Skip to main content
Top
Published in: Child's Nervous System 8/2020

01-08-2020 | Hydrocephalus | Focus Session

Fetal brain damage in congenital hydrocephalus

Authors: Maria Florencia Varela, Marcos M. Miyabe, Marc Oria

Published in: Child's Nervous System | Issue 8/2020

Login to get access

Abstract

Background

Congenital hydrocephalus (HCP) is a developmental brain disorder characterized by the abnormal accumulation of cerebrospinal fluid within the ventricles. It is caused by genetic and acquired factors that start during early embryogenesis with disruption of the neurogerminal areas. As might be expected, early-onset hydrocephalus alters the process of brain development leading to irreparable neurological deficit. A primary alteration of the ependyma/neural stem cells (affecting vesicle trafficking and abnormal cell junctions) leads to its loss or denudation and translocation of neural progenitor cells (NPCs) and neural stem cells (NSCs) into the cerebrospinal fluid (CSF). Under these abnormal conditions, morphological and functional processes, underlying the concept of astroglial reaction, are initiated in an attempt to recover homeostasis in the periventricular zone. This astroglial reaction includes astrocyte hypertrophy, hyperplasia, and development of a new layer with reorganized functional features that resemble the ependyma. Despite decades of research, there is a lack of information concerning the biological basis of the brain abnormalities that are associated with HCP.

Discussion

The present review of current literature discusses the neuropathological changes during gestation following the onset of congenital hydrocephalus and the unanswered questions into the pathophysiology of the disease. A better understanding of those missing points might help create novel therapeutic strategies that can reverse or even prevent the ultimate neurological impairment that affects this population and improve long-term clinical outcome.
Literature
1.
go back to reference Adeloye A, Warkany J (1976) Experimental congenital hydrocephalus. A review with special consideration of hydrocephalus produced by zinc deficiency. Childs Brain 2:325–360PubMed Adeloye A, Warkany J (1976) Experimental congenital hydrocephalus. A review with special consideration of hydrocephalus produced by zinc deficiency. Childs Brain 2:325–360PubMed
2.
go back to reference Aolad HMD, Inouye M, Darmanto W, Hayasaka S, Murata Y (2000) Hydrocephalus in mice following X-irradiation at early gestational stage: possibly due to persistent deceleration of cell proliferation. J Radiat Res 41:213–226CrossRefPubMed Aolad HMD, Inouye M, Darmanto W, Hayasaka S, Murata Y (2000) Hydrocephalus in mice following X-irradiation at early gestational stage: possibly due to persistent deceleration of cell proliferation. J Radiat Res 41:213–226CrossRefPubMed
3.
go back to reference Baker ML, Payne LC, Baker GN (1961) The inheritance of hydrocephalus in cattle. J Hered 52:135–138CrossRef Baker ML, Payne LC, Baker GN (1961) The inheritance of hydrocephalus in cattle. J Hered 52:135–138CrossRef
4.
go back to reference Beni-Adani L (2011) Pathophysiology of fetal hydrocephalus in a developmental rat model of spina bifida. Pediatr Res 70:157–157CrossRef Beni-Adani L (2011) Pathophysiology of fetal hydrocephalus in a developmental rat model of spina bifida. Pediatr Res 70:157–157CrossRef
5.
go back to reference Bruni JE, Del Bigio MR, Cardoso ER, Persaud TV (1988) Hereditary hydrocephalus in laboratory animals and humans. Exp Pathol 35:239–246CrossRefPubMed Bruni JE, Del Bigio MR, Cardoso ER, Persaud TV (1988) Hereditary hydrocephalus in laboratory animals and humans. Exp Pathol 35:239–246CrossRefPubMed
6.
go back to reference Bruni JE, Del Bigio MR, Clattenburg RE (1985) Ependyma: normal and pathological. A review of the literature. Brain Res 356:1–19CrossRefPubMed Bruni JE, Del Bigio MR, Clattenburg RE (1985) Ependyma: normal and pathological. A review of the literature. Brain Res 356:1–19CrossRefPubMed
7.
go back to reference Castejón OJ, Castejón HV, Castellano A (2001) Oligodendroglial cell damage and demyelination in infant hydrocephalus. An electron microscopic study. J Submicrosc Cytol Pathol 33:33–40PubMed Castejón OJ, Castejón HV, Castellano A (2001) Oligodendroglial cell damage and demyelination in infant hydrocephalus. An electron microscopic study. J Submicrosc Cytol Pathol 33:33–40PubMed
8.
go back to reference Cavalheiro S, da Costa MDS, Mendonça JN, Dastoli PA, Suriano IC, Barbosa MM, Moron AF (2017) Antenatal management of fetal neurosurgical diseases. Childs Nerv Syst 33:1125–1141PubMedPubMedCentralCrossRef Cavalheiro S, da Costa MDS, Mendonça JN, Dastoli PA, Suriano IC, Barbosa MM, Moron AF (2017) Antenatal management of fetal neurosurgical diseases. Childs Nerv Syst 33:1125–1141PubMedPubMedCentralCrossRef
9.
go back to reference Chae TH, Kim S, Marz KE, Hanson PI, Walsh CA (2004) The hyh mutation uncovers roles for alpha Snap in apical protein localization and control of neural cell fate. Nat Genet 36:264–270CrossRefPubMed Chae TH, Kim S, Marz KE, Hanson PI, Walsh CA (2004) The hyh mutation uncovers roles for alpha Snap in apical protein localization and control of neural cell fate. Nat Genet 36:264–270CrossRefPubMed
10.
go back to reference Chamberlain JG (1972) 6-aminonicotinamide (6-AN)-induced abnormalities of the developing ependyma and choroid plexus as seen with the scanning electron microscope. Teratology 6:281–285CrossRefPubMed Chamberlain JG (1972) 6-aminonicotinamide (6-AN)-induced abnormalities of the developing ependyma and choroid plexus as seen with the scanning electron microscope. Teratology 6:281–285CrossRefPubMed
11.
go back to reference Chamberlain JG, Nelson MM (1963) Congenital abnormalities in the rat resulting from single injections of 6-aminonicotinamide during pregnancy. J Exp Zool 153:285–299CrossRefPubMed Chamberlain JG, Nelson MM (1963) Congenital abnormalities in the rat resulting from single injections of 6-aminonicotinamide during pregnancy. J Exp Zool 153:285–299CrossRefPubMed
12.
go back to reference Craig A, Lober RM, Grant GA (2015) Complex fetal care: implications of fetal ventriculomegaly: a neurosurgical perspective. NeoReviews 16:254–259CrossRef Craig A, Lober RM, Grant GA (2015) Complex fetal care: implications of fetal ventriculomegaly: a neurosurgical perspective. NeoReviews 16:254–259CrossRef
13.
go back to reference Crews L, Wyss-Coray T, Masliah E (2004) Insights into the pathogenesis of hydrocephalus from transgenic and experimental animal models. Brain Pathol 14:312–316CrossRefPubMed Crews L, Wyss-Coray T, Masliah E (2004) Insights into the pathogenesis of hydrocephalus from transgenic and experimental animal models. Brain Pathol 14:312–316CrossRefPubMed
14.
go back to reference Del Bigio MR (1993) Neuropathological changes caused by hydrocephalus. Acta Neuropathol 85:573–585CrossRefPubMed Del Bigio MR (1993) Neuropathological changes caused by hydrocephalus. Acta Neuropathol 85:573–585CrossRefPubMed
15.
go back to reference Del Bigio MR (2001) Pathophysiologic consequences of hydrocephalus. Neurosurg Clin N Am 12:639–649CrossRefPubMed Del Bigio MR (2001) Pathophysiologic consequences of hydrocephalus. Neurosurg Clin N Am 12:639–649CrossRefPubMed
16.
go back to reference Del Bigio MR (2001) Future directions for therapy of childhood hydrocephalus: a view from the laboratory. Pediatr Neurosurg 34:172–181CrossRefPubMed Del Bigio MR (2001) Future directions for therapy of childhood hydrocephalus: a view from the laboratory. Pediatr Neurosurg 34:172–181CrossRefPubMed
17.
18.
go back to reference Del Bigio MR, Crook CR, Buist R (1997) Magnetic resonance imaging and behavioral analysis of immature rats with kaolin-induced hydrocephalus: pre- and postshunting observations. Exp Neurol 148:256–264CrossRefPubMed Del Bigio MR, Crook CR, Buist R (1997) Magnetic resonance imaging and behavioral analysis of immature rats with kaolin-induced hydrocephalus: pre- and postshunting observations. Exp Neurol 148:256–264CrossRefPubMed
20.
go back to reference Del Bigio MR, Kanfer JN, Zhang YW (1997) Myelination delay in the cerebral white matter of immature rats with kaolin-induced hydrocephalus is reversible. J Neuropathol Exp Neurol 56:1053–1066CrossRefPubMed Del Bigio MR, Kanfer JN, Zhang YW (1997) Myelination delay in the cerebral white matter of immature rats with kaolin-induced hydrocephalus is reversible. J Neuropathol Exp Neurol 56:1053–1066CrossRefPubMed
21.
go back to reference Del Bigio MR, Wilson MJ, Enno T (2003) Chronic hydrocephalus in rats and humans: white matter loss and behavior changes. Ann Neurol 53:337–346CrossRefPubMed Del Bigio MR, Wilson MJ, Enno T (2003) Chronic hydrocephalus in rats and humans: white matter loss and behavior changes. Ann Neurol 53:337–346CrossRefPubMed
22.
go back to reference Del Bigio MR, Zhang YW (1998) Cell death, axonal damage, and cell birth in the immature rat brain following induction of hydrocephalus. Exp Neurol 154:157–169CrossRefPubMed Del Bigio MR, Zhang YW (1998) Cell death, axonal damage, and cell birth in the immature rat brain following induction of hydrocephalus. Exp Neurol 154:157–169CrossRefPubMed
23.
go back to reference Deren KE, Packer M, Forsyth J, Milash B, Abdullah OM, Hsu EW, McAllister JP 2nd (2010) Reactive astrocytosis, microgliosis and inflammation in rats with neonatal hydrocephalus. Exp Neurol 226:110–119CrossRefPubMed Deren KE, Packer M, Forsyth J, Milash B, Abdullah OM, Hsu EW, McAllister JP 2nd (2010) Reactive astrocytosis, microgliosis and inflammation in rats with neonatal hydrocephalus. Exp Neurol 226:110–119CrossRefPubMed
24.
go back to reference Dewan MC, Rattani A, Mekary R, Glancz LJ, Yunusa I, Baticulon RE, Fieggen G, Wellons JC, Park KB, Warf BC (2018) Global hydrocephalus epidemiology and incidence: systematic review and meta-analysis. J Neurosurg 1:1–15 Dewan MC, Rattani A, Mekary R, Glancz LJ, Yunusa I, Baticulon RE, Fieggen G, Wellons JC, Park KB, Warf BC (2018) Global hydrocephalus epidemiology and incidence: systematic review and meta-analysis. J Neurosurg 1:1–15
25.
go back to reference Domínguez-Pinos MD, Páez P, Jiménez A-J, Weil B, Arráez M-A, Pérez-Fígares J-M, Rodríguez E-M (2005) Ependymal denudation and alterations of the subventricular zone occur in human fetuses with a moderate communicating hydrocephalus. J Neuropathol Exp Neurol 64:595–604CrossRefPubMed Domínguez-Pinos MD, Páez P, Jiménez A-J, Weil B, Arráez M-A, Pérez-Fígares J-M, Rodríguez E-M (2005) Ependymal denudation and alterations of the subventricular zone occur in human fetuses with a moderate communicating hydrocephalus. J Neuropathol Exp Neurol 64:595–604CrossRefPubMed
26.
go back to reference Duru S, Oria M, Arevalo S, Rodo C, Correa L, Vuletin F, Sanchez-Margallo F, Peiro JL (2019) Comparative study of intracisternal kaolin injection techniques to induce congenital hydrocephalus in fetal lamb. Childs Nerv Syst 35:843–849CrossRefPubMed Duru S, Oria M, Arevalo S, Rodo C, Correa L, Vuletin F, Sanchez-Margallo F, Peiro JL (2019) Comparative study of intracisternal kaolin injection techniques to induce congenital hydrocephalus in fetal lamb. Childs Nerv Syst 35:843–849CrossRefPubMed
27.
go back to reference Duru S, Peiro JL, Oria M, Aydin E, Subasi C, Tuncer C, Rekate HL (2018) Successful endoscopic third ventriculostomy in children depends on age and etiology of hydrocephalus: outcome analysis in 51 pediatric patients. Childs Nerv Syst 34:1521–1528CrossRefPubMed Duru S, Peiro JL, Oria M, Aydin E, Subasi C, Tuncer C, Rekate HL (2018) Successful endoscopic third ventriculostomy in children depends on age and etiology of hydrocephalus: outcome analysis in 51 pediatric patients. Childs Nerv Syst 34:1521–1528CrossRefPubMed
28.
go back to reference Edwards MS, Harrison MR, Halks-Miller M, Nakayama DK, Berger MS, Glick PL, Chinn DH (1984) Kaolin-induced congenital hydrocephalus in utero in fetal lambs and rhesus monkeys. J Neurosurg 60:115–122CrossRefPubMed Edwards MS, Harrison MR, Halks-Miller M, Nakayama DK, Berger MS, Glick PL, Chinn DH (1984) Kaolin-induced congenital hydrocephalus in utero in fetal lambs and rhesus monkeys. J Neurosurg 60:115–122CrossRefPubMed
29.
go back to reference Emery SP, Greene S, Murdoch G, Wiley CA (2020) Histologic appearance of iatrogenic obstructive hydrocephalus in the fetal lamb model. Fetal Diagn Ther 47:7–14CrossRefPubMed Emery SP, Greene S, Murdoch G, Wiley CA (2020) Histologic appearance of iatrogenic obstructive hydrocephalus in the fetal lamb model. Fetal Diagn Ther 47:7–14CrossRefPubMed
30.
go back to reference Ferland RJ, Batiz LF, Neal J, Lian G, Bundock E, Lu J, Hsiao Y-C, Diamond R, Mei D, Banham AH, Brown PJ, Vanderburg CR, Joseph J, Hecht JL, Folkerth R, Guerrini R, Walsh CA, Rodriguez EM, Sheen VL (2009) Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia. Hum Mol Genet 18:497–516CrossRefPubMed Ferland RJ, Batiz LF, Neal J, Lian G, Bundock E, Lu J, Hsiao Y-C, Diamond R, Mei D, Banham AH, Brown PJ, Vanderburg CR, Joseph J, Hecht JL, Folkerth R, Guerrini R, Walsh CA, Rodriguez EM, Sheen VL (2009) Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia. Hum Mol Genet 18:497–516CrossRefPubMed
31.
go back to reference Furey CG, Zeng X, Dong W, Jin SC, Choi J, Timberlake AT, Dunbar AM, Allocco AA, Günel M, Lifton RP, Kahle KT (2018) Human genetics and molecular mechanisms of congenital hydrocephalus. World Neurosurg 119:441–443CrossRefPubMed Furey CG, Zeng X, Dong W, Jin SC, Choi J, Timberlake AT, Dunbar AM, Allocco AA, Günel M, Lifton RP, Kahle KT (2018) Human genetics and molecular mechanisms of congenital hydrocephalus. World Neurosurg 119:441–443CrossRefPubMed
32.
go back to reference Gänzler-Odenthal SI, Redies C (1998) Blocking N-cadherin function disrupts the epithelial structure of differentiating neural tissue in the embryonic chicken brain. J Neurosci 18:5415–5425PubMedPubMedCentralCrossRef Gänzler-Odenthal SI, Redies C (1998) Blocking N-cadherin function disrupts the epithelial structure of differentiating neural tissue in the embryonic chicken brain. J Neurosci 18:5415–5425PubMedPubMedCentralCrossRef
34.
go back to reference Gato A, Moro JA, Alonso MI, Bueno D, De La Mano A, Martín C (2005) Embryonic cerebrospinal fluid regulates neuroepithelial survival, proliferation, and neurogenesis in chick embryos. Anat Rec A Discov Mol Cell Evol Biol 284:475–484CrossRefPubMed Gato A, Moro JA, Alonso MI, Bueno D, De La Mano A, Martín C (2005) Embryonic cerebrospinal fluid regulates neuroepithelial survival, proliferation, and neurogenesis in chick embryos. Anat Rec A Discov Mol Cell Evol Biol 284:475–484CrossRefPubMed
35.
go back to reference Goergen S (2018) Outcome of fetuses with prenatal diagnosis of isolated severe bilateral ventriculomegaly: systematic review and meta-analysis. Ultrasound Obstet Gynecol 52:165–173CrossRef Goergen S (2018) Outcome of fetuses with prenatal diagnosis of isolated severe bilateral ventriculomegaly: systematic review and meta-analysis. Ultrasound Obstet Gynecol 52:165–173CrossRef
36.
go back to reference Goto J, Tezuka T, Nakazawa T, Sagara H, Yamamoto T (2008) Loss of Fyn tyrosine kinase on the C57BL/6 genetic background causes hydrocephalus with defects in oligodendrocyte development. Mol Cell Neurosci 38:203–212CrossRefPubMed Goto J, Tezuka T, Nakazawa T, Sagara H, Yamamoto T (2008) Loss of Fyn tyrosine kinase on the C57BL/6 genetic background causes hydrocephalus with defects in oligodendrocyte development. Mol Cell Neurosci 38:203–212CrossRefPubMed
37.
go back to reference Gu C, Hao X, Li J, Hua Y, Keep RF, Xi G (2019) Effects of minocycline on epiplexus macrophage activation, choroid plexus injury and hydrocephalus development in spontaneous hypertensive rats. J Cereb Blood Flow Metab 39:1936–1948PubMedPubMedCentralCrossRef Gu C, Hao X, Li J, Hua Y, Keep RF, Xi G (2019) Effects of minocycline on epiplexus macrophage activation, choroid plexus injury and hydrocephalus development in spontaneous hypertensive rats. J Cereb Blood Flow Metab 39:1936–1948PubMedPubMedCentralCrossRef
38.
39.
go back to reference Guerra M, Blázquez JL, Rodríguez EM (2017) Blood–brain barrier and foetal-onset hydrocephalus, with a view on potential novel treatments beyond managing CSF flow. Fluids and Barriers of the CNS 14:19PubMedPubMedCentralCrossRef Guerra M, Blázquez JL, Rodríguez EM (2017) Blood–brain barrier and foetal-onset hydrocephalus, with a view on potential novel treatments beyond managing CSF flow. Fluids and Barriers of the CNS 14:19PubMedPubMedCentralCrossRef
40.
go back to reference Guerra MM, Henzi R, Ortloff A, Lichtin N, Vío K, Jiménez AJ, Dominguez-Pinos MD, González C, Jara MC, Hinostroza F, Rodríguez S, Jara M, Ortega E, Guerra F, Sival DA, den Dunnen WFA, Pérez-Fígares JM, McAllister JP, Johanson CE, Rodríguez EM (2015) Cell junction pathology of neural stem cells is associated with ventricular zone disruption, hydrocephalus, and abnormal neurogenesis. J Neuropathol Exp Neurol 74:653–671CrossRefPubMed Guerra MM, Henzi R, Ortloff A, Lichtin N, Vío K, Jiménez AJ, Dominguez-Pinos MD, González C, Jara MC, Hinostroza F, Rodríguez S, Jara M, Ortega E, Guerra F, Sival DA, den Dunnen WFA, Pérez-Fígares JM, McAllister JP, Johanson CE, Rodríguez EM (2015) Cell junction pathology of neural stem cells is associated with ventricular zone disruption, hydrocephalus, and abnormal neurogenesis. J Neuropathol Exp Neurol 74:653–671CrossRefPubMed
41.
go back to reference Henzi R, Guerra M, Vío K, González C, Herrera C, McAllister P, Johanson C, Rodríguez EM (2018) Neurospheres from neural stem/neural progenitor cells (NSPCs) of non-hydrocephalic HTx rats produce neurons, astrocytes and multiciliated ependyma: the cerebrospinal fluid of normal and hydrocephalic rats supports such a differentiation. Cell Tissue Res 373:421–438CrossRefPubMed Henzi R, Guerra M, Vío K, González C, Herrera C, McAllister P, Johanson C, Rodríguez EM (2018) Neurospheres from neural stem/neural progenitor cells (NSPCs) of non-hydrocephalic HTx rats produce neurons, astrocytes and multiciliated ependyma: the cerebrospinal fluid of normal and hydrocephalic rats supports such a differentiation. Cell Tissue Res 373:421–438CrossRefPubMed
43.
go back to reference Hochwald GM (1985) Animal models of hydrocephalus: recent developments. Exp Biol Med 178:1–11CrossRef Hochwald GM (1985) Animal models of hydrocephalus: recent developments. Exp Biol Med 178:1–11CrossRef
44.
go back to reference Jiménez AJ, Domínguez-Pinos M-D, Guerra MM, Fernández-Llebrez P, Pérez-Fígares J-M (2014) Structure and function of the ependymal barrier and diseases associated with ependyma disruption. Tissue Barriers 2:e2842601–e2842614CrossRef Jiménez AJ, Domínguez-Pinos M-D, Guerra MM, Fernández-Llebrez P, Pérez-Fígares J-M (2014) Structure and function of the ependymal barrier and diseases associated with ependyma disruption. Tissue Barriers 2:e2842601–e2842614CrossRef
45.
go back to reference Jiménez A-J, Rodríguez-Pérez L-M, Domínguez-Pinos M-D, Gómez-Roldán M-C, García-Bonilla M, Ho-Plagaro A, Roales-Buján R, Jiménez S, Roquero-Mañueco M-C, Martínez-León M-I, García-Martín M-L, Cifuentes M, Ros B, Arráez M-Á, Vitorica J, Gutiérrez A, Pérez-Fígares J-M (2014) Increased levels of tumour necrosis factor alpha (TNFα) but not transforming growth factor-beta 1 (TGFβ1) are associated with the severity of congenital hydrocephalus in the hyh mouse. Neuropathol Appl Neurobiol 40:911–932CrossRefPubMed Jiménez A-J, Rodríguez-Pérez L-M, Domínguez-Pinos M-D, Gómez-Roldán M-C, García-Bonilla M, Ho-Plagaro A, Roales-Buján R, Jiménez S, Roquero-Mañueco M-C, Martínez-León M-I, García-Martín M-L, Cifuentes M, Ros B, Arráez M-Á, Vitorica J, Gutiérrez A, Pérez-Fígares J-M (2014) Increased levels of tumour necrosis factor alpha (TNFα) but not transforming growth factor-beta 1 (TGFβ1) are associated with the severity of congenital hydrocephalus in the hyh mouse. Neuropathol Appl Neurobiol 40:911–932CrossRefPubMed
46.
go back to reference Jiménez AJ, Tomé M, Páez P, Wagner C, Rodríguez S, Fernández-Llebrez P, Rodríguez EM, Pérez-Fígares JM (2001) A programmed ependymal denudation precedes congenital hydrocephalus in thehyhMutant mouse. J Neuropathol Exp Neurol 60:1105–1119CrossRefPubMed Jiménez AJ, Tomé M, Páez P, Wagner C, Rodríguez S, Fernández-Llebrez P, Rodríguez EM, Pérez-Fígares JM (2001) A programmed ependymal denudation precedes congenital hydrocephalus in thehyhMutant mouse. J Neuropathol Exp Neurol 60:1105–1119CrossRefPubMed
47.
go back to reference Johnson RT, Johnson KP, Edmonds CJ (1967) Virus-induced hydrocephalus: development of aqueductal stenosis in hamsters after mumps infection. Science 157:1066–1067CrossRefPubMed Johnson RT, Johnson KP, Edmonds CJ (1967) Virus-induced hydrocephalus: development of aqueductal stenosis in hamsters after mumps infection. Science 157:1066–1067CrossRefPubMed
48.
go back to reference Jones HC, Depelteau JS, Carter BJ, Lopman BA, Morel L (2001) Genome-wide linkage analysis of inherited hydrocephalus in the H-Tx rat. Mamm Genome 12:22–26CrossRefPubMed Jones HC, Depelteau JS, Carter BJ, Lopman BA, Morel L (2001) Genome-wide linkage analysis of inherited hydrocephalus in the H-Tx rat. Mamm Genome 12:22–26CrossRefPubMed
50.
go back to reference Jones HC, Lopman BA, Jones TW, Carter BJ, Depelteau JS, Morel L (2000) The expression of inherited hydrocephalus in H-Tx rats. Childs Nerv Syst 16:578–584CrossRefPubMed Jones HC, Lopman BA, Jones TW, Carter BJ, Depelteau JS, Morel L (2000) The expression of inherited hydrocephalus in H-Tx rats. Childs Nerv Syst 16:578–584CrossRefPubMed
51.
go back to reference Jones HC, Yehia B, Chen G-F, Carter BJ (2004) Genetic analysis of inherited hydrocephalus in a rat model. Exp Neurol 190:79–90CrossRefPubMed Jones HC, Yehia B, Chen G-F, Carter BJ (2004) Genetic analysis of inherited hydrocephalus in a rat model. Exp Neurol 190:79–90CrossRefPubMed
53.
go back to reference Kee N, Wilson N, De Vries M, Bradford D, Key B, Cooper HM (2008) Neogenin and RGMa control neural tube closure and neuroepithelial morphology by regulating cell polarity. J Neurosci 28:12643–12653PubMedPubMedCentralCrossRef Kee N, Wilson N, De Vries M, Bradford D, Key B, Cooper HM (2008) Neogenin and RGMa control neural tube closure and neuroepithelial morphology by regulating cell polarity. J Neurosci 28:12643–12653PubMedPubMedCentralCrossRef
54.
go back to reference Khan OH, Enno TL, Del Bigio MR (2006) Brain damage in neonatal rats following kaolin induction of hydrocephalus. Exp Neurol 200:311–320CrossRefPubMed Khan OH, Enno TL, Del Bigio MR (2006) Brain damage in neonatal rats following kaolin induction of hydrocephalus. Exp Neurol 200:311–320CrossRefPubMed
55.
go back to reference Khera KS, Tryphonas L (1977) Ethylenethiourea-induced hydrocephalus: pre- and postnatal pathogenesis in offspring from rats given a single oral dose during pregnancy. Toxicol Appl Pharmacol 42:85–97CrossRefPubMed Khera KS, Tryphonas L (1977) Ethylenethiourea-induced hydrocephalus: pre- and postnatal pathogenesis in offspring from rats given a single oral dose during pregnancy. Toxicol Appl Pharmacol 42:85–97CrossRefPubMed
56.
go back to reference Kohn DF, Chinookoswong N, Chou SM (1981) A new model of congenital hydrocephalus in the rat. Acta Neuropathol 54:211–218CrossRefPubMed Kohn DF, Chinookoswong N, Chou SM (1981) A new model of congenital hydrocephalus in the rat. Acta Neuropathol 54:211–218CrossRefPubMed
57.
go back to reference Kohn DF, Chinookoswong N, Chou SM (1984) Animal model of human disease. Congenital hydrocephalus. Am J Pathol 114:184–185PubMedPubMedCentral Kohn DF, Chinookoswong N, Chou SM (1984) Animal model of human disease. Congenital hydrocephalus. Am J Pathol 114:184–185PubMedPubMedCentral
58.
go back to reference Krous HF, Altshuler G, London WT, Palmer AE, Fucillo DA, Sever JL (1978) Congenital hydrocephalus. Animal model: congenital hydrocephalus produced by attenuated influenza A virus vaccine in rhesus monkeys. Am J Pathol 92:317–320PubMedPubMedCentral Krous HF, Altshuler G, London WT, Palmer AE, Fucillo DA, Sever JL (1978) Congenital hydrocephalus. Animal model: congenital hydrocephalus produced by attenuated influenza A virus vaccine in rhesus monkeys. Am J Pathol 92:317–320PubMedPubMedCentral
59.
go back to reference Lindauer MA, Griffith JQ (1938) Cerebrospinal pressure, hydrocephalus and blood pressure in the cat following intracisternal injection of colloidal kaolin. Exp Biol Med 39:547–549CrossRef Lindauer MA, Griffith JQ (1938) Cerebrospinal pressure, hydrocephalus and blood pressure in the cat following intracisternal injection of colloidal kaolin. Exp Biol Med 39:547–549CrossRef
60.
go back to reference Lu C-T, Zhao Y-Z, Wong HL, Cai J, Peng L, Tian X-Q (2014) Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine 9:2241–2257PubMedPubMedCentralCrossRef Lu C-T, Zhao Y-Z, Wong HL, Cai J, Peng L, Tian X-Q (2014) Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine 9:2241–2257PubMedPubMedCentralCrossRef
61.
go back to reference Maness PF, Schachner M (2007) Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 10:19–26CrossRefPubMed Maness PF, Schachner M (2007) Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 10:19–26CrossRefPubMed
62.
go back to reference Marianecci C, Rinaldi F, Hanieh PN, Di Marzio L, Paolino D, Carafa M (2017) Drug delivery in overcoming the blood-brain barrier: role of nasal mucosal grafting. Drug Des Devel Ther 11:325–335PubMedPubMedCentralCrossRef Marianecci C, Rinaldi F, Hanieh PN, Di Marzio L, Paolino D, Carafa M (2017) Drug delivery in overcoming the blood-brain barrier: role of nasal mucosal grafting. Drug Des Devel Ther 11:325–335PubMedPubMedCentralCrossRef
63.
go back to reference Mataró M, Junqué C, Poca MA, Sahuquillo J (2001) Neuropsychological findings in congenital and acquired childhood hydrocephalus. Neuropsychol Rev 11:169–178CrossRefPubMed Mataró M, Junqué C, Poca MA, Sahuquillo J (2001) Neuropsychological findings in congenital and acquired childhood hydrocephalus. Neuropsychol Rev 11:169–178CrossRefPubMed
64.
go back to reference McAllister JP 2nd, Miller JM (2010) Minocycline inhibits glial proliferation in the H-Tx rat model of congenital hydrocephalus. Cerebrospinal Fluid Res 7:7PubMedPubMedCentralCrossRef McAllister JP 2nd, Miller JM (2010) Minocycline inhibits glial proliferation in the H-Tx rat model of congenital hydrocephalus. Cerebrospinal Fluid Res 7:7PubMedPubMedCentralCrossRef
65.
go back to reference Millen JW, Woollam DH, Lamming GE (1953) Hydrocephalus associated with deficiency of vitamin a. Lancet 265:1234–1236CrossRefPubMed Millen JW, Woollam DH, Lamming GE (1953) Hydrocephalus associated with deficiency of vitamin a. Lancet 265:1234–1236CrossRefPubMed
66.
go back to reference Miller JM, McAllister JP 2nd (2007) Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus. Cerebrospinal Fluid Res 4:5PubMedPubMedCentralCrossRef Miller JM, McAllister JP 2nd (2007) Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus. Cerebrospinal Fluid Res 4:5PubMedPubMedCentralCrossRef
67.
68.
go back to reference Munch TN, Rostgaard K, Rasmussen M-LH, Wohlfahrt J, Juhler M, Melbye M (2012) Familial aggregation of congenital hydrocephalus in a nationwide cohort. Brain 135:2409–2415CrossRefPubMed Munch TN, Rostgaard K, Rasmussen M-LH, Wohlfahrt J, Juhler M, Melbye M (2012) Familial aggregation of congenital hydrocephalus in a nationwide cohort. Brain 135:2409–2415CrossRefPubMed
69.
go back to reference Neubauer A-P, Voss W, Wachtendorf M, Jungmann T (2010) Erythropoietin improves neurodevelopmental outcome of extremely preterm infants. Ann Neurol 67:657–666PubMed Neubauer A-P, Voss W, Wachtendorf M, Jungmann T (2010) Erythropoietin improves neurodevelopmental outcome of extremely preterm infants. Ann Neurol 67:657–666PubMed
70.
71.
go back to reference Oi S (2005) Classification and definition of hydrocephalus: origin, controversy, and assignment of the terminology. In: Cinalli G., Sainte-Rose C., Maixner W.J. (ed) Pediatric hydrocephalus. Springer, Milano, pp 95–111 Oi S (2005) Classification and definition of hydrocephalus: origin, controversy, and assignment of the terminology. In: Cinalli G., Sainte-Rose C., Maixner W.J. (ed) Pediatric hydrocephalus. Springer, Milano, pp 95–111
72.
go back to reference Oi S (2011) Classification of hydrocephalus: critical analysis of classification categories and advantages of “Multi-categorical Hydrocephalus Classification” (Mc HC). Childs Nerv Syst 27:1523–1533CrossRefPubMed Oi S (2011) Classification of hydrocephalus: critical analysis of classification categories and advantages of “Multi-categorical Hydrocephalus Classification” (Mc HC). Childs Nerv Syst 27:1523–1533CrossRefPubMed
73.
go back to reference Oi S, Sato O, Matsumoto S (1994) A new classification for congenital hydrocephalus : perspective classification of congenital hydrocephalus (PCCH) and postnatal prognosis [Part1] A proposal of a new classification of fetal/neonatal/infantile hydrocephalus based on neuronal maturation on neuronal maturation process and chronological changes. Japanese Journal of Neurosurgery 3:122–127CrossRef Oi S, Sato O, Matsumoto S (1994) A new classification for congenital hydrocephalus : perspective classification of congenital hydrocephalus (PCCH) and postnatal prognosis [Part1] A proposal of a new classification of fetal/neonatal/infantile hydrocephalus based on neuronal maturation on neuronal maturation process and chronological changes. Japanese Journal of Neurosurgery 3:122–127CrossRef
74.
go back to reference Oi S, Shizuo OI (2010) Hydrocephalus research update. Neurol Med Chir 50:859–869CrossRef Oi S, Shizuo OI (2010) Hydrocephalus research update. Neurol Med Chir 50:859–869CrossRef
75.
go back to reference Oi S, Yamada H, Sato O, Matsumoto S (1996) Experimental models of congenital hydrocephalus and comparable clinical problems in the fetal and neonatal periods. Childs Nerv Syst 12:292–302CrossRefPubMed Oi S, Yamada H, Sato O, Matsumoto S (1996) Experimental models of congenital hydrocephalus and comparable clinical problems in the fetal and neonatal periods. Childs Nerv Syst 12:292–302CrossRefPubMed
76.
go back to reference O’Leary CJ, Nourse CC, Lee NK, White A, Langford M, Sempert K, Cole SJ, Cooper HM (2017) Neogenin recruitment of the WAVE regulatory complex to ependymal and radial progenitor adherens junctions prevents hydrocephalus. Cell Rep 20:370–383CrossRefPubMed O’Leary CJ, Nourse CC, Lee NK, White A, Langford M, Sempert K, Cole SJ, Cooper HM (2017) Neogenin recruitment of the WAVE regulatory complex to ependymal and radial progenitor adherens junctions prevents hydrocephalus. Cell Rep 20:370–383CrossRefPubMed
77.
go back to reference Oria M, Duru S, Scorletti F, Vuletin F, Encinas JL, Correa-Martín L, Bakri K, Jones HN, Sanchez-Margallo FM, Peiro JL (2019) Intracisternal BioGlue injection in the fetal lamb: a novel model for creation of obstructive congenital hydrocephalus without additional chemically induced neuroinflammation. J Neurosurg Pediatr 1–11 Oria M, Duru S, Scorletti F, Vuletin F, Encinas JL, Correa-Martín L, Bakri K, Jones HN, Sanchez-Margallo FM, Peiro JL (2019) Intracisternal BioGlue injection in the fetal lamb: a novel model for creation of obstructive congenital hydrocephalus without additional chemically induced neuroinflammation. J Neurosurg Pediatr 1–11
78.
go back to reference Páez P, Bátiz L-F, Roales-Buján R, Rodríguez-Pérez L-M, Rodríguez S, Jiménez AJ, Rodríguez EM, Pérez-Fígares JM (2007) Patterned neuropathologic events occurring in hyh congenital hydrocephalic mutant mice. J Neuropathol Exp Neurol 66:1082–1092CrossRefPubMed Páez P, Bátiz L-F, Roales-Buján R, Rodríguez-Pérez L-M, Rodríguez S, Jiménez AJ, Rodríguez EM, Pérez-Fígares JM (2007) Patterned neuropathologic events occurring in hyh congenital hydrocephalic mutant mice. J Neuropathol Exp Neurol 66:1082–1092CrossRefPubMed
79.
go back to reference Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF (2009) Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs 23:35–58CrossRefPubMed Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF (2009) Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs 23:35–58CrossRefPubMed
80.
go back to reference Pisapia JM, Sinha S, Zarnow DM, Johnson MP, Heuer GG (2017) Fetal ventriculomegaly: diagnosis, treatment, and future directions. Childs Nerv Syst 33:1113–1123CrossRefPubMed Pisapia JM, Sinha S, Zarnow DM, Johnson MP, Heuer GG (2017) Fetal ventriculomegaly: diagnosis, treatment, and future directions. Childs Nerv Syst 33:1113–1123CrossRefPubMed
81.
go back to reference Pudenz RH (1981) The surgical treatment of hydrocephalus—an historical review. Surg Neurol 15:15–26CrossRefPubMed Pudenz RH (1981) The surgical treatment of hydrocephalus—an historical review. Surg Neurol 15:15–26CrossRefPubMed
82.
83.
go back to reference Roales-Buján R, Páez P, Guerra M, Rodríguez S, Vío K, Ho-Plagaro A, García-Bonilla M, Rodríguez-Pérez L-M, Domínguez-Pinos M-D, Rodríguez E-M, Pérez-Fígares J-M, Jiménez A-J (2012) Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus. Acta Neuropathol 124:531–546PubMedPubMedCentralCrossRef Roales-Buján R, Páez P, Guerra M, Rodríguez S, Vío K, Ho-Plagaro A, García-Bonilla M, Rodríguez-Pérez L-M, Domínguez-Pinos M-D, Rodríguez E-M, Pérez-Fígares J-M, Jiménez A-J (2012) Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus. Acta Neuropathol 124:531–546PubMedPubMedCentralCrossRef
84.
go back to reference Rodríguez EM, Guerra MM (2017) Neural stem cells and fetal-onset hydrocephalus. Pediatr Neurosurg 52:446–461CrossRefPubMed Rodríguez EM, Guerra MM (2017) Neural stem cells and fetal-onset hydrocephalus. Pediatr Neurosurg 52:446–461CrossRefPubMed
85.
go back to reference Rodríguez EM, Guerra MM, Vío K, González C, Ortloff A, Bátiz LF, Rodríguez S, Jara MC, Muñoz RI, Ortega E, Jaque J, Guerra F, Sival DA, den Dunnen WFA, Jiménez AJ, Domínguez-Pinos MD, Pérez-Fígares JM, McAllister JP, Johanson C (2012) A cell junction pathology of neural stem cells leads to abnormal neurogenesis and hydrocephalus. Biol Res 45:231–241CrossRefPubMed Rodríguez EM, Guerra MM, Vío K, González C, Ortloff A, Bátiz LF, Rodríguez S, Jara MC, Muñoz RI, Ortega E, Jaque J, Guerra F, Sival DA, den Dunnen WFA, Jiménez AJ, Domínguez-Pinos MD, Pérez-Fígares JM, McAllister JP, Johanson C (2012) A cell junction pathology of neural stem cells leads to abnormal neurogenesis and hydrocephalus. Biol Res 45:231–241CrossRefPubMed
86.
go back to reference Rouach N, Avignone E, Même W, Koulakoff A, Venance L, Blomstrand F, Giaume C (2002) Gap junctions and connexin expression in the normal and pathological central nervous system. Biol Cell 94:457–475CrossRefPubMed Rouach N, Avignone E, Même W, Koulakoff A, Venance L, Blomstrand F, Giaume C (2002) Gap junctions and connexin expression in the normal and pathological central nervous system. Biol Cell 94:457–475CrossRefPubMed
87.
go back to reference Schrander-Stumpel C, Fryns JP (1998) Congenital hydrocephalus: nosology and guidelines for clinical approach and genetic counselling. Eur J Pediatr 157:355–362CrossRefPubMed Schrander-Stumpel C, Fryns JP (1998) Congenital hydrocephalus: nosology and guidelines for clinical approach and genetic counselling. Eur J Pediatr 157:355–362CrossRefPubMed
88.
go back to reference Sival DA, Felderhoff-Müser U, Schmitz T, Hoving EW, Schaller C, Heep A (2008) Neonatal high pressure hydrocephalus is associated with elevation of pro-inflammatory cytokines IL-18 and IFNgamma in cerebrospinal fluid. Cerebrospinal Fluid Res 5:21PubMedPubMedCentralCrossRef Sival DA, Felderhoff-Müser U, Schmitz T, Hoving EW, Schaller C, Heep A (2008) Neonatal high pressure hydrocephalus is associated with elevation of pro-inflammatory cytokines IL-18 and IFNgamma in cerebrospinal fluid. Cerebrospinal Fluid Res 5:21PubMedPubMedCentralCrossRef
89.
go back to reference Socci DJ, Bjugstad KB, Jones HC, Pattisapu JV, Arendash GW (1999) Evidence that oxidative stress is associated with the pathophysiology of inherited hydrocephalus in the H-Tx rat model. Exp Neurol 155:109–117CrossRefPubMed Socci DJ, Bjugstad KB, Jones HC, Pattisapu JV, Arendash GW (1999) Evidence that oxidative stress is associated with the pathophysiology of inherited hydrocephalus in the H-Tx rat model. Exp Neurol 155:109–117CrossRefPubMed
90.
go back to reference Takeuchi IK, Murakami U (1979) Two types of congenital hydrocephalus induced in rats by X-irradiation in utero: electron microscopic study on the telencephalic wall. J Anat 128:693–708PubMedPubMedCentral Takeuchi IK, Murakami U (1979) Two types of congenital hydrocephalus induced in rats by X-irradiation in utero: electron microscopic study on the telencephalic wall. J Anat 128:693–708PubMedPubMedCentral
91.
go back to reference Takeuchi IK, Takeuchi YK (1986) Congenital hydrocephalus following X-irradiation of pregnant rats on an early gestational day. Neurobehav Toxicol Teratol 8:143–150PubMed Takeuchi IK, Takeuchi YK (1986) Congenital hydrocephalus following X-irradiation of pregnant rats on an early gestational day. Neurobehav Toxicol Teratol 8:143–150PubMed
92.
go back to reference Tonetti DA, Richter B, Andrews E, Xu C, Emery SP, Greene S (2018) Clinical outcomes of isolated congenital Aqueductal stenosis. World Neurosurg 114:e976–e981CrossRefPubMed Tonetti DA, Richter B, Andrews E, Xu C, Emery SP, Greene S (2018) Clinical outcomes of isolated congenital Aqueductal stenosis. World Neurosurg 114:e976–e981CrossRefPubMed
93.
go back to reference Tully HM, Dobyns WB (2014) Infantile hydrocephalus: a review of epidemiology, classification and causes. European Journal of Medical Genetics 57:359–368PubMedPubMedCentralCrossRef Tully HM, Dobyns WB (2014) Infantile hydrocephalus: a review of epidemiology, classification and causes. European Journal of Medical Genetics 57:359–368PubMedPubMedCentralCrossRef
94.
go back to reference Verkman AS, Tradtrantip L, Smith AJ, Yao X (2017) Aquaporin water channels and hydrocephalus. Pediatr Neurosurg 52:409–416CrossRefPubMed Verkman AS, Tradtrantip L, Smith AJ, Yao X (2017) Aquaporin water channels and hydrocephalus. Pediatr Neurosurg 52:409–416CrossRefPubMed
96.
go back to reference Wagner C, Batiz LF, Rodríguez S, Jiménez AJ, Páez P, Tomé M, Pérez-Fígares JM, Rodríguez EM (2003) Cellular mechanisms involved in the stenosis and obliteration of the cerebral aqueduct of hyh mutant mice developing congenital hydrocephalus. J Neuropathol Exp Neurol 62:1019–1040CrossRefPubMed Wagner C, Batiz LF, Rodríguez S, Jiménez AJ, Páez P, Tomé M, Pérez-Fígares JM, Rodríguez EM (2003) Cellular mechanisms involved in the stenosis and obliteration of the cerebral aqueduct of hyh mutant mice developing congenital hydrocephalus. J Neuropathol Exp Neurol 62:1019–1040CrossRefPubMed
97.
go back to reference Wang K-C, Lee JY, Kim S-K, Phi JH, Cho B-K (2011) Fetal ventriculomegaly: postnatal management. Childs Nerv Syst 27:1571–1573CrossRefPubMed Wang K-C, Lee JY, Kim S-K, Phi JH, Cho B-K (2011) Fetal ventriculomegaly: postnatal management. Childs Nerv Syst 27:1571–1573CrossRefPubMed
98.
go back to reference Weller RO, Wisniewski H (1969) Histological and ultrastructural changes with experimental hydrocephalus in adult rabbits. Brain 92:819–828CrossRefPubMed Weller RO, Wisniewski H (1969) Histological and ultrastructural changes with experimental hydrocephalus in adult rabbits. Brain 92:819–828CrossRefPubMed
99.
go back to reference Williams MA, McAllister JP, Walker ML, Kranz DA, Bergsneider M, Del Bigio MR, Fleming L, Frim DM, Gwinn K, Kestle JRW, Luciano MG, Madsen JR, Lou Oster-Granite M, Spinella G (2007) Priorities for hydrocephalus research: report from a National Institutes of Health–sponsored workshop. J Neurosurg Pediatr 107:345–357CrossRef Williams MA, McAllister JP, Walker ML, Kranz DA, Bergsneider M, Del Bigio MR, Fleming L, Frim DM, Gwinn K, Kestle JRW, Luciano MG, Madsen JR, Lou Oster-Granite M, Spinella G (2007) Priorities for hydrocephalus research: report from a National Institutes of Health–sponsored workshop. J Neurosurg Pediatr 107:345–357CrossRef
100.
go back to reference Wilsch-Bräuninger M, Florio M, Huttner WB (2016) Neocortex expansion in development and evolution — from cell biology to single genes. Curr Opin Neurobiol 39:122–132CrossRefPubMed Wilsch-Bräuninger M, Florio M, Huttner WB (2016) Neocortex expansion in development and evolution — from cell biology to single genes. Curr Opin Neurobiol 39:122–132CrossRefPubMed
Metadata
Title
Fetal brain damage in congenital hydrocephalus
Authors
Maria Florencia Varela
Marcos M. Miyabe
Marc Oria
Publication date
01-08-2020
Publisher
Springer Berlin Heidelberg
Published in
Child's Nervous System / Issue 8/2020
Print ISSN: 0256-7040
Electronic ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-020-04657-9

Other articles of this Issue 8/2020

Child's Nervous System 8/2020 Go to the issue