Biochem Cell Biol. 2011;43(1):154–62.PubMedCrossRef
77.
go back to reference Ley B, et al. A multidimensional index and staging system for idiopathic pulmonary fibrosis. Ann Intern Med. 2012;156(10):684–91.PubMedCrossRef Ley B, et al. A multidimensional index and staging system for idiopathic pulmonary fibrosis. Ann Intern Med. 2012;156(10):684–91.PubMedCrossRef
78.
go back to reference Tzouvelekis A, et al. The DIAMORFOSIS (DIAgnosis and Management Of lung canceR and FibrOSIS) survey: international survey and call for consensus. ERJ Open Res. 2021; 7(1). Tzouvelekis A, et al. The DIAMORFOSIS (DIAgnosis and Management Of lung canceR and FibrOSIS) survey: international survey and call for consensus. ERJ Open Res. 2021; 7(1).
79.
go back to reference Karampitsakos T, et al. Lung cancer in patients with idiopathic pulmonary fibrosis: a retrospective multicentre study in Europe. Respirology. 2023;28(1):56–65.PubMedCrossRef Karampitsakos T, et al. Lung cancer in patients with idiopathic pulmonary fibrosis: a retrospective multicentre study in Europe. Respirology. 2023;28(1):56–65.PubMedCrossRef
80.
81.
go back to reference Fan T, et al. Comprehensive analysis of a chemokine- and chemokine receptor family-based signature for patients with lung adenocarcinoma. Cancer Immunol Immunother. 2021;70(12):3651–67.PubMedCrossRef Fan T, et al. Comprehensive analysis of a chemokine- and chemokine receptor family-based signature for patients with lung adenocarcinoma. Cancer Immunol Immunother. 2021;70(12):3651–67.PubMedCrossRef
83.
go back to reference Sharma P, et al. Immune checkpoint therapy-current perspectives and future directions. Cell. 2023;186(8):1652–69.PubMedCrossRef Sharma P, et al. Immune checkpoint therapy-current perspectives and future directions. Cell. 2023;186(8):1652–69.PubMedCrossRef
84.
go back to reference Karampitsakos T, et al. Expression of PD-1/PD-L1 axis in mediastinal lymph nodes and lung tissue of human and experimental lung fibrosis indicates a potential therapeutic target for idiopathic pulmonary fibrosis. Respir Res. 2023;24(1):279.PubMedPubMedCentralCrossRef Karampitsakos T, et al. Expression of PD-1/PD-L1 axis in mediastinal lymph nodes and lung tissue of human and experimental lung fibrosis indicates a potential therapeutic target for idiopathic pulmonary fibrosis. Respir Res. 2023;24(1):279.PubMedPubMedCentralCrossRef
Metadata
Title
Identifying a survival-associated cell type based on multi-level transcriptome analysis in idiopathic pulmonary fibrosis
Authors
Fei Xu
Yun Tong
Wenjun Yang
Yiyang Cai
Meini Yu
Lei Liu
Qingkang Meng
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2024
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-024-02738-w

Other articles of this Issue 1/2024

Respiratory Research 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.