Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2019

Open Access 01-12-2019 | Research article

Identification of hypertriglyceridemia based on bone density, body fat mass, and anthropometry in a Korean population

Authors: Jeong Hee Chi, Moon Sun Shin, Bum Ju Lee

Published in: BMC Cardiovascular Disorders | Issue 1/2019

Login to get access

Abstract

Background

Hypertriglyceridemia is strongly associated with the risks of cardiovascular disease, coronary heart disease, and metabolic syndrome. The relationship between hypertriglyceridemia or high triglyceride levels and bone mineral density remains controversial. Furthermore, to date, no study has simultaneously examined the association among hypertriglyceridemia, bone area, bone mineral content, bone mineral density, body fat mass, and anthropometrics. The present study aimed to evaluate the association among hypertriglyceridemia, anthropometrics and various bone density and body fat composition variables to identify the best indicator of hypertriglyceridemia in a Korean population.

Methods

The data were obtained from the fifth Korea National Health and Nutrition Examination Survey. In total, 3918 subjects aged 20–80 years participated in this study. In the variable analysis of the waist circumference (WC), trunk fat mass (Trk-Ft), body mass index, etc., a binary logistic regression analysis was performed to examine the significance of the differences between the normal group and hypertriglyceridemia groups.

Results

In both men and women, the WC showed the strongest association with hypertriglyceridemia in the crude analysis (odds ratio (OR) = 1.738 [confidence interval = 1.529–1.976] and OR = 2.075 [1.797–2.397]), but the Trk-Ft was the most strongly associated with the disease after adjusting for age and body mass index (adjusted OR = 1.565 [1.262–1.941] and adjusted OR = 1.730 [1.291–2.319]). In particular, the Pelvis area (Plv-A) was the most significant among the bone variables in women (adjusted OR = 0.641 [0.515–0.796]). In the predictive power analysis, the best indicator of hypertriglyceridemia was WC in women (the area under the receiver operating characteristic curve (AUC) = 0.718 [0.685–0.751]) and Trk-Ft in men (AUC = 0.672 [0.643–0.702]). The WC was also the most predictive among the anthropometric variables in men (AUC = 0.670 [0.641–0.700]). The strength of the association and predictive power was stronger in women than in men.

Conclusions

The WC in women and Trk-Ft in men exhibited the best predictive power for hypertriglyceridemia. Our findings support the use of basic information for the identification of hypertriglyceridemia or high triglyceride levels in initial health screening efforts.
Literature
1.
2.
go back to reference Melissa AA, John EH, Karen LE. Hypertriglyceridemia as a cardiovascular risk factor. Am J Cardiol. 1998;81(4A):7–12. Melissa AA, John EH, Karen LE. Hypertriglyceridemia as a cardiovascular risk factor. Am J Cardiol. 1998;81(4A):7–12.
3.
go back to reference Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA. 2007;298:309–16.PubMedCrossRef Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA. 2007;298:309–16.PubMedCrossRef
4.
go back to reference Lipsky LM, Gee B, Liu A, Nansel TR. Body mass index and adiposity indicators associated with cardiovascular biomarkers in youth with type 1 diabetes followed prospectively. Pediatr Obes. 2017;12:468–76.PubMedCrossRef Lipsky LM, Gee B, Liu A, Nansel TR. Body mass index and adiposity indicators associated with cardiovascular biomarkers in youth with type 1 diabetes followed prospectively. Pediatr Obes. 2017;12:468–76.PubMedCrossRef
5.
6.
go back to reference Sarwar N, Danesh J, Eiriksdottir G, Sigurdsson G, Wareham N, Bingham S, et al. Triglycerides and the risk of coronary heart disease 10,158 incident cases among 262,525 participants in 29 western prospective studies. Circulation. 2007;115:450–8.PubMedCrossRef Sarwar N, Danesh J, Eiriksdottir G, Sigurdsson G, Wareham N, Bingham S, et al. Triglycerides and the risk of coronary heart disease 10,158 incident cases among 262,525 participants in 29 western prospective studies. Circulation. 2007;115:450–8.PubMedCrossRef
7.
go back to reference Ren J, Grundy SM, Liu J, Wang W, Wang M, Sun J, et al. Long-term coronary heart disease risk associated with very-low-density lipoprotein cholesterol in Chinese: the results of a 15-year Chinese multi-provincial cohort study (CMCS). Atherosclerosis. 2010;211:327–32.PubMedCrossRef Ren J, Grundy SM, Liu J, Wang W, Wang M, Sun J, et al. Long-term coronary heart disease risk associated with very-low-density lipoprotein cholesterol in Chinese: the results of a 15-year Chinese multi-provincial cohort study (CMCS). Atherosclerosis. 2010;211:327–32.PubMedCrossRef
8.
go back to reference Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heymsfield SB. The metabolic syndrome: prevalence and associated risk factor findings in the US population from the third National Health and nutrition examination survey, 1988-1994. Arch Intern Med. 2003;163(4):427–36.PubMedPubMedCentralCrossRef Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heymsfield SB. The metabolic syndrome: prevalence and associated risk factor findings in the US population from the third National Health and nutrition examination survey, 1988-1994. Arch Intern Med. 2003;163(4):427–36.PubMedPubMedCentralCrossRef
9.
go back to reference Szulc P, Varennes A, Delmas PD, Goudable J, Chapurlat R. Men with metabolic syndrome have lower bone mineral density but lower fracture risk—the MINOS study. J Bone Miner Res. 2010;25:1446–54.PubMedCrossRef Szulc P, Varennes A, Delmas PD, Goudable J, Chapurlat R. Men with metabolic syndrome have lower bone mineral density but lower fracture risk—the MINOS study. J Bone Miner Res. 2010;25:1446–54.PubMedCrossRef
10.
go back to reference Kim YH, Cho KH, Choi YS, Kim SM, Nam GE, Lee SH, et al. Low bone mineral density is associated with metabolic syndrome in south Korean men but not in women: the 2008–2010 Korean National Health and nutrition examination survey. Arch Osteoporos. 2013;8:142.PubMedCrossRef Kim YH, Cho KH, Choi YS, Kim SM, Nam GE, Lee SH, et al. Low bone mineral density is associated with metabolic syndrome in south Korean men but not in women: the 2008–2010 Korean National Health and nutrition examination survey. Arch Osteoporos. 2013;8:142.PubMedCrossRef
11.
go back to reference Loke SS, Chang HW, Li WC. Association between metabolic syndrome and bone mineral density in a Taiwanese elderly population. J Bone Miner Metab. 2018;36(2):200–8.PubMedCrossRef Loke SS, Chang HW, Li WC. Association between metabolic syndrome and bone mineral density in a Taiwanese elderly population. J Bone Miner Metab. 2018;36(2):200–8.PubMedCrossRef
12.
go back to reference Klssebah AH, Pelrls AN. Biology of regional body fat distribution: relationship to non-insulin-dependent diabetes mellitus. Diabetes Metab Rev. 1989;5:83–109.CrossRef Klssebah AH, Pelrls AN. Biology of regional body fat distribution: relationship to non-insulin-dependent diabetes mellitus. Diabetes Metab Rev. 1989;5:83–109.CrossRef
13.
go back to reference Keswell D, Tootla M, Goedecke JH. Associations between body fat distribution, insulin resistance and dyslipidaemia in black and white south African women. Cardiovasc J Afr. 2016;27(3):177–83.PubMedPubMedCentralCrossRef Keswell D, Tootla M, Goedecke JH. Associations between body fat distribution, insulin resistance and dyslipidaemia in black and white south African women. Cardiovasc J Afr. 2016;27(3):177–83.PubMedPubMedCentralCrossRef
14.
go back to reference Takeuchi M, Tsuboi A, Kurata M, Kazumi T, Fukuo K. Associations of postprandial lipemia with trunk/leg fat ratio in young normal weight women independently of fat mass and insulin resistance. Asia Pac J Clin Nutr. 2018;27(2):293–9.PubMed Takeuchi M, Tsuboi A, Kurata M, Kazumi T, Fukuo K. Associations of postprandial lipemia with trunk/leg fat ratio in young normal weight women independently of fat mass and insulin resistance. Asia Pac J Clin Nutr. 2018;27(2):293–9.PubMed
15.
go back to reference Després JP, Moorjani S, Tremblay A, Ferland M, Lupien PJ, Nadeau A, et al. Relation of high plasma triglyceride levels associated with obesity and regional adipose tissue distribution to plasma lipoprotein lipid composition in premenopausal women. Clin Invest Med. 1989;12:374–80.PubMed Després JP, Moorjani S, Tremblay A, Ferland M, Lupien PJ, Nadeau A, et al. Relation of high plasma triglyceride levels associated with obesity and regional adipose tissue distribution to plasma lipoprotein lipid composition in premenopausal women. Clin Invest Med. 1989;12:374–80.PubMed
16.
go back to reference Mirzababaei A, Mirzaei K, Khorrami-Nezhad L, Maghbooli Z, Keshavarz SA. Metabolically healthy/unhealthy components may modify bone mineral density in obese people. Arch Osteoporos. 2017;12(1):95.PubMedCrossRef Mirzababaei A, Mirzaei K, Khorrami-Nezhad L, Maghbooli Z, Keshavarz SA. Metabolically healthy/unhealthy components may modify bone mineral density in obese people. Arch Osteoporos. 2017;12(1):95.PubMedCrossRef
17.
go back to reference Shen SW, Lu Y, Li F, Yang CJ, Feng YB, Li HW, et al. Atherogenic index of plasma is an effective index for estimating abdominal obesity. Lipids Health Dis. 2018;17(1):11.PubMedPubMedCentralCrossRef Shen SW, Lu Y, Li F, Yang CJ, Feng YB, Li HW, et al. Atherogenic index of plasma is an effective index for estimating abdominal obesity. Lipids Health Dis. 2018;17(1):11.PubMedPubMedCentralCrossRef
18.
go back to reference Lim S, Shin H, Song JH, Kwak SH, Kang SM, Won Yoon J, et al. Increasing prevalence of metabolic syndrome in Korea: the Korean National Health and nutrition examination survey for 1998-2007. Diabetes Care. 2011;34:1323–8.PubMedPubMedCentralCrossRef Lim S, Shin H, Song JH, Kwak SH, Kang SM, Won Yoon J, et al. Increasing prevalence of metabolic syndrome in Korea: the Korean National Health and nutrition examination survey for 1998-2007. Diabetes Care. 2011;34:1323–8.PubMedPubMedCentralCrossRef
19.
go back to reference Ford ES, Li C, Zhao G, Pearson WS, Mokdad AH. Hypertriglyceridemia and its pharmacologic treatment among US adults. Arch Intern Med. 2009;169:572–8.PubMedCrossRef Ford ES, Li C, Zhao G, Pearson WS, Mokdad AH. Hypertriglyceridemia and its pharmacologic treatment among US adults. Arch Intern Med. 2009;169:572–8.PubMedCrossRef
20.
go back to reference Ghosh A, Bose K, Das Chaudhuri AB. Association of food patterns, central obesity measures and metabolic risk factors for coronary heart disease (CHD) in middle aged Bengalee Hindu men, Calcutta. India Asia Pac J Clin Nutr. 2003;12(2):166–71.PubMed Ghosh A, Bose K, Das Chaudhuri AB. Association of food patterns, central obesity measures and metabolic risk factors for coronary heart disease (CHD) in middle aged Bengalee Hindu men, Calcutta. India Asia Pac J Clin Nutr. 2003;12(2):166–71.PubMed
21.
go back to reference Sharp TA, Grunwald GK, Giltinan KE, King DL, Jatkauskas CJ, Hill JO. Association of anthropometric measures with risk of diabetes and cardiovascular disease in Hispanic and Caucasian adolescents. Prev Med. 2003;37(6):611–6.PubMedCrossRef Sharp TA, Grunwald GK, Giltinan KE, King DL, Jatkauskas CJ, Hill JO. Association of anthropometric measures with risk of diabetes and cardiovascular disease in Hispanic and Caucasian adolescents. Prev Med. 2003;37(6):611–6.PubMedCrossRef
22.
go back to reference Lee HH, Lee HJ, Cho JI, Stampfer MJ, Willett WC, Kim CI, et al. Overall and abdominal adiposity and hypertriglyceridemia among Korean adults: the Korea National Health and nutrition examination survey 2007–2008. Eur J Clin Nutr. 2013;67(1):83–90.PubMedCrossRef Lee HH, Lee HJ, Cho JI, Stampfer MJ, Willett WC, Kim CI, et al. Overall and abdominal adiposity and hypertriglyceridemia among Korean adults: the Korea National Health and nutrition examination survey 2007–2008. Eur J Clin Nutr. 2013;67(1):83–90.PubMedCrossRef
23.
go back to reference Lee CM, Huxley RR, Wildman RP, Woodward M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: a meta-analysis. J Clin Epidemiol. 2008;61(7):646–53.PubMedCrossRef Lee CM, Huxley RR, Wildman RP, Woodward M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: a meta-analysis. J Clin Epidemiol. 2008;61(7):646–53.PubMedCrossRef
24.
go back to reference Lee BJ, Kim JY. Indicators of hypertriglyceridemia from anthropometric measures based on data mining. Comput Biol Med. 2015;57:201–11.PubMedCrossRef Lee BJ, Kim JY. Indicators of hypertriglyceridemia from anthropometric measures based on data mining. Comput Biol Med. 2015;57:201–11.PubMedCrossRef
25.
go back to reference Hosain GMM, Rahman M, Williams KJ, Berenson AB. Racial differences in the association between body fat distribution and lipid profiles among reproductive-aged women. Diabetes Metab. 2010;36(4):278–85.PubMedPubMedCentralCrossRef Hosain GMM, Rahman M, Williams KJ, Berenson AB. Racial differences in the association between body fat distribution and lipid profiles among reproductive-aged women. Diabetes Metab. 2010;36(4):278–85.PubMedPubMedCentralCrossRef
26.
go back to reference Despres JP, Allard C, Tremblay A, Talbot J, Bouchard C. Evidence for a regional component of body fatness in the association with serum lipids in men and women. Metabolism. 1985;34:967–73.PubMedCrossRef Despres JP, Allard C, Tremblay A, Talbot J, Bouchard C. Evidence for a regional component of body fatness in the association with serum lipids in men and women. Metabolism. 1985;34:967–73.PubMedCrossRef
27.
go back to reference Lee SJ, Kim JY, Ha TK, Choi YY. Changes in lipid indices and body composition one year after laparoscopic gastrectomy: a prospective study. Lipids Health Dis. 2018;17(1):113.PubMedPubMedCentralCrossRef Lee SJ, Kim JY, Ha TK, Choi YY. Changes in lipid indices and body composition one year after laparoscopic gastrectomy: a prospective study. Lipids Health Dis. 2018;17(1):113.PubMedPubMedCentralCrossRef
28.
go back to reference von Muhlen D, Safii S, Jassal SK, Svartberg J, Barrett-Connor E. Associations between the metabolic syndrome and bone health in older men and women: the rancho Bernardo study. Osteoporos Int. 2007;18:1337–44.CrossRef von Muhlen D, Safii S, Jassal SK, Svartberg J, Barrett-Connor E. Associations between the metabolic syndrome and bone health in older men and women: the rancho Bernardo study. Osteoporos Int. 2007;18:1337–44.CrossRef
29.
go back to reference Hirasawa A, Makita K, Akahane T, Yamagami W, Makabe T, Yokota M, et al. Osteoporosis is less frequent in endometrial cancer survivors with hypertriglyceridemia. Jpn J Clin Oncol. 2015;45(1):127–31.PubMedCrossRef Hirasawa A, Makita K, Akahane T, Yamagami W, Makabe T, Yokota M, et al. Osteoporosis is less frequent in endometrial cancer survivors with hypertriglyceridemia. Jpn J Clin Oncol. 2015;45(1):127–31.PubMedCrossRef
30.
go back to reference Lawlor DA, Sattar N, Sayers A, Tobias JH. The association of fasting insulin, glucose, and lipids with bone mass in adolescents: findings from a cross-sectional study. J Clin Endocrinol Metab. 2012;97(6):2068–76.PubMedPubMedCentralCrossRef Lawlor DA, Sattar N, Sayers A, Tobias JH. The association of fasting insulin, glucose, and lipids with bone mass in adolescents: findings from a cross-sectional study. J Clin Endocrinol Metab. 2012;97(6):2068–76.PubMedPubMedCentralCrossRef
31.
go back to reference Son JS, Koh HM, Park JK. Relationship between triglyceride and bone mineral density in healthy Korean men. Korean J Health Promot. 2015;15(3):115–20.CrossRef Son JS, Koh HM, Park JK. Relationship between triglyceride and bone mineral density in healthy Korean men. Korean J Health Promot. 2015;15(3):115–20.CrossRef
32.
go back to reference Cui LH, Shin MH, Chung EK, Lee YH, Kweon SS, Park KS, et al. Association between bone mineral densities and serum lipid profiles of pre- and post-menopausal rural women in South Korea. Osteoporosis Int. 2005;16:1975–81.CrossRef Cui LH, Shin MH, Chung EK, Lee YH, Kweon SS, Park KS, et al. Association between bone mineral densities and serum lipid profiles of pre- and post-menopausal rural women in South Korea. Osteoporosis Int. 2005;16:1975–81.CrossRef
33.
go back to reference Dennison EM, Syddall HE, Aihie Sayer A, Martin HJ, Cooper C. Hertfordshire cohort study group. Lipid profile, obesity and bone mineral density: the Hertfordshire cohort study. QJM. 2007;100(5):297–303.PubMedPubMedCentralCrossRef Dennison EM, Syddall HE, Aihie Sayer A, Martin HJ, Cooper C. Hertfordshire cohort study group. Lipid profile, obesity and bone mineral density: the Hertfordshire cohort study. QJM. 2007;100(5):297–303.PubMedPubMedCentralCrossRef
34.
go back to reference Yoldemir T, Erenus M. The impact of metabolic syndrome on bone mineral density in postmenopausal women. Gynecol Endocrinol. 2012;28(5):391–5.PubMedCrossRef Yoldemir T, Erenus M. The impact of metabolic syndrome on bone mineral density in postmenopausal women. Gynecol Endocrinol. 2012;28(5):391–5.PubMedCrossRef
36.
go back to reference Saoji R, Das RS, Desai M, Pasi A, Sachdeva G, Das TK, Khatkhatay MI. Association of high-density lipoprotein, triglycerides, and homocysteine with bone mineral density in young Indian tribal women. Arch Osteoporos. 2018;13(1):108.PubMedCrossRef Saoji R, Das RS, Desai M, Pasi A, Sachdeva G, Das TK, Khatkhatay MI. Association of high-density lipoprotein, triglycerides, and homocysteine with bone mineral density in young Indian tribal women. Arch Osteoporos. 2018;13(1):108.PubMedCrossRef
37.
go back to reference Yamaguchi T, Sugimoto T, Yano S, Yamauchi M, Sowa H, Chen Q, et al. Plasma lipids and osteoporosis in postmenopausal women. Endocr J. 2002;49:211–7.PubMedCrossRef Yamaguchi T, Sugimoto T, Yano S, Yamauchi M, Sowa H, Chen Q, et al. Plasma lipids and osteoporosis in postmenopausal women. Endocr J. 2002;49:211–7.PubMedCrossRef
38.
go back to reference Sung DJ, So WY. Negative association of plasma cholesterol and low-density lipoprotein cholesterol, but not testosterone or growth hormone, with bone mineral density in elderly Korean men. Iran J Public Health. 2016;45(2):255–6.PubMedPubMedCentral Sung DJ, So WY. Negative association of plasma cholesterol and low-density lipoprotein cholesterol, but not testosterone or growth hormone, with bone mineral density in elderly Korean men. Iran J Public Health. 2016;45(2):255–6.PubMedPubMedCentral
39.
go back to reference Kim KC, Shin DH, Lee SY, Im JA, Lee DC. Relation between obesity and bone mineral density and vertebral fractures in Korean postmenopausal women. Yonsei Med J. 2010;51(6):857–63.PubMedPubMedCentralCrossRef Kim KC, Shin DH, Lee SY, Im JA, Lee DC. Relation between obesity and bone mineral density and vertebral fractures in Korean postmenopausal women. Yonsei Med J. 2010;51(6):857–63.PubMedPubMedCentralCrossRef
40.
go back to reference Lilianne HH, Zaynab A. Serum lipids effect on bone mineral density: a pilot study in apparently healthy Syrians. Intern Med. 2014;4(179):2. Lilianne HH, Zaynab A. Serum lipids effect on bone mineral density: a pilot study in apparently healthy Syrians. Intern Med. 2014;4(179):2.
41.
go back to reference Li S, Guo H, Liu Y, Wu F, Zhang H, Zhang Z, et al. Relationships of serum lipid profiles and bone mineral density in postmenopausal Chinese women. Clin Endocrinol. 2015;82(1):53–8.CrossRef Li S, Guo H, Liu Y, Wu F, Zhang H, Zhang Z, et al. Relationships of serum lipid profiles and bone mineral density in postmenopausal Chinese women. Clin Endocrinol. 2015;82(1):53–8.CrossRef
44.
go back to reference Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486–97.CrossRef Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486–97.CrossRef
45.
go back to reference Cho YM. Fish consumption, mercury exposure, and the risk of cholesterol profiles: findings from the Korea National Health and nutrition examination survey 2010-2011. Environ Health Toxicol. 2017;32:e2017014.PubMedPubMedCentralCrossRef Cho YM. Fish consumption, mercury exposure, and the risk of cholesterol profiles: findings from the Korea National Health and nutrition examination survey 2010-2011. Environ Health Toxicol. 2017;32:e2017014.PubMedPubMedCentralCrossRef
46.
go back to reference Sharma MD, Pavlik VN. Dyslipidemia in African Americans, Hispanics and whites with type 2 diabetes mellitus and hypertension. Diabetes Obes Metab. 2001;3(1):41–5.PubMedCrossRef Sharma MD, Pavlik VN. Dyslipidemia in African Americans, Hispanics and whites with type 2 diabetes mellitus and hypertension. Diabetes Obes Metab. 2001;3(1):41–5.PubMedCrossRef
47.
go back to reference Marcus R, Greendale G, Blunt BA, Bush TL, Sherman S, Sherwin R, et al. Correlates of bone mineral density in the postmenopausal estrogen/progestin interventions trial. J Bone Miner Res. 1994;9:1467–76.PubMedCrossRef Marcus R, Greendale G, Blunt BA, Bush TL, Sherman S, Sherwin R, et al. Correlates of bone mineral density in the postmenopausal estrogen/progestin interventions trial. J Bone Miner Res. 1994;9:1467–76.PubMedCrossRef
48.
go back to reference Araujo AB, Travison TG, Harris SS, Holick MF, Turner AK, McKinlay JB. Race/ethnic differences in bone mineral density in men. Osteoporos Int. 2007;18(7):943–53.PubMedCrossRef Araujo AB, Travison TG, Harris SS, Holick MF, Turner AK, McKinlay JB. Race/ethnic differences in bone mineral density in men. Osteoporos Int. 2007;18(7):943–53.PubMedCrossRef
49.
go back to reference Lu H, Fu X, Ma X, Wu Z, He W, Wang Z, et al. Relationships of percent body fat and percent trunk fat with bone mineral density among Chinese, black, and white subjects. Osteoporos Int. 2011;22(12):3029–35.PubMedCrossRef Lu H, Fu X, Ma X, Wu Z, He W, Wang Z, et al. Relationships of percent body fat and percent trunk fat with bone mineral density among Chinese, black, and white subjects. Osteoporos Int. 2011;22(12):3029–35.PubMedCrossRef
50.
go back to reference George JA, Micklesfield LK, Norris SA, Crowther NJ. The association between body composition, 25(OH)D and PTH, and bone mineral density in black African and Asian Indian population groups. J Clin Endocrinol Metab. 2014;99(6):2146–54.PubMedCrossRef George JA, Micklesfield LK, Norris SA, Crowther NJ. The association between body composition, 25(OH)D and PTH, and bone mineral density in black African and Asian Indian population groups. J Clin Endocrinol Metab. 2014;99(6):2146–54.PubMedCrossRef
51.
go back to reference Bagger YZ, Rasmussen HB, Alexandersen P, Werge T, Christiansen C, Tankó LB, et al. Links between cardiovascular disease and osteoporosis in postmenopausal women: serum lipids or atherosclerosis per se? Osteoporos Int. 2007;18:505–12.PubMedCrossRef Bagger YZ, Rasmussen HB, Alexandersen P, Werge T, Christiansen C, Tankó LB, et al. Links between cardiovascular disease and osteoporosis in postmenopausal women: serum lipids or atherosclerosis per se? Osteoporos Int. 2007;18:505–12.PubMedCrossRef
52.
go back to reference Muka T, Trajanoska K, Kiefte-de Jong JC, Oei L, Uitterlinden AG, Hofman A, et al. The association between metabolic syndrome, bone mineral density, hip bone geometry and fracture risk: the Rotterdam study. PLoS One. 2015;10(6):e0129116.PubMedPubMedCentralCrossRef Muka T, Trajanoska K, Kiefte-de Jong JC, Oei L, Uitterlinden AG, Hofman A, et al. The association between metabolic syndrome, bone mineral density, hip bone geometry and fracture risk: the Rotterdam study. PLoS One. 2015;10(6):e0129116.PubMedPubMedCentralCrossRef
53.
go back to reference Cardadeiro G, Baptista F, Zymbal V, Rodrigues LA, Sardinha LB. Ward's area location, physical activity, and body composition in 8-and 9-year-old boys and girls. J Bone Miner Res. 2010;25(11):2304–12.PubMedCrossRef Cardadeiro G, Baptista F, Zymbal V, Rodrigues LA, Sardinha LB. Ward's area location, physical activity, and body composition in 8-and 9-year-old boys and girls. J Bone Miner Res. 2010;25(11):2304–12.PubMedCrossRef
Metadata
Title
Identification of hypertriglyceridemia based on bone density, body fat mass, and anthropometry in a Korean population
Authors
Jeong Hee Chi
Moon Sun Shin
Bum Ju Lee
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2019
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-019-1050-2

Other articles of this Issue 1/2019

BMC Cardiovascular Disorders 1/2019 Go to the issue