Skip to main content
Top
Published in: Child's Nervous System 5/2019

01-05-2019 | Hydrocephalus | Original Article

Upward movement of cerebrospinal fluid in obstructive hydrocephalus—revision of an old concept

Authors: Hans C. Bock, Steffi F. Dreha-Kulaczewski, Awad Alaid, Jutta Gärtner, Hans C. Ludwig

Published in: Child's Nervous System | Issue 5/2019

Login to get access

Abstract

Purpose

The specific pathophysiological processes in many forms of obstructive hydrocephalus (HC) are still unclear. Current concepts of cerebrospinal fluid (CSF) dynamics presume a constant downward flow from the lateral ventricles towards subarachnoid spaces, which are in contrast to neurosurgical observations and findings of MRI flow studies. The aim of our study was to analyze CSF movements in patients with obstructive HC by neuroendoscopic video recordings, X-ray studies, and MRI.

Methods

One hundred seventeen pediatric patients with obstructive HC who underwent neuroendoscopy in our center were included. Video recordings were analyzed in 85 patients. Contrast-enhanced X-rays were conducted during surgery prior to intervention in 75 patients, and flow void signals on pre-operative MRI could be evaluated in 110 patients.

Results

In 83.5% of the video recordings, CSF moved upwards synchronous to inspiration superimposed by cardiac pulsation. Application of contrast medium revealed a flow delay in 52% of the X-ray studies prior to neurosurgery, indicating hindered CSF circulation. The appearances and shapes of flow void signals in 88.2% of the pre-operative MRI studies suggested valve-like mechanisms and entrapment of CSF.

Conclusions

Neuroendoscopic observations in patients with obstructive HC revealed upward CSF movements and the corresponding MRI signs of trapped CSF in brain cavities. These observations are in contrast to the current pathophysiological concept of obstructive HC. However, recent real-time flow MRI studies demonstrated upward movement of CSF, hence support our clinical findings. The knowledge of cranial-directed CSF flow expands our understanding of pathophysiological mechanisms in HC and is the key to effective treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bhadelia RA, Madan N, Zhao Y, Wagshul ME, Heilman C, Butler JP, Patz S (2013) Physiology-based MR imaging assessment of CSF flow at the foramen magnum with a valsalva maneuver. Am J Neuroradiol 34(9):1857–1862CrossRefPubMedPubMedCentral Bhadelia RA, Madan N, Zhao Y, Wagshul ME, Heilman C, Butler JP, Patz S (2013) Physiology-based MR imaging assessment of CSF flow at the foramen magnum with a valsalva maneuver. Am J Neuroradiol 34(9):1857–1862CrossRefPubMedPubMedCentral
2.
go back to reference Bock HC, Kanzler M, Thomale U-W, Ludwig H-C (2018) Implementing a digital real-time hydrocephalus and shunt registry to evaluate contemporary pattern of care and surgical outcome in pediatric hydrocephalus. Childs Nerv Syst 34(3):457–464CrossRefPubMed Bock HC, Kanzler M, Thomale U-W, Ludwig H-C (2018) Implementing a digital real-time hydrocephalus and shunt registry to evaluate contemporary pattern of care and surgical outcome in pediatric hydrocephalus. Childs Nerv Syst 34(3):457–464CrossRefPubMed
3.
go back to reference Boulton M, Flessner M, Armstrong D, Hay J, Johnston M (1998) Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. Am J Phys 274(1 Pt 2):R88–R96 Boulton M, Flessner M, Armstrong D, Hay J, Johnston M (1998) Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. Am J Phys 274(1 Pt 2):R88–R96
4.
go back to reference Chen L, Beckett A, Verma A, Feinberg DA (2015) Dynamics of respiratory and cardiac CSF motion revealed with real-time simultaneous multi-slice EPI velocity phase contrast imaging. Neuroimage 122(C):281–287CrossRefPubMed Chen L, Beckett A, Verma A, Feinberg DA (2015) Dynamics of respiratory and cardiac CSF motion revealed with real-time simultaneous multi-slice EPI velocity phase contrast imaging. Neuroimage 122(C):281–287CrossRefPubMed
5.
go back to reference Chen L, Elias G, Yostos MP, Stimec B, Fasel J, Murphy K (2014) Pathways of cerebrospinal fluid outflow: a deeper understanding of resorption. Neuroradiology 57(2):139–147CrossRefPubMed Chen L, Elias G, Yostos MP, Stimec B, Fasel J, Murphy K (2014) Pathways of cerebrospinal fluid outflow: a deeper understanding of resorption. Neuroradiology 57(2):139–147CrossRefPubMed
9.
go back to reference Di Rocco C, Pettorossi VE, Caldarelli M, Mancinelli R, Velardi F (1978) Communicating hydrocephalus induced by mechanically increased amplitude of the intraventricular cerebrospinal fluid pressure: experimental studies. Exp Neurol 59:40–52CrossRefPubMed Di Rocco C, Pettorossi VE, Caldarelli M, Mancinelli R, Velardi F (1978) Communicating hydrocephalus induced by mechanically increased amplitude of the intraventricular cerebrospinal fluid pressure: experimental studies. Exp Neurol 59:40–52CrossRefPubMed
10.
go back to reference Dreha-Kulaczewski S, Joseph AA, Merboldt K-D, Ludwig H-C, Gärtner J, Frahm J (2015) Inspiration is the major regulator of human CSF flow. J Neurosci 35(6):2485–2491CrossRefPubMedPubMedCentral Dreha-Kulaczewski S, Joseph AA, Merboldt K-D, Ludwig H-C, Gärtner J, Frahm J (2015) Inspiration is the major regulator of human CSF flow. J Neurosci 35(6):2485–2491CrossRefPubMedPubMedCentral
11.
go back to reference Dreha-Kulaczewski S, Joseph AA, Merboldt K-D, Ludwig H-C, Gärtner J, Frahm J (2017) Identification of the upward movement of human cerebrospinal fluid in vivo and its relation to the brain venous system. J Neurosci 37(9):2754–16–2402CrossRef Dreha-Kulaczewski S, Joseph AA, Merboldt K-D, Ludwig H-C, Gärtner J, Frahm J (2017) Identification of the upward movement of human cerebrospinal fluid in vivo and its relation to the brain venous system. J Neurosci 37(9):2754–16–2402CrossRef
12.
go back to reference Dreha-Kulaczewski S, Konopka M, Joseph AA, Kollmeier J, Merboldt K-D, Ludwig H-C, Gärtner J, Frahm J (2018) Respiration and the watershed of spinal CSF flow in humans. Sci Rep 8(1):5594–5597CrossRefPubMedPubMedCentral Dreha-Kulaczewski S, Konopka M, Joseph AA, Kollmeier J, Merboldt K-D, Ludwig H-C, Gärtner J, Frahm J (2018) Respiration and the watershed of spinal CSF flow in humans. Sci Rep 8(1):5594–5597CrossRefPubMedPubMedCentral
13.
go back to reference Edsbagge M, Tisell M, Jacobsson L, Wikkelsö C (2004) Spinal CSF absorption in healthy individuals. Am J Physiol Regul Integr Comp Physiol 287(6):R1450–R1455CrossRefPubMed Edsbagge M, Tisell M, Jacobsson L, Wikkelsö C (2004) Spinal CSF absorption in healthy individuals. Am J Physiol Regul Integr Comp Physiol 287(6):R1450–R1455CrossRefPubMed
14.
go back to reference Faubel R, Westendorf C, Bodenschatz E, Eichele G (2016) Cilia-based flow network in the brain ventricles. Science 353(6295):1–4CrossRef Faubel R, Westendorf C, Bodenschatz E, Eichele G (2016) Cilia-based flow network in the brain ventricles. Science 353(6295):1–4CrossRef
15.
go back to reference Foerster P, Daclin M, Asm S, Faucourt M, Boletta A, Genovesio A, Spassky N (2017) mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis. Development 144(2):201–210CrossRefPubMedPubMedCentral Foerster P, Daclin M, Asm S, Faucourt M, Boletta A, Genovesio A, Spassky N (2017) mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis. Development 144(2):201–210CrossRefPubMedPubMedCentral
16.
go back to reference Friese S, Hamhaber U, Erb M, Klose U (2004) B-waves in cerebral and spinal cerebrospinal fluid pulsation measurement by magnetic resonance imaging. J Comput Assist Tomogr 28(2):255–262CrossRefPubMed Friese S, Hamhaber U, Erb M, Klose U (2004) B-waves in cerebral and spinal cerebrospinal fluid pulsation measurement by magnetic resonance imaging. J Comput Assist Tomogr 28(2):255–262CrossRefPubMed
17.
go back to reference Funk DJ, Jacobsohn E, Kumar A (2013) The role of venous return in critical illness and shock-part I: physiology. Crit Care Med 41(1):255–262CrossRefPubMed Funk DJ, Jacobsohn E, Kumar A (2013) The role of venous return in critical illness and shock-part I: physiology. Crit Care Med 41(1):255–262CrossRefPubMed
18.
go back to reference Greitz D (1993) Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol Suppl 386:1–23PubMed Greitz D (1993) Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol Suppl 386:1–23PubMed
19.
go back to reference Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Ståhlberg F (1992) Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited. Neuroradiology 34(5):370–380CrossRefPubMed Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Ståhlberg F (1992) Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited. Neuroradiology 34(5):370–380CrossRefPubMed
20.
go back to reference Greitz D (2004) The hydrodynamic hypothesis versus the bulk flow hypothesis. Neurosurg Rev 27(4):1–2CrossRef Greitz D (2004) The hydrodynamic hypothesis versus the bulk flow hypothesis. Neurosurg Rev 27(4):1–2CrossRef
21.
go back to reference Kelly EJ, Yamada S (2016) Cerebrospinal fluid flow studies and recent advancements. Semin Ultrasound CT MRI 37:92–99CrossRef Kelly EJ, Yamada S (2016) Cerebrospinal fluid flow studies and recent advancements. Semin Ultrasound CT MRI 37:92–99CrossRef
22.
go back to reference Klarica M, Oresković D, Bozić B, Vukić M, Butković V, Bulat M (2009) New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles. NSC 158(4):1397–1405 Klarica M, Oresković D, Bozić B, Vukić M, Butković V, Bulat M (2009) New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles. NSC 158(4):1397–1405
23.
go back to reference Klose U, Strik C, Kiefer C, Grodd W (2000) Detection of a relation between respiration and CSF pulsation with an echoplanar technique. J Magn Reson Imaging 11(4):438–444CrossRefPubMed Klose U, Strik C, Kiefer C, Grodd W (2000) Detection of a relation between respiration and CSF pulsation with an echoplanar technique. J Magn Reson Imaging 11(4):438–444CrossRefPubMed
24.
go back to reference Ludwig HC, Kruschat T, Knobloch T, Teichmann H-O, Rostasy K, Rohde V (2007) First experiences with a 2.0-microm near infrared laser system for neuroendoscopy. Neurosurg Rev 30(3):195–201– discussion 201CrossRefPubMed Ludwig HC, Kruschat T, Knobloch T, Teichmann H-O, Rostasy K, Rohde V (2007) First experiences with a 2.0-microm near infrared laser system for neuroendoscopy. Neurosurg Rev 30(3):195–201– discussion 201CrossRefPubMed
25.
go back to reference Ludwig HC, M K, Timmermann A, Weyland W (2000) The influence of airway pressure changes on intracranial pressure (ICP) and the blood flow velocity in the middle cerebral artery (VMCA). Anasthesiol Intensivmed Notfallmed Schmerzthe 35:141–145CrossRef Ludwig HC, M K, Timmermann A, Weyland W (2000) The influence of airway pressure changes on intracranial pressure (ICP) and the blood flow velocity in the middle cerebral artery (VMCA). Anasthesiol Intensivmed Notfallmed Schmerzthe 35:141–145CrossRef
26.
go back to reference Murtha LA, Yang Q, Parsons MW, Levi CR, Beard DJ, Spratt NJ, McLeod DD (2014) Cerebrospinal fluid is drained primarily via the spinal canal and olfactory route in young and aged spontaneously hypertensive rats. Fluids Barriers CNS 11(1):12CrossRefPubMedPubMedCentral Murtha LA, Yang Q, Parsons MW, Levi CR, Beard DJ, Spratt NJ, McLeod DD (2014) Cerebrospinal fluid is drained primarily via the spinal canal and olfactory route in young and aged spontaneously hypertensive rats. Fluids Barriers CNS 11(1):12CrossRefPubMedPubMedCentral
27.
go back to reference Novak R, Matuschak GM, Pinsky M (1988) Effect of positive-pressure ventilatory frequency on regional pleural pressure. J Appl Physiol 65:1314–1323CrossRefPubMed Novak R, Matuschak GM, Pinsky M (1988) Effect of positive-pressure ventilatory frequency on regional pleural pressure. J Appl Physiol 65:1314–1323CrossRefPubMed
28.
go back to reference Oi S, Di Rocco C (2006) Proposal of “evolution theory in cerebrospinal fluid dynamics” and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst 22(7):662–669CrossRefPubMed Oi S, Di Rocco C (2006) Proposal of “evolution theory in cerebrospinal fluid dynamics” and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst 22(7):662–669CrossRefPubMed
29.
go back to reference Pettorossi VE, Di Rocco C, Mancinelli R, Caldarelli M, Velardi F (1978) Communicating hydrocephalus induced by mechanically increased amplitude of the intraventricular cerebrospinal fluid pulse pressure: rationale and method. Exp Neurol 59:30–39CrossRefPubMed Pettorossi VE, Di Rocco C, Mancinelli R, Caldarelli M, Velardi F (1978) Communicating hydrocephalus induced by mechanically increased amplitude of the intraventricular cerebrospinal fluid pulse pressure: rationale and method. Exp Neurol 59:30–39CrossRefPubMed
30.
go back to reference Qvarlander S, Ambarki K, Wåhlin A, Jacobsson J, Birgander R, Malm J, Eklund A (2016) Cerebrospinal fluid and blood flow patterns in idiopathic normal pressure hydrocephalus. Acta Neurol Scand 135(5):576–584CrossRefPubMed Qvarlander S, Ambarki K, Wåhlin A, Jacobsson J, Birgander R, Malm J, Eklund A (2016) Cerebrospinal fluid and blood flow patterns in idiopathic normal pressure hydrocephalus. Acta Neurol Scand 135(5):576–584CrossRefPubMed
31.
go back to reference Reitan H (2013) On movements of fluid inside the cerebro-spinal space. Acta Radiol Orig Ser 22(5–6):762–779 Reitan H (2013) On movements of fluid inside the cerebro-spinal space. Acta Radiol Orig Ser 22(5–6):762–779
33.
go back to reference Schuhmann MU, Kural C, Lalla L, Ebner FH, Bock C, Ludwig H-C (2019) 2-micron continuous wave laser assisted neuroendoscopy: clinical experience of two institutions in 524 procedures. World Neurosurg 122:e81–e88CrossRefPubMed Schuhmann MU, Kural C, Lalla L, Ebner FH, Bock C, Ludwig H-C (2019) 2-micron continuous wave laser assisted neuroendoscopy: clinical experience of two institutions in 524 procedures. World Neurosurg 122:e81–e88CrossRefPubMed
34.
go back to reference Spijkerman JM, Geurts LJ, Siero JCW, Hendrikse J, Luijten PR, Zwanenburg JJM (2018) Phase contrast MRI measurements of net cerebrospinal fluid flow through the cerebral aqueduct are confounded by respiration. J Magn Reson Imaging 40:2583–2512 Spijkerman JM, Geurts LJ, Siero JCW, Hendrikse J, Luijten PR, Zwanenburg JJM (2018) Phase contrast MRI measurements of net cerebrospinal fluid flow through the cerebral aqueduct are confounded by respiration. J Magn Reson Imaging 40:2583–2512
35.
go back to reference Takizawa K, Matsumae M, Hayashi N, Hirayama A, SANO F, Yatsushiro S, Kuroda K (2018) The choroid plexus of the lateral ventricle as the origin of CSF pulsation is questionable. Neurol Med Chir (Tokyo) 58(1):23–31CrossRef Takizawa K, Matsumae M, Hayashi N, Hirayama A, SANO F, Yatsushiro S, Kuroda K (2018) The choroid plexus of the lateral ventricle as the origin of CSF pulsation is questionable. Neurol Med Chir (Tokyo) 58(1):23–31CrossRef
36.
go back to reference Takizawa K, Matsumae M, Sunohara S, Yatsushiro S, Kuroda K (2017) Characterization of cardiac- and respiratory-driven cerebrospinal fluid motion based on asynchronous phase-contrast magnetic resonance imaging in volunteers. Fluids Barriers CNS 14(1):25CrossRefPubMedPubMedCentral Takizawa K, Matsumae M, Sunohara S, Yatsushiro S, Kuroda K (2017) Characterization of cardiac- and respiratory-driven cerebrospinal fluid motion based on asynchronous phase-contrast magnetic resonance imaging in volunteers. Fluids Barriers CNS 14(1):25CrossRefPubMedPubMedCentral
37.
go back to reference Williams B (1981) Simultaneous cerebral and spinal fluid pressure recordings. Acta Neurochir 59(1–2):123–142CrossRefPubMed Williams B (1981) Simultaneous cerebral and spinal fluid pressure recordings. Acta Neurochir 59(1–2):123–142CrossRefPubMed
38.
go back to reference Williams B (1981) Simultaneous cerebral and spinal fluid pressure recordings. Acta Neurochir 58(3–4):167–185CrossRefPubMed Williams B (1981) Simultaneous cerebral and spinal fluid pressure recordings. Acta Neurochir 58(3–4):167–185CrossRefPubMed
39.
go back to reference Williams H (2008) A unifying hypothesis for hydrocephalus, Chiari malformation, syringomyelia, anencephaly and spina bifida. Cerebrospinal Fluid Res 5:7CrossRefPubMedPubMedCentral Williams H (2008) A unifying hypothesis for hydrocephalus, Chiari malformation, syringomyelia, anencephaly and spina bifida. Cerebrospinal Fluid Res 5:7CrossRefPubMedPubMedCentral
40.
go back to reference Yamada S, Miyazaki M, Yamashita Y, Ouyang C, Yui M, Nakahashi M, Shimizu S, Aoki I, Morohoshi Y, McComb J (2013) Influence of respiration on cerebrospinal fluid movement using magnetic resonance spin labeling. Fluids Barriers CNS 10(1):36CrossRefPubMedPubMedCentral Yamada S, Miyazaki M, Yamashita Y, Ouyang C, Yui M, Nakahashi M, Shimizu S, Aoki I, Morohoshi Y, McComb J (2013) Influence of respiration on cerebrospinal fluid movement using magnetic resonance spin labeling. Fluids Barriers CNS 10(1):36CrossRefPubMedPubMedCentral
Metadata
Title
Upward movement of cerebrospinal fluid in obstructive hydrocephalus—revision of an old concept
Authors
Hans C. Bock
Steffi F. Dreha-Kulaczewski
Awad Alaid
Jutta Gärtner
Hans C. Ludwig
Publication date
01-05-2019
Publisher
Springer Berlin Heidelberg
Published in
Child's Nervous System / Issue 5/2019
Print ISSN: 0256-7040
Electronic ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-019-04119-x

Other articles of this Issue 5/2019

Child's Nervous System 5/2019 Go to the issue