Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2017

Open Access 01-12-2017 | Review

Blood–brain barrier and foetal-onset hydrocephalus, with a view on potential novel treatments beyond managing CSF flow

Authors: M. Guerra, J. L. Blázquez, E. M. Rodríguez

Published in: Fluids and Barriers of the CNS | Issue 1/2017

Login to get access

Abstract

Despite decades of research, no compelling non-surgical therapies have been developed for foetal hydrocephalus. So far, most efforts have pointed to repairing disturbances in the cerebrospinal fluid (CSF) flow and to avoid further brain damage. There are no reports trying to prevent or diminish abnormalities in brain development which are inseparably associated with hydrocephalus. A key problem in the treatment of hydrocephalus is the blood–brain barrier that restricts the access to the brain for therapeutic compounds or systemically grafted cells. Recent investigations have started to open an avenue for the development of a cell therapy for foetal-onset hydrocephalus. Potential cells to be used for brain grafting include: (1) pluripotential neural stem cells; (2) mesenchymal stem cells; (3) genetically-engineered stem cells; (4) choroid plexus cells and (5) subcommissural organ cells. Expected outcomes are a proper microenvironment for the embryonic neurogenic niche and, consequent normal brain development.
Literature
2.
go back to reference Jellinger G. Anatomopathology of nontumoral aqueductal stenosis. J Neurosurg Sci. 1986;30:1–16.PubMed Jellinger G. Anatomopathology of nontumoral aqueductal stenosis. J Neurosurg Sci. 1986;30:1–16.PubMed
3.
go back to reference Johnson RT, Johnson KP, Edmonds CJ. Virus-induced hydrocephalus: development of aqueductal stenosis in hamsters after mumps infection. Science. 1967;157:1066–7.PubMedCrossRef Johnson RT, Johnson KP, Edmonds CJ. Virus-induced hydrocephalus: development of aqueductal stenosis in hamsters after mumps infection. Science. 1967;157:1066–7.PubMedCrossRef
4.
go back to reference Boop FA. Posthemorrhagic hydrocephalus of prematurity. In: Cinalli C, Maixner WJ, Sainte-Rose C, editors. Pediatric hydrocephalus. Milan: Springer; 2004. p. 121–31. Boop FA. Posthemorrhagic hydrocephalus of prematurity. In: Cinalli C, Maixner WJ, Sainte-Rose C, editors. Pediatric hydrocephalus. Milan: Springer; 2004. p. 121–31.
5.
go back to reference Jiménez AJ, Tomé M, Páez P, Wagner C, Rodríguez S, Fernández-Llebrez P, Rodríguez EM, Pérez-Fígares JM. A programmed ependymal denudation precedes congenital hydrocephalus in the hyh mutant mouse. J Neuropathol Exp Neurol. 2001;60:1105–19.PubMedCrossRef Jiménez AJ, Tomé M, Páez P, Wagner C, Rodríguez S, Fernández-Llebrez P, Rodríguez EM, Pérez-Fígares JM. A programmed ependymal denudation precedes congenital hydrocephalus in the hyh mutant mouse. J Neuropathol Exp Neurol. 2001;60:1105–19.PubMedCrossRef
6.
go back to reference Wagner C, Batiz LF, Rodríguez S, Jiménez AJ, Páez P, Tomé M, Pérez-Fígares JM, Rodríguez EM. Cellular mechanisms involved in the stenosis and obliteration of the cerebral aqueduct of hyh mutant mice developing congenital hydrocephalus. J Neuropathol Exp Neurol. 2003;62:1019–40.PubMedCrossRef Wagner C, Batiz LF, Rodríguez S, Jiménez AJ, Páez P, Tomé M, Pérez-Fígares JM, Rodríguez EM. Cellular mechanisms involved in the stenosis and obliteration of the cerebral aqueduct of hyh mutant mice developing congenital hydrocephalus. J Neuropathol Exp Neurol. 2003;62:1019–40.PubMedCrossRef
7.
go back to reference Rodríguez EM, Guerra MM, Vío K, González C, Ortloff A, Bátiz LF, Rodríguez S, Jara MC, Muñoz RI, Ortega E, Jaque J, Guerra F, Sival DA, den Dunnen WF, Jiménez AJ, Domínguez-Pinos MD, Pérez-Fígares JM, McAllister JP, Johanson C. A cell junction pathology of neural stem cells leads to abnormal neurogenesis and hydrocephalus. Biol Res. 2012;45:231–42.PubMedCrossRef Rodríguez EM, Guerra MM, Vío K, González C, Ortloff A, Bátiz LF, Rodríguez S, Jara MC, Muñoz RI, Ortega E, Jaque J, Guerra F, Sival DA, den Dunnen WF, Jiménez AJ, Domínguez-Pinos MD, Pérez-Fígares JM, McAllister JP, Johanson C. A cell junction pathology of neural stem cells leads to abnormal neurogenesis and hydrocephalus. Biol Res. 2012;45:231–42.PubMedCrossRef
8.
go back to reference Domínguez-Pinos MD, Páez P, Jiménez AJ, Weil B, Arráez MA, Pérez-Fígares JM, Rodríguez EM. Ependymal denudation and alterations of the subventricular zone occur in human fetuses with a moderate communicating hydrocephalus. J Neuropathol Exp Neurol. 2005;64:595–604.PubMedCrossRef Domínguez-Pinos MD, Páez P, Jiménez AJ, Weil B, Arráez MA, Pérez-Fígares JM, Rodríguez EM. Ependymal denudation and alterations of the subventricular zone occur in human fetuses with a moderate communicating hydrocephalus. J Neuropathol Exp Neurol. 2005;64:595–604.PubMedCrossRef
9.
go back to reference Sival DA, Guerra M, den Dunnen WF, Bátiz LF, Alvial G, Castañeyra-Perdomo A, Rodríguez EM. Neuroependymal denudation is in progress in full-term human foetal spina bifida aperta. Brain Pathol. 2011;21:163–79.PubMedCrossRef Sival DA, Guerra M, den Dunnen WF, Bátiz LF, Alvial G, Castañeyra-Perdomo A, Rodríguez EM. Neuroependymal denudation is in progress in full-term human foetal spina bifida aperta. Brain Pathol. 2011;21:163–79.PubMedCrossRef
10.
go back to reference Guerra MM, Henzi R, Ortloff A, Lichtin N, Vío K, Jiménez AJ, Dominguez-Pinos MD, González C, Jara MC, Hinostroza F, Rodríguez S, Jara M, Ortega E, Guerra F, Sival DA, den Dunnen WF, Pérez-Fígares JM, McAllister JP, Johanson CE, Rodríguez EM. Cell junction pathology of neural stem cells is associated with ventricular zone disruption, hydrocephalus, and abnormal neurogenesis. J Neuropathol Exp Neurol. 2015;74:653–71.PubMedCrossRef Guerra MM, Henzi R, Ortloff A, Lichtin N, Vío K, Jiménez AJ, Dominguez-Pinos MD, González C, Jara MC, Hinostroza F, Rodríguez S, Jara M, Ortega E, Guerra F, Sival DA, den Dunnen WF, Pérez-Fígares JM, McAllister JP, Johanson CE, Rodríguez EM. Cell junction pathology of neural stem cells is associated with ventricular zone disruption, hydrocephalus, and abnormal neurogenesis. J Neuropathol Exp Neurol. 2015;74:653–71.PubMedCrossRef
12.
go back to reference Rekate HL. A consensus on the classification of hydrocephalus: its utility in the assessment of abnormalities of cerebrospinal fluid dynamics. Childs Nerv Syst. 2011;27:1535–41.PubMedPubMedCentralCrossRef Rekate HL. A consensus on the classification of hydrocephalus: its utility in the assessment of abnormalities of cerebrospinal fluid dynamics. Childs Nerv Syst. 2011;27:1535–41.PubMedPubMedCentralCrossRef
13.
go back to reference Bourgeois M, Sainte-Rose C, Cinalli G, Maixner W, Malucci C, Zerah M, Pierre-Kahn A, Renier D, Hoppe-Hirsch E, Aicardi J. Epilepsy in children with shunted hydrocephalus. J Neurosurg. 1999;90:274–81.PubMedCrossRef Bourgeois M, Sainte-Rose C, Cinalli G, Maixner W, Malucci C, Zerah M, Pierre-Kahn A, Renier D, Hoppe-Hirsch E, Aicardi J. Epilepsy in children with shunted hydrocephalus. J Neurosurg. 1999;90:274–81.PubMedCrossRef
14.
go back to reference Klepper J, Büsse M, Strassburg HM, Sörensen N. Epilepsy in shunt-treated hydrocephalus. Dev Med Child Neurol. 1998;40:731–6.PubMedCrossRef Klepper J, Büsse M, Strassburg HM, Sörensen N. Epilepsy in shunt-treated hydrocephalus. Dev Med Child Neurol. 1998;40:731–6.PubMedCrossRef
15.
go back to reference Obermeier B, Verma A, Ransohoff RM. The blood–brain barrier. Handb Clin Neurol. 2016;133:39–59.PubMedCrossRef Obermeier B, Verma A, Ransohoff RM. The blood–brain barrier. Handb Clin Neurol. 2016;133:39–59.PubMedCrossRef
17.
go back to reference Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37:13–25.PubMedCrossRef Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37:13–25.PubMedCrossRef
18.
go back to reference Ehrlich P. Das sauerstoff-bedürfnis des organismus. Eine Farbenanalytische Studie. Habilitation Thesis, Berlin; 1885. Ehrlich P. Das sauerstoff-bedürfnis des organismus. Eine Farbenanalytische Studie. Habilitation Thesis, Berlin; 1885.
19.
go back to reference Ehrlich P. Ueber die beziehungen von chemischer constitution, vertheilung, und pharmakologischen wirkung. Collected Studies on Immunity. Wiley. Berlin: Wiley; 1906. p. 404–42. Ehrlich P. Ueber die beziehungen von chemischer constitution, vertheilung, und pharmakologischen wirkung. Collected Studies on Immunity. Wiley. Berlin: Wiley; 1906. p. 404–42.
20.
go back to reference Ge S, Song L, Pachter JS. Where is the blood–brain barrier… really? J Neurosci Res. 2005;79:421–7.PubMedCrossRef Ge S, Song L, Pachter JS. Where is the blood–brain barrier… really? J Neurosci Res. 2005;79:421–7.PubMedCrossRef
21.
22.
go back to reference Nico B, Ribatti D. Morphofunctional aspects of the blood-brain barrier. Curr Drug Metab. 2012;13:50–60.PubMedCrossRef Nico B, Ribatti D. Morphofunctional aspects of the blood-brain barrier. Curr Drug Metab. 2012;13:50–60.PubMedCrossRef
23.
go back to reference Begley DJ, Brightman MW. Structural and functional aspects of the blood-brain barrier. Prog Drug Res. 2003;61:39–78.PubMed Begley DJ, Brightman MW. Structural and functional aspects of the blood-brain barrier. Prog Drug Res. 2003;61:39–78.PubMed
24.
go back to reference Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci. 2016;19:771–83.PubMedCrossRef Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci. 2016;19:771–83.PubMedCrossRef
25.
go back to reference Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C. Pericytes regulate the blood-brain barrier. Nature. 2010;468:557–61.PubMedCrossRef Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C. Pericytes regulate the blood-brain barrier. Nature. 2010;468:557–61.PubMedCrossRef
26.
go back to reference Abbott NJ, Ronnback L, Hansson E. Astrocyte–endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7:41–53.PubMedCrossRef Abbott NJ, Ronnback L, Hansson E. Astrocyte–endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7:41–53.PubMedCrossRef
27.
go back to reference Lacoste B, Gu C. Control of cerebrovascular patterning by neural activity during postnatal development. Mech Dev. 2015;138(Pt 1):43–9.PubMedCrossRef Lacoste B, Gu C. Control of cerebrovascular patterning by neural activity during postnatal development. Mech Dev. 2015;138(Pt 1):43–9.PubMedCrossRef
29.
go back to reference Bauer HC, Bauer H, Lametschwandtner A, Amberger A, Ruiz P, Steiner M. Neo-vascularization and the appearance of morphological characteristics of the blood-brain barrier in the embryonic mouse central nervous system. Brain Res Dev Brain Res. 1993;75:269–78.PubMedCrossRef Bauer HC, Bauer H, Lametschwandtner A, Amberger A, Ruiz P, Steiner M. Neo-vascularization and the appearance of morphological characteristics of the blood-brain barrier in the embryonic mouse central nervous system. Brain Res Dev Brain Res. 1993;75:269–78.PubMedCrossRef
30.
go back to reference Hagan N, Ben-Zvi A. The molecular, cellular, and morphological components of blood–brain barrier development during embryogenesis. Semin Cell Dev Biol. 2015;38:7–15.PubMedCrossRef Hagan N, Ben-Zvi A. The molecular, cellular, and morphological components of blood–brain barrier development during embryogenesis. Semin Cell Dev Biol. 2015;38:7–15.PubMedCrossRef
31.
go back to reference Blanchette Marie, Daneman Richard. Formation and maintenance of the BBB. Mech Dev. 2015;138(Pt 1):8–16.PubMedCrossRef Blanchette Marie, Daneman Richard. Formation and maintenance of the BBB. Mech Dev. 2015;138(Pt 1):8–16.PubMedCrossRef
32.
34.
35.
go back to reference Nelson AR, Sweeney MD, Sagare AP, Zlokovic BV. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease. Biochim Biophys Acta. 2016;1862:887–900.PubMedCrossRef Nelson AR, Sweeney MD, Sagare AP, Zlokovic BV. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease. Biochim Biophys Acta. 2016;1862:887–900.PubMedCrossRef
36.
go back to reference Marchi N, Granata T, Ghosh C, Janigro D. Blood-brain barrier dysfunction and epilepsy: pathophysiologic role and therapeutic approaches. Epilepsia. 2012;53:1877–86.PubMedPubMedCentralCrossRef Marchi N, Granata T, Ghosh C, Janigro D. Blood-brain barrier dysfunction and epilepsy: pathophysiologic role and therapeutic approaches. Epilepsia. 2012;53:1877–86.PubMedPubMedCentralCrossRef
37.
go back to reference Grontoft O. Intracranial haemorrhage and blood-brain barrier problems in the new-born a pathologico-anatomical and experimental investigation. Acta Pathol Microbiol Scand Suppl. 1954;100:8–109.PubMed Grontoft O. Intracranial haemorrhage and blood-brain barrier problems in the new-born a pathologico-anatomical and experimental investigation. Acta Pathol Microbiol Scand Suppl. 1954;100:8–109.PubMed
38.
go back to reference Virgintino D, Errede M, Robertson D, Capobianco C, Girolamo F, Vimercati A, Bertossi M, Roncali L. Immunolocalization of tight junction proteins in the adult and developing human brain. Histochem Cell Biol. 2004;122:51–9.PubMedCrossRef Virgintino D, Errede M, Robertson D, Capobianco C, Girolamo F, Vimercati A, Bertossi M, Roncali L. Immunolocalization of tight junction proteins in the adult and developing human brain. Histochem Cell Biol. 2004;122:51–9.PubMedCrossRef
39.
go back to reference Virgintino D, Robertson D, Benagiano V, Errede M, Bertossi M, Ambrosi G, Roncali L. Immunogold cytochemistry of the blood-brain barrier glucose transporter GLUT1 and endogenous albumin in the developing human brain. Dev Brain Res. 2000;123:95e101.CrossRef Virgintino D, Robertson D, Benagiano V, Errede M, Bertossi M, Ambrosi G, Roncali L. Immunogold cytochemistry of the blood-brain barrier glucose transporter GLUT1 and endogenous albumin in the developing human brain. Dev Brain Res. 2000;123:95e101.CrossRef
41.
go back to reference Daneman R, Angalliu D, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci USA. 2009;106:641–6.PubMedPubMedCentralCrossRef Daneman R, Angalliu D, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci USA. 2009;106:641–6.PubMedPubMedCentralCrossRef
42.
go back to reference Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J, McMahon AP. Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science. 2008;322:1247–50.PubMedCrossRef Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J, McMahon AP. Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science. 2008;322:1247–50.PubMedCrossRef
43.
go back to reference Krizbai IA, Deli MA. Signalling pathways regulating the tight junction permeability in the blood-brain barrier. Cell Mol Biol. 2003;49:23–31.PubMed Krizbai IA, Deli MA. Signalling pathways regulating the tight junction permeability in the blood-brain barrier. Cell Mol Biol. 2003;49:23–31.PubMed
44.
go back to reference Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y, Yan H, Gu C. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature. 2014;22:507–11.CrossRef Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y, Yan H, Gu C. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature. 2014;22:507–11.CrossRef
45.
go back to reference Cullen M, Elzarrad MK, Seaman S, Zudaire E, Stevens J, Yang MY, Li X, Chaudhary A, Xu L, Hilton MB, Logsdon D, Hsiao E, Stein EV, Cuttitta F, Haines DC, Nagashima K, Tessarollo L, St Croix B. GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood–brain barrier. Proc Natl Acad Sci USA. 2011;108:5759–64.PubMedPubMedCentralCrossRef Cullen M, Elzarrad MK, Seaman S, Zudaire E, Stevens J, Yang MY, Li X, Chaudhary A, Xu L, Hilton MB, Logsdon D, Hsiao E, Stein EV, Cuttitta F, Haines DC, Nagashima K, Tessarollo L, St Croix B. GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood–brain barrier. Proc Natl Acad Sci USA. 2011;108:5759–64.PubMedPubMedCentralCrossRef
46.
go back to reference Stewart PA, Hayakawa EM. Early ultrastructural changes in blood- brain barrier vessels of the rat embryo. Brain Res Dev Brain Res. 1994;78:25–34.PubMedCrossRef Stewart PA, Hayakawa EM. Early ultrastructural changes in blood- brain barrier vessels of the rat embryo. Brain Res Dev Brain Res. 1994;78:25–34.PubMedCrossRef
47.
go back to reference Nico B, Quondamatteo F, Herken R, Marzullo A, Corsi P, Bertossi M, Russo G, Ribatti D, Roncali L. Developmental expression of ZO-1 antigen in the mouse blood-brain barrier. Dev Brain Res. 1999;114:161–9.CrossRef Nico B, Quondamatteo F, Herken R, Marzullo A, Corsi P, Bertossi M, Russo G, Ribatti D, Roncali L. Developmental expression of ZO-1 antigen in the mouse blood-brain barrier. Dev Brain Res. 1999;114:161–9.CrossRef
48.
go back to reference Bauer H, Sonnleitner U, Lamet-schwandtner A, Steiner M, Adam H, Bauer HC. Ontogenic expression of the erythroid type glucose transporter (Glut1) in the telencephalon of the mouse: correlation to the tightening of the blood-brain barrier. Dev Brain Res. 1995;86:317–25.CrossRef Bauer H, Sonnleitner U, Lamet-schwandtner A, Steiner M, Adam H, Bauer HC. Ontogenic expression of the erythroid type glucose transporter (Glut1) in the telencephalon of the mouse: correlation to the tightening of the blood-brain barrier. Dev Brain Res. 1995;86:317–25.CrossRef
49.
go back to reference Braun LD, Cornford EM, Oldendorf WH. Newborn rabbit blood–brain barrier is selectively permeable and differs substantially from the adult. J Neurochem. 1980;34:147–52.PubMedCrossRef Braun LD, Cornford EM, Oldendorf WH. Newborn rabbit blood–brain barrier is selectively permeable and differs substantially from the adult. J Neurochem. 1980;34:147–52.PubMedCrossRef
50.
go back to reference Wakai S, Hirokawa N. Development of the blood brain barrier to horseradish peroxidase in the chick embryo. Cell Tissue Res. 1978;195:195–203.PubMedCrossRef Wakai S, Hirokawa N. Development of the blood brain barrier to horseradish peroxidase in the chick embryo. Cell Tissue Res. 1978;195:195–203.PubMedCrossRef
51.
go back to reference Dziegielewska KM, Evans CAN, Malinowska DH, Møllgård K, Reynolds JM, Reynolds ML, Saunders NR. Studies of the development of brain barrier systems to lipid insoluble molecules in fetal sheep. J Physiol (Lond). 1979;292:207–31.CrossRef Dziegielewska KM, Evans CAN, Malinowska DH, Møllgård K, Reynolds JM, Reynolds ML, Saunders NR. Studies of the development of brain barrier systems to lipid insoluble molecules in fetal sheep. J Physiol (Lond). 1979;292:207–31.CrossRef
52.
go back to reference Goasdoué K, Miller SM, Colditz PB, Björkman ST. Review: The blood-brain barrier; protecting the developing fetal brain. Placenta. 2016. Goasdoué K, Miller SM, Colditz PB, Björkman ST. Review: The blood-brain barrier; protecting the developing fetal brain. Placenta. 2016.
53.
go back to reference Saunders NR, Dreifuss JJ, Dziegielewska KM, Johansson PA, Habgood MD, Møllgård K, Bauer HC. The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history. Front Neurosci. 2014;8:404.PubMedPubMedCentralCrossRef Saunders NR, Dreifuss JJ, Dziegielewska KM, Johansson PA, Habgood MD, Møllgård K, Bauer HC. The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history. Front Neurosci. 2014;8:404.PubMedPubMedCentralCrossRef
54.
go back to reference Ribatti D, Nico B, Crivellato E, Artico M. Development of the blood-brain barrier: a historical point of view. Anat Rec. 2006;289:3–8.CrossRef Ribatti D, Nico B, Crivellato E, Artico M. Development of the blood-brain barrier: a historical point of view. Anat Rec. 2006;289:3–8.CrossRef
55.
go back to reference Moretti R, Pansiot J, Bettati D, Strazielle N, Ghersi-Egea JF, Damante G, Fleiss B, Titomanlio L, Gressens P. Blood-brain barrier dysfunction in disorders of the developing brain. Front Neurosci. 2015;9:40.PubMedPubMedCentralCrossRef Moretti R, Pansiot J, Bettati D, Strazielle N, Ghersi-Egea JF, Damante G, Fleiss B, Titomanlio L, Gressens P. Blood-brain barrier dysfunction in disorders of the developing brain. Front Neurosci. 2015;9:40.PubMedPubMedCentralCrossRef
56.
go back to reference Ochocinska MJ, Zlokovic BV, Searson PC, Crowder AT, Kraig RP, Ljubimova JY, Mainprize TG, Banks WA, Warren RQ, Kindzelski A, Timmer W, Liu CH. NIH workshop report on the trans-agency blood-brain interface workshop 2016: exploring key challenges and opportunities associated with the blood, brain and their interface. Fluids Barriers CNS. 2017;14:12.PubMedPubMedCentralCrossRef Ochocinska MJ, Zlokovic BV, Searson PC, Crowder AT, Kraig RP, Ljubimova JY, Mainprize TG, Banks WA, Warren RQ, Kindzelski A, Timmer W, Liu CH. NIH workshop report on the trans-agency blood-brain interface workshop 2016: exploring key challenges and opportunities associated with the blood, brain and their interface. Fluids Barriers CNS. 2017;14:12.PubMedPubMedCentralCrossRef
57.
go back to reference Bystron I, Blakemore C, Rakic P. Development of the human cerebral cortex: boulder committee revisited. Nat Rev Neurosci. 2008;9:110–22.PubMedCrossRef Bystron I, Blakemore C, Rakic P. Development of the human cerebral cortex: boulder committee revisited. Nat Rev Neurosci. 2008;9:110–22.PubMedCrossRef
58.
go back to reference Dehay C, Kennedy H, Kosik KS. The outer subventricular zone and primate-specific cortical complexification. Neuron. 2015;85:683–94.PubMedCrossRef Dehay C, Kennedy H, Kosik KS. The outer subventricular zone and primate-specific cortical complexification. Neuron. 2015;85:683–94.PubMedCrossRef
59.
go back to reference Lewitus E, Kelava I, Huttner WB. Conical expansion of the outer subventricular zone and the role of neocortical folding in evolution and development. Front Hum Neurosci. 2013;7:424.PubMedPubMedCentralCrossRef Lewitus E, Kelava I, Huttner WB. Conical expansion of the outer subventricular zone and the role of neocortical folding in evolution and development. Front Hum Neurosci. 2013;7:424.PubMedPubMedCentralCrossRef
60.
go back to reference Hansen DV, Lui JH, Parker PR, Kriegstein AR. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature. 2010;464:554–61.PubMedCrossRef Hansen DV, Lui JH, Parker PR, Kriegstein AR. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature. 2010;464:554–61.PubMedCrossRef
61.
go back to reference Smart IH, Dehay C, Giroud P, Berland M, Kennedy H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex. 2002;12:37–53.PubMedPubMedCentralCrossRef Smart IH, Dehay C, Giroud P, Berland M, Kennedy H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex. 2002;12:37–53.PubMedPubMedCentralCrossRef
62.
go back to reference Ortloff A. Mecanismo celular del denudamiento ependimario en mutantes que desarrollan hidrocefalia congénita. Ph.D. Thesis, Universidad Austral de Chile; 2008. Ortloff A. Mecanismo celular del denudamiento ependimario en mutantes que desarrollan hidrocefalia congénita. Ph.D. Thesis, Universidad Austral de Chile; 2008.
63.
go back to reference Jiménez AJ, Rodríguez-Pérez LM, Domínguez-Pinos MD, Gómez-Roldán MC, García-Bonilla M, Ho-Plagaro A, Roales-Buján R, Jiménez S, Roquero-Mañueco MC, Martínez-León MI, García-Martín ML, Cifuentes M, Ros B, Arráez MÁ, Vitorica J, Gutiérrez A, Pérez-Fígares JM. Increased levels of tumour necrosis factor alpha (TNFα) but not transforming growth factor-beta 1 (TGFβ1) are associated with the severity of congenital hydrocephalus in the hyh mouse. Neuropathol Appl Neurobiol. 2014;40:911–32.PubMedCrossRef Jiménez AJ, Rodríguez-Pérez LM, Domínguez-Pinos MD, Gómez-Roldán MC, García-Bonilla M, Ho-Plagaro A, Roales-Buján R, Jiménez S, Roquero-Mañueco MC, Martínez-León MI, García-Martín ML, Cifuentes M, Ros B, Arráez MÁ, Vitorica J, Gutiérrez A, Pérez-Fígares JM. Increased levels of tumour necrosis factor alpha (TNFα) but not transforming growth factor-beta 1 (TGFβ1) are associated with the severity of congenital hydrocephalus in the hyh mouse. Neuropathol Appl Neurobiol. 2014;40:911–32.PubMedCrossRef
64.
go back to reference Sival DA, Felderhoff-Müser U, Schmitz T, Hoving EW, Schaller C, Heep A. Neonatal high pressure hydrocephalus is associated with elevation of pro-inflammatory cytokines IL-18 and IFNgamma in cerebrospinal fluid. Cerebrospinal Fluid Res. 2008;5:21.PubMedPubMedCentralCrossRef Sival DA, Felderhoff-Müser U, Schmitz T, Hoving EW, Schaller C, Heep A. Neonatal high pressure hydrocephalus is associated with elevation of pro-inflammatory cytokines IL-18 and IFNgamma in cerebrospinal fluid. Cerebrospinal Fluid Res. 2008;5:21.PubMedPubMedCentralCrossRef
68.
go back to reference Sada Y, Moriki T, Kuwahara S, Yamane T, Hara H. Immunohistochemical study on blood-brain barrier in congenitally hydrocephalic HTX rat brain. Zentralbl Pathol. 1994;140:289–98.PubMed Sada Y, Moriki T, Kuwahara S, Yamane T, Hara H. Immunohistochemical study on blood-brain barrier in congenitally hydrocephalic HTX rat brain. Zentralbl Pathol. 1994;140:289–98.PubMed
69.
go back to reference Verkman AS, Tradtrantip L, Smith AJ, Yao X. Aquaporin water channels and hydrocephalus. Pediatr Neurosurg. 2016 [Epub ahead of print]. Verkman AS, Tradtrantip L, Smith AJ, Yao X. Aquaporin water channels and hydrocephalus. Pediatr Neurosurg. 2016 [Epub ahead of print].
70.
go back to reference Owler BK, Pitham T, Wang D. Aquaporins: relevance to cerebrospinal fluid physiology and therapeutic potential in hydrocephalus. Cerebrospinal Fluid Res. 2010;7:15.PubMedPubMedCentralCrossRef Owler BK, Pitham T, Wang D. Aquaporins: relevance to cerebrospinal fluid physiology and therapeutic potential in hydrocephalus. Cerebrospinal Fluid Res. 2010;7:15.PubMedPubMedCentralCrossRef
71.
go back to reference Zador Z, Bloch O, Yao X, Manley GT. Aquaporins: role in cerebral edema and brain water balance. Prog Brain Res. 2007;161:185–94.PubMedCrossRef Zador Z, Bloch O, Yao X, Manley GT. Aquaporins: role in cerebral edema and brain water balance. Prog Brain Res. 2007;161:185–94.PubMedCrossRef
72.
go back to reference Shen XQ, Miyajima M, Ogino I, Arai H. Expression of the water-channel protein aquaporin 4 in the H-Tx rat: possible compensatory role in spontaneously arrested hydrocephalus. J Neurosurg. 2006;105(6 Suppl):459–64.PubMed Shen XQ, Miyajima M, Ogino I, Arai H. Expression of the water-channel protein aquaporin 4 in the H-Tx rat: possible compensatory role in spontaneously arrested hydrocephalus. J Neurosurg. 2006;105(6 Suppl):459–64.PubMed
73.
go back to reference Paul L, Madan M, Rammling M, Chigurupati S, Chan SL, Pattisapu JV. Expression of aquaporin 1 and 4 in a congenital hydrocephalus rat model. Neurosurgery. 2011;68:462–73.PubMedCrossRef Paul L, Madan M, Rammling M, Chigurupati S, Chan SL, Pattisapu JV. Expression of aquaporin 1 and 4 in a congenital hydrocephalus rat model. Neurosurgery. 2011;68:462–73.PubMedCrossRef
74.
go back to reference Skjolding AD, Holst AV, Broholm H, Laursen H, Juhler M. Differences in distribution and regulation of astrocytic aquaporin-4 in human and rat hydrocephalic brain. Neuropathol Appl Neurobiol. 2013;39:179–91.PubMedCrossRef Skjolding AD, Holst AV, Broholm H, Laursen H, Juhler M. Differences in distribution and regulation of astrocytic aquaporin-4 in human and rat hydrocephalic brain. Neuropathol Appl Neurobiol. 2013;39:179–91.PubMedCrossRef
75.
go back to reference Schmidt MJ, Rummel C, Hauer J, Kolecka M, Ondreka N, McClure V, Roth J. Increased CSF aquaporin-4, and interleukin-6 levels in dogs with idiopathic communicating internal hydrocephalus and a decrease after ventriculo-peritoneal shunting. Fluids Barriers CNS. 2016;13:12.PubMedPubMedCentralCrossRef Schmidt MJ, Rummel C, Hauer J, Kolecka M, Ondreka N, McClure V, Roth J. Increased CSF aquaporin-4, and interleukin-6 levels in dogs with idiopathic communicating internal hydrocephalus and a decrease after ventriculo-peritoneal shunting. Fluids Barriers CNS. 2016;13:12.PubMedPubMedCentralCrossRef
76.
go back to reference Castañeyra-Ruiz L, González-Marrero I, Carmona-Calero EM, Abreu-Gonzalez P, Lecuona M, Brage L, Rodríguez EM, Castañeyra-Perdomo A. Cerebrospinal fluid levels of tumor necrosis factor alpha and aquaporin 1 in patients with mild cognitive impairment and idiopathic normal pressure hydrocephalus. Clin Neurol Neurosurg. 2016;146:76–81.PubMedCrossRef Castañeyra-Ruiz L, González-Marrero I, Carmona-Calero EM, Abreu-Gonzalez P, Lecuona M, Brage L, Rodríguez EM, Castañeyra-Perdomo A. Cerebrospinal fluid levels of tumor necrosis factor alpha and aquaporin 1 in patients with mild cognitive impairment and idiopathic normal pressure hydrocephalus. Clin Neurol Neurosurg. 2016;146:76–81.PubMedCrossRef
77.
go back to reference Filippidis AS, Kalani MY, Rekate HL. Hydrocephalus and aquaporins: lessons learned from the bench. Childs Nerv Syst. 2011;27:27–33.PubMedCrossRef Filippidis AS, Kalani MY, Rekate HL. Hydrocephalus and aquaporins: lessons learned from the bench. Childs Nerv Syst. 2011;27:27–33.PubMedCrossRef
78.
go back to reference Zhang S, Chen D, Huang C, Bao J, Wang Z. Expression of HGF, MMP-9 and TGF-β1 in the CSF and cerebral tissue of adult rats with hydrocephalus. Int J Neurosci. 2013;123:392–9.PubMedCrossRef Zhang S, Chen D, Huang C, Bao J, Wang Z. Expression of HGF, MMP-9 and TGF-β1 in the CSF and cerebral tissue of adult rats with hydrocephalus. Int J Neurosci. 2013;123:392–9.PubMedCrossRef
79.
go back to reference Sosvorova L, Kanceva R, Vcelak J, Kancheva L, Mohapl M, Starka L, Havrdova E. The comparison of selected cerebrospinal fluid and serum cytokine levels in patients with multiple sclerosis and normal pressure hydrocephalus. Neuro Endocrinol Lett. 2015;36:564–71.PubMed Sosvorova L, Kanceva R, Vcelak J, Kancheva L, Mohapl M, Starka L, Havrdova E. The comparison of selected cerebrospinal fluid and serum cytokine levels in patients with multiple sclerosis and normal pressure hydrocephalus. Neuro Endocrinol Lett. 2015;36:564–71.PubMed
80.
go back to reference Dudvarski Stankovic N, Teodorczyk M, Ploen R, Zipp F, Schmidt MH. Microglia-blood vessel interactions: a double-edged sword in brain pathologies. Acta Neuropathol. 2016;131:347–63.PubMedCrossRef Dudvarski Stankovic N, Teodorczyk M, Ploen R, Zipp F, Schmidt MH. Microglia-blood vessel interactions: a double-edged sword in brain pathologies. Acta Neuropathol. 2016;131:347–63.PubMedCrossRef
81.
go back to reference Ueno M, Chiba Y, Murakami R, Matsumoto K, Kawauchi M, Fujihara R. Blood-brain barrier and blood-cerebrospinal fluid barrier in normal and pathological conditions. Brain Tumor Pathol. 2016;33:89–96.PubMedCrossRef Ueno M, Chiba Y, Murakami R, Matsumoto K, Kawauchi M, Fujihara R. Blood-brain barrier and blood-cerebrospinal fluid barrier in normal and pathological conditions. Brain Tumor Pathol. 2016;33:89–96.PubMedCrossRef
82.
go back to reference Williams JL, Holman DW, Klein RS. Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers. Front Cell Neurosci. 2014;8:154.PubMedPubMedCentralCrossRef Williams JL, Holman DW, Klein RS. Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers. Front Cell Neurosci. 2014;8:154.PubMedPubMedCentralCrossRef
83.
go back to reference Petty MA, Lo EH. Junctional complexes of the blood–brain barrier: permeability changes in neuroinflammation. Prog Neurobiol. 2002;68:311–23.PubMedCrossRef Petty MA, Lo EH. Junctional complexes of the blood–brain barrier: permeability changes in neuroinflammation. Prog Neurobiol. 2002;68:311–23.PubMedCrossRef
84.
go back to reference van der Flier M, Hoppenreijs S, van Rensburg AJ, Ruyken M, Kolk AH, Springer P, Hoepelman AI, Geelen SP, Kimpen JL, Schoeman JF. Vascular endothelial growth factor and blood-brain barrier disruption in tuberculous meningitis. Pediatr Infect Dis J. 2004;23:608–13.PubMedCrossRef van der Flier M, Hoppenreijs S, van Rensburg AJ, Ruyken M, Kolk AH, Springer P, Hoepelman AI, Geelen SP, Kimpen JL, Schoeman JF. Vascular endothelial growth factor and blood-brain barrier disruption in tuberculous meningitis. Pediatr Infect Dis J. 2004;23:608–13.PubMedCrossRef
85.
go back to reference Rodewald M, Herr D, Fraser HM, Hack G, Kreienberg R, Wulff C. Regulation of tight junction proteins occludin and claudin 5 in the primate ovary during the ovulatory cycle and after inhibition of vascular endothelial growth factor. Mol Hum Reprod. 2007;13:781–9.PubMedCrossRef Rodewald M, Herr D, Fraser HM, Hack G, Kreienberg R, Wulff C. Regulation of tight junction proteins occludin and claudin 5 in the primate ovary during the ovulatory cycle and after inhibition of vascular endothelial growth factor. Mol Hum Reprod. 2007;13:781–9.PubMedCrossRef
86.
go back to reference Shim JW, Sandlund J, Han CH, Hameed MQ, Connors S, Klagsbrun M, Madsen JR, Irwin N. VEGF, which is elevated in the CSF of patients with hydrocephalus, causes ventriculomegaly and ependymal changes in rats. Exp Neurol. 2013;247:703–9.PubMedCrossRef Shim JW, Sandlund J, Han CH, Hameed MQ, Connors S, Klagsbrun M, Madsen JR, Irwin N. VEGF, which is elevated in the CSF of patients with hydrocephalus, causes ventriculomegaly and ependymal changes in rats. Exp Neurol. 2013;247:703–9.PubMedCrossRef
88.
go back to reference Brouwer AJ, Groenendaal F, Benders MJ, de Vries LS. Early and late complications of germinal matrix-intraventricular haemorrhage in the preterm infant: what is new? Neonatology. 2014;106:296–303.PubMedCrossRef Brouwer AJ, Groenendaal F, Benders MJ, de Vries LS. Early and late complications of germinal matrix-intraventricular haemorrhage in the preterm infant: what is new? Neonatology. 2014;106:296–303.PubMedCrossRef
89.
go back to reference Pikus HJ, Levy ML, Gans W, Mendel E, McComb JG. Outcome, cost analysis, and long-term follow-up in preterm infants with massive grade IV germinal matrix hemorrhage and progressive hydrocephalus. Neurosurgery. 1997;40:983–8.PubMedCrossRef Pikus HJ, Levy ML, Gans W, Mendel E, McComb JG. Outcome, cost analysis, and long-term follow-up in preterm infants with massive grade IV germinal matrix hemorrhage and progressive hydrocephalus. Neurosurgery. 1997;40:983–8.PubMedCrossRef
90.
go back to reference Reinprecht A, Dietrich W, Berger A, Bavinzski G, Weninger M, Czech T. Posthemorrhagic hydrocephalus in preterm infants: long term follow-up and shunt-related complications. Childs Nerv Syst. 2001;17:663–9.PubMedCrossRef Reinprecht A, Dietrich W, Berger A, Bavinzski G, Weninger M, Czech T. Posthemorrhagic hydrocephalus in preterm infants: long term follow-up and shunt-related complications. Childs Nerv Syst. 2001;17:663–9.PubMedCrossRef
91.
go back to reference Ballabh P. Pathogenesis and prevention of intraventricular hemorrhage. Clin Perinatol. 2014;41:47–67.PubMedCrossRef Ballabh P. Pathogenesis and prevention of intraventricular hemorrhage. Clin Perinatol. 2014;41:47–67.PubMedCrossRef
92.
go back to reference Cherian S, Whitelaw A, Thoresen M, Love S. The pathogenesis of neonatal post-hemorrhagic hydrocephalus. Brain Pathol. 2004;14:305–11.PubMedCrossRef Cherian S, Whitelaw A, Thoresen M, Love S. The pathogenesis of neonatal post-hemorrhagic hydrocephalus. Brain Pathol. 2004;14:305–11.PubMedCrossRef
94.
go back to reference El-Khoury N, Braun A, Hu F, Pandey M, Nedergaard M, Lagamma EF, Ballabh P. Astrocyte end-feet in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res. 2006;59:673–9.PubMedCrossRef El-Khoury N, Braun A, Hu F, Pandey M, Nedergaard M, Lagamma EF, Ballabh P. Astrocyte end-feet in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res. 2006;59:673–9.PubMedCrossRef
95.
go back to reference Baburamani AA, Ek CJ, Walker DW, Castillo-Melendez M. Vulnerability of the developing brain to hypoxic-ischemic damage: contribution of the cerebral vasculature to injury and repair? Front Physiol. 2012;3:424.PubMedPubMedCentralCrossRef Baburamani AA, Ek CJ, Walker DW, Castillo-Melendez M. Vulnerability of the developing brain to hypoxic-ischemic damage: contribution of the cerebral vasculature to injury and repair? Front Physiol. 2012;3:424.PubMedPubMedCentralCrossRef
96.
go back to reference Ballabh P, Braun A, Nedergaard M. Anatomic analysis of blood vessels in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res. 2004;56:117–24.PubMedCrossRef Ballabh P, Braun A, Nedergaard M. Anatomic analysis of blood vessels in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res. 2004;56:117–24.PubMedCrossRef
97.
go back to reference Braun A, Xu H, Hu F, Kocherlakota P, Siegel D, Chander P, Ungvari Z, Csiszar A, Nedergaard M, Ballabh P. Paucity of pericytes in germinal matrix vasculature of premature infants. J Neurosci. 2007;27:12012–24.PubMedCrossRef Braun A, Xu H, Hu F, Kocherlakota P, Siegel D, Chander P, Ungvari Z, Csiszar A, Nedergaard M, Ballabh P. Paucity of pericytes in germinal matrix vasculature of premature infants. J Neurosci. 2007;27:12012–24.PubMedCrossRef
99.
go back to reference Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF. Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs. 2009;23:5–58.CrossRef Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF. Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs. 2009;23:5–58.CrossRef
100.
go back to reference Soni V, Jain A, Khare P, Gulbake A, Jain SK. Potential approaches for drug delivery to the brain: past, present, and future. Crit Rev Ther Drug Carrier Syst. 2010;27:187–236.PubMedCrossRef Soni V, Jain A, Khare P, Gulbake A, Jain SK. Potential approaches for drug delivery to the brain: past, present, and future. Crit Rev Ther Drug Carrier Syst. 2010;27:187–236.PubMedCrossRef
101.
go back to reference Lu CT, Zhao YZ, Wong HL, Cai J, Peng L, Tian XQ. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomed. 2014;9:2241–57.CrossRef Lu CT, Zhao YZ, Wong HL, Cai J, Peng L, Tian XQ. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomed. 2014;9:2241–57.CrossRef
102.
103.
go back to reference Yuan Q, Bu X, Yan Z, Liu X, Wei Z, Ma C, Qu M. Combination of endogenous neural stem cell mobilization and lithium chloride treatment for hydrocephalus following intraventricular haemorrhage. Exp Ther Med. 2016;12:3275–81.PubMedPubMedCentral Yuan Q, Bu X, Yan Z, Liu X, Wei Z, Ma C, Qu M. Combination of endogenous neural stem cell mobilization and lithium chloride treatment for hydrocephalus following intraventricular haemorrhage. Exp Ther Med. 2016;12:3275–81.PubMedPubMedCentral
104.
go back to reference Cacci E, Villa A, Parmar M, Cavallaro M, Mandahl N, Lindvall O, Martinez-Serrano A, Kokaia Z. Generation of human cortical neurons from a new immortal fetal neural stem cell line. Exp Cell Res. 2007;313:588–601.PubMedCrossRef Cacci E, Villa A, Parmar M, Cavallaro M, Mandahl N, Lindvall O, Martinez-Serrano A, Kokaia Z. Generation of human cortical neurons from a new immortal fetal neural stem cell line. Exp Cell Res. 2007;313:588–601.PubMedCrossRef
105.
go back to reference Monni E, Cusulin C, Cavallaro M, Lindvall O, Kokaia Z. Human fetal striatum-derived neural stem (NS) cells differentiate to mature neurons in vitro and in vivo. Curr Stem Cell Res Ther. 2014;9:338–46.PubMedCrossRef Monni E, Cusulin C, Cavallaro M, Lindvall O, Kokaia Z. Human fetal striatum-derived neural stem (NS) cells differentiate to mature neurons in vitro and in vivo. Curr Stem Cell Res Ther. 2014;9:338–46.PubMedCrossRef
106.
go back to reference Rohban R, Pieber TR. Mesenchymal Stem and Progenitor Cells in Regeneration: tissue Specificity and Regenerative Potential. Stem Cells Int. 2017;2017:5173732.PubMedPubMedCentralCrossRef Rohban R, Pieber TR. Mesenchymal Stem and Progenitor Cells in Regeneration: tissue Specificity and Regenerative Potential. Stem Cells Int. 2017;2017:5173732.PubMedPubMedCentralCrossRef
107.
go back to reference Das M, Sundell IB, Koka PS. Adult mesenchymal stem cells and their potency in the cell-based therapy. J Stem Cells. 2013;8:1–16.PubMed Das M, Sundell IB, Koka PS. Adult mesenchymal stem cells and their potency in the cell-based therapy. J Stem Cells. 2013;8:1–16.PubMed
108.
go back to reference Fu L, Zhu L, Huang Y, Lee TD, Forman SJ, Shih CC. Derivation of neural stem cells from mesenchymal stem cells: evidence for a bipotential stem cell population. Stem Cells Dev. 2008;17:1109–21.PubMedPubMedCentralCrossRef Fu L, Zhu L, Huang Y, Lee TD, Forman SJ, Shih CC. Derivation of neural stem cells from mesenchymal stem cells: evidence for a bipotential stem cell population. Stem Cells Dev. 2008;17:1109–21.PubMedPubMedCentralCrossRef
109.
go back to reference Murphy SV, Atala A. Amniotic fluid and placental membranes: unexpected sources of highly multipotent cells. Semin Reprod Med. 2013;31:62–8.PubMedCrossRef Murphy SV, Atala A. Amniotic fluid and placental membranes: unexpected sources of highly multipotent cells. Semin Reprod Med. 2013;31:62–8.PubMedCrossRef
110.
go back to reference Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011;9:12.PubMedPubMedCentralCrossRef Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011;9:12.PubMedPubMedCentralCrossRef
111.
go back to reference Castro-Manrreza ME, Montesinos JJ. Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. J Immunol Res. 2015;2015:394917.PubMedPubMedCentralCrossRef Castro-Manrreza ME, Montesinos JJ. Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. J Immunol Res. 2015;2015:394917.PubMedPubMedCentralCrossRef
112.
go back to reference Drago D, Cossetti C, Iraci N, Gaude E, Musco G, Bachi A, Pluchino S. The stem cell secretome and its role in brain repair. Biochimie. 2013;95:2271–85.PubMedPubMedCentralCrossRef Drago D, Cossetti C, Iraci N, Gaude E, Musco G, Bachi A, Pluchino S. The stem cell secretome and its role in brain repair. Biochimie. 2013;95:2271–85.PubMedPubMedCentralCrossRef
113.
go back to reference Hofer HR, Tuan RS. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther. 2016;7:131.PubMedPubMedCentralCrossRef Hofer HR, Tuan RS. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther. 2016;7:131.PubMedPubMedCentralCrossRef
114.
go back to reference Ahn SY, Chang YS, Park WS. Mesenchymal stem cells transplantation for neuroprotection in preterm infants with severe intraventricular haemorrhage. Korean J Pediatr. 2014;57:251–6.PubMedPubMedCentralCrossRef Ahn SY, Chang YS, Park WS. Mesenchymal stem cells transplantation for neuroprotection in preterm infants with severe intraventricular haemorrhage. Korean J Pediatr. 2014;57:251–6.PubMedPubMedCentralCrossRef
115.
go back to reference Björklund A, Lindvall O. Replacing dopamine neurons in Parkinson’s disease: how did it happen? J Parkinsons Dis. 2017;7(s1):S23–33.PubMedPubMedCentral Björklund A, Lindvall O. Replacing dopamine neurons in Parkinson’s disease: how did it happen? J Parkinsons Dis. 2017;7(s1):S23–33.PubMedPubMedCentral
116.
go back to reference Li W, Englund E, Widner H, Mattsson B, van Westen D, Lätt J, Rehncrona S, Brundin P, Björklund A, Lindvall O, Li JY. Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain. Proc Natl Acad Sci USA. 2016;113:6544–9.PubMedPubMedCentralCrossRef Li W, Englund E, Widner H, Mattsson B, van Westen D, Lätt J, Rehncrona S, Brundin P, Björklund A, Lindvall O, Li JY. Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain. Proc Natl Acad Sci USA. 2016;113:6544–9.PubMedPubMedCentralCrossRef
117.
go back to reference Kefalopoulou Z, Politis M, Piccini P, Mencacci N, Bhatia K, Jahanshahi M, Widner H, Rehncrona S, Brundin P, Björklund A, Lindvall O, Limousin P, Quinn N, Foltynie T. Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurol. 2014;71:83–7.PubMedPubMedCentralCrossRef Kefalopoulou Z, Politis M, Piccini P, Mencacci N, Bhatia K, Jahanshahi M, Widner H, Rehncrona S, Brundin P, Björklund A, Lindvall O, Limousin P, Quinn N, Foltynie T. Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurol. 2014;71:83–7.PubMedPubMedCentralCrossRef
118.
go back to reference Malik S, Vinukonda G, Vose LR, Diamond D, Bhimavarapu BBR, Hu F, Zia MT, Hevner R, Zecevic N, Ballabh P. Neurogenesis continues in the third trimester of pregnancy and is suppressed by premature birth. J Neurosci. 2013;33:411–23.PubMedPubMedCentralCrossRef Malik S, Vinukonda G, Vose LR, Diamond D, Bhimavarapu BBR, Hu F, Zia MT, Hevner R, Zecevic N, Ballabh P. Neurogenesis continues in the third trimester of pregnancy and is suppressed by premature birth. J Neurosci. 2013;33:411–23.PubMedPubMedCentralCrossRef
119.
go back to reference Adzick NS, Thom EA, Spong CY, Brock JW, Burrows PK, Johnson MP, Howell LJ, Farrell JA, Dabrowiak ME, Sutton LN, Gupta N, Tulipan NB, D’Alton ME, Farmer DL, MOMS Investigators. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364:993–1000.PubMedPubMedCentralCrossRef Adzick NS, Thom EA, Spong CY, Brock JW, Burrows PK, Johnson MP, Howell LJ, Farrell JA, Dabrowiak ME, Sutton LN, Gupta N, Tulipan NB, D’Alton ME, Farmer DL, MOMS Investigators. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364:993–1000.PubMedPubMedCentralCrossRef
120.
go back to reference Benjaminy S, Lo C, Illes J. Social responsibility in stem cell research-is the news all bad? Stem Cell Rev. 2016;12:269–75.PubMedCrossRef Benjaminy S, Lo C, Illes J. Social responsibility in stem cell research-is the news all bad? Stem Cell Rev. 2016;12:269–75.PubMedCrossRef
121.
go back to reference Dimmeler S, Ding S, Rando TA, Trounson A. Translational strategies and challenges in regenerative medicine. Nat Med. 2014;20:814–21.PubMedCrossRef Dimmeler S, Ding S, Rando TA, Trounson A. Translational strategies and challenges in regenerative medicine. Nat Med. 2014;20:814–21.PubMedCrossRef
122.
go back to reference Imitola J, Khoury SJ. Neural stem cells and the future treatment of neurological diseases: raising the standard. Methods Mol Biol. 2008;438:9–16.PubMedCrossRef Imitola J, Khoury SJ. Neural stem cells and the future treatment of neurological diseases: raising the standard. Methods Mol Biol. 2008;438:9–16.PubMedCrossRef
123.
go back to reference Singh AK, Arya RK, Maheshwari S, Singh A, Meena S, Pandey P, Dormond O, Datta D. Tumor heterogeneity and cancer stem cell paradigm: updates in concept, controversies and clinical relevance. Int J Cancer. 2015;136:1991–2000.PubMedCrossRef Singh AK, Arya RK, Maheshwari S, Singh A, Meena S, Pandey P, Dormond O, Datta D. Tumor heterogeneity and cancer stem cell paradigm: updates in concept, controversies and clinical relevance. Int J Cancer. 2015;136:1991–2000.PubMedCrossRef
124.
go back to reference Haarer J, Johnson CL, Soeder Y, Dahlke MH. Caveats of mesenchymal stem cell therapy in solid organ transplantation. Transpl Int. 2015;28:1–9.PubMedCrossRef Haarer J, Johnson CL, Soeder Y, Dahlke MH. Caveats of mesenchymal stem cell therapy in solid organ transplantation. Transpl Int. 2015;28:1–9.PubMedCrossRef
125.
go back to reference Fiore EJ, Mazzolini G, Aquino JB. Mesenchymal stem/stromal cells in liver fibrosis: recent findings, old/new caveats and future perspectives. Stem Cell Rev. 2015;11:586–97.PubMedCrossRef Fiore EJ, Mazzolini G, Aquino JB. Mesenchymal stem/stromal cells in liver fibrosis: recent findings, old/new caveats and future perspectives. Stem Cell Rev. 2015;11:586–97.PubMedCrossRef
126.
go back to reference Roybal JL, Santore MT, Flake AW. Stem cell and genetic therapies for the fetus. Semin Foetal Neonatal Med. 2010;15:6. Roybal JL, Santore MT, Flake AW. Stem cell and genetic therapies for the fetus. Semin Foetal Neonatal Med. 2010;15:6.
127.
go back to reference Merianos D, Heaton T, Flake AW. In utero hematopoietic stem cell transplantation: progress toward clinical application. Biol Blood Marrow Transpl. 2008;14:729–40.CrossRef Merianos D, Heaton T, Flake AW. In utero hematopoietic stem cell transplantation: progress toward clinical application. Biol Blood Marrow Transpl. 2008;14:729–40.CrossRef
128.
go back to reference Li H, Gao F, Ma L, Jiang J, Miao J, Jiang M, Fan Y, Wang L, Wu D, Liu B, Wang W, Lui VC, Yuan Z. Therapeutic potential of in utero mesenchymal stem cell (MSCs) transplantation in rat foetuses with spina bifida aperta. J Cell Mol Med. 2012;16:1606–17.PubMedPubMedCentralCrossRef Li H, Gao F, Ma L, Jiang J, Miao J, Jiang M, Fan Y, Wang L, Wu D, Liu B, Wang W, Lui VC, Yuan Z. Therapeutic potential of in utero mesenchymal stem cell (MSCs) transplantation in rat foetuses with spina bifida aperta. J Cell Mol Med. 2012;16:1606–17.PubMedPubMedCentralCrossRef
129.
go back to reference Fauza DO, Jennings RW, Teng YD, Snyder EY. Neural stem cell delivery to the spinal cord in an ovine model of foetal surgery for spina bifida. Surgery. 2008;144:367–73.PubMedCrossRef Fauza DO, Jennings RW, Teng YD, Snyder EY. Neural stem cell delivery to the spinal cord in an ovine model of foetal surgery for spina bifida. Surgery. 2008;144:367–73.PubMedCrossRef
130.
go back to reference Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Im GH, Choi SJ, Park WS. Optimal route for mesenchymal stem cells transplantation after severe intraventricular hemorrhage in newborn rats. PLoS ONE. 2015;10(7):e0132919.PubMedPubMedCentralCrossRef Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Im GH, Choi SJ, Park WS. Optimal route for mesenchymal stem cells transplantation after severe intraventricular hemorrhage in newborn rats. PLoS ONE. 2015;10(7):e0132919.PubMedPubMedCentralCrossRef
131.
132.
go back to reference Glage S, Klinge PM, Miller MC, Wallrapp C, Geigle P, Hedrich HJ, Brinker T. Therapeutic concentrations of glucagon-like peptide-1 in cerebrospinal fluid following cell-based delivery into the cerebral ventricles of cats. Fluids Barriers CNS. 2011;8:18.PubMedPubMedCentralCrossRef Glage S, Klinge PM, Miller MC, Wallrapp C, Geigle P, Hedrich HJ, Brinker T. Therapeutic concentrations of glucagon-like peptide-1 in cerebrospinal fluid following cell-based delivery into the cerebral ventricles of cats. Fluids Barriers CNS. 2011;8:18.PubMedPubMedCentralCrossRef
133.
go back to reference Rodríguez EM. The cerebrospinal fluid as a pathway in neuroendocrine integration. J Endocrinol. 1976;71:407–43.PubMedCrossRef Rodríguez EM. The cerebrospinal fluid as a pathway in neuroendocrine integration. J Endocrinol. 1976;71:407–43.PubMedCrossRef
134.
go back to reference Zappaterra MW, Lehtinen MK. The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond. Cell Mol Life Sci. 2012;69:2863–78.PubMedCrossRef Zappaterra MW, Lehtinen MK. The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond. Cell Mol Life Sci. 2012;69:2863–78.PubMedCrossRef
135.
go back to reference Kaur C, Rathnasamy G, Ling EA. The Choroid plexus in healthy and diseased brain. J Neuropathol Exp Neurol. 2016;75:198–213.PubMedCrossRef Kaur C, Rathnasamy G, Ling EA. The Choroid plexus in healthy and diseased brain. J Neuropathol Exp Neurol. 2016;75:198–213.PubMedCrossRef
136.
go back to reference Spector R, Keep RF, Robert Snodgrass S, Smith QR, Johanson CE. A balanced view of choroid plexus structure and function: focus on adult humans. Exp Neurol. 2015;267:78–86.PubMedCrossRef Spector R, Keep RF, Robert Snodgrass S, Smith QR, Johanson CE. A balanced view of choroid plexus structure and function: focus on adult humans. Exp Neurol. 2015;267:78–86.PubMedCrossRef
137.
go back to reference Galarza M. Evidence of the subcommissural organ in humans and its association with hydrocephalus. Neurosurg Rev. 2002;25:205–15.PubMedCrossRef Galarza M. Evidence of the subcommissural organ in humans and its association with hydrocephalus. Neurosurg Rev. 2002;25:205–15.PubMedCrossRef
138.
go back to reference Huh MS, Todd MA, Picketts DJ. SCO-ping out the mechanisms underlying the etiology of hydrocephalus. Physiology (Bethesda). 2009;24:117–26.CrossRef Huh MS, Todd MA, Picketts DJ. SCO-ping out the mechanisms underlying the etiology of hydrocephalus. Physiology (Bethesda). 2009;24:117–26.CrossRef
139.
go back to reference Lehtinen MK, Bjornsson CS, Dymecki SM, Gilbertson RJ, Holtzman DM, Monuki ES. The choroid plexus and cerebrospinal fluid: emerging roles in development, disease, and therapy. J Neurosci. 2013;33:17553–9.PubMedPubMedCentralCrossRef Lehtinen MK, Bjornsson CS, Dymecki SM, Gilbertson RJ, Holtzman DM, Monuki ES. The choroid plexus and cerebrospinal fluid: emerging roles in development, disease, and therapy. J Neurosci. 2013;33:17553–9.PubMedPubMedCentralCrossRef
140.
go back to reference Richardson SJ, Wijayagunaratne RC, D’Souza DG, Darras VM, Van Herck SL. Transport of thyroid hormones via the choroid plexus into the brain: the roles of transthyretin and thyroid hormone transmembrane transporters. Front Neurosci. 2015;9:66.PubMedPubMedCentralCrossRef Richardson SJ, Wijayagunaratne RC, D’Souza DG, Darras VM, Van Herck SL. Transport of thyroid hormones via the choroid plexus into the brain: the roles of transthyretin and thyroid hormone transmembrane transporters. Front Neurosci. 2015;9:66.PubMedPubMedCentralCrossRef
141.
go back to reference Gomes JR, Nogueira RS, Vieira M, Santos SD, Ferraz-Nogueira JP, Relvas JB, Saraiva MJ. Transthyretin provides trophic support via megalin by promoting neurite outgrowth and neuroprotection in cerebral ischemia. Cell Death Differ. 2016;23:1749–64.PubMedPubMedCentralCrossRef Gomes JR, Nogueira RS, Vieira M, Santos SD, Ferraz-Nogueira JP, Relvas JB, Saraiva MJ. Transthyretin provides trophic support via megalin by promoting neurite outgrowth and neuroprotection in cerebral ischemia. Cell Death Differ. 2016;23:1749–64.PubMedPubMedCentralCrossRef
142.
go back to reference Alshehri B, D’Souza DG, Lee JY, Petratos S, Richardson SJ. The diversity of mechanisms influenced by transthyretin in neurobiology: development, disease and endocrine disruption. J Neuroendocrinol. 2015;27:303–23.PubMedCrossRef Alshehri B, D’Souza DG, Lee JY, Petratos S, Richardson SJ. The diversity of mechanisms influenced by transthyretin in neurobiology: development, disease and endocrine disruption. J Neuroendocrinol. 2015;27:303–23.PubMedCrossRef
143.
go back to reference Skinner SJ, Geaney MS, Rush R, Rogers ML, Emerich DF, Thanos CG, Vasconcellos AV, Tan PL, Elliott RB. Choroid plexus transplants in the treatment of brain diseases. Xenotransplantation. 2006;13:284–8.PubMedCrossRef Skinner SJ, Geaney MS, Rush R, Rogers ML, Emerich DF, Thanos CG, Vasconcellos AV, Tan PL, Elliott RB. Choroid plexus transplants in the treatment of brain diseases. Xenotransplantation. 2006;13:284–8.PubMedCrossRef
144.
go back to reference Sandrof MA, Emerich DF, Thanos CG. Primary choroid plexus tissue for use in cellular therapy. Methods Mol Biol. 2017;1479:237–49.PubMedCrossRef Sandrof MA, Emerich DF, Thanos CG. Primary choroid plexus tissue for use in cellular therapy. Methods Mol Biol. 2017;1479:237–49.PubMedCrossRef
145.
go back to reference Thanos CG, Bintz B, Emerich DF. Microencapsulated choroid plexus epithelial cell transplants for repair of the brain. Adv Exp Med Biol. 2010;670:80–91.PubMedCrossRef Thanos CG, Bintz B, Emerich DF. Microencapsulated choroid plexus epithelial cell transplants for repair of the brain. Adv Exp Med Biol. 2010;670:80–91.PubMedCrossRef
146.
go back to reference Skinner SJ, Geaney MS, Lin H, Muzina M, Anal AK, Elliott RB, Tan PL. Encapsulated living choroid plexus cells: potential long-term treatments for central nervous system disease and trauma. J Neural Eng. 2009;6:065001.PubMedCrossRef Skinner SJ, Geaney MS, Lin H, Muzina M, Anal AK, Elliott RB, Tan PL. Encapsulated living choroid plexus cells: potential long-term treatments for central nervous system disease and trauma. J Neural Eng. 2009;6:065001.PubMedCrossRef
147.
go back to reference Ide C, Nakano N, Kanekiyo K. Cell transplantation for the treatment of spinal cord injury - bone marrow stromal cells and choroid plexus epithelial cells. Neural Regen Res. 2016;11:1385–8.PubMedPubMedCentralCrossRef Ide C, Nakano N, Kanekiyo K. Cell transplantation for the treatment of spinal cord injury - bone marrow stromal cells and choroid plexus epithelial cells. Neural Regen Res. 2016;11:1385–8.PubMedPubMedCentralCrossRef
148.
go back to reference Rodríguez EM, Oksche A, Hein S, Yulis CR. Cell biology of the subcommissural organ. Int Rev Cytol. 1992;135:39–121.PubMedCrossRef Rodríguez EM, Oksche A, Hein S, Yulis CR. Cell biology of the subcommissural organ. Int Rev Cytol. 1992;135:39–121.PubMedCrossRef
149.
go back to reference Guerra MM, González C, Caprile T, Jara M, Vío K, Muñoz RI, Rodríguez S, Rodríguez EM. Understanding how the subcommissural organ and other periventricular secretory structures contribute via the cerebrospinal fluid to neurogenesis. Front Cell Neurosci. 2015;9:480.PubMedPubMedCentralCrossRef Guerra MM, González C, Caprile T, Jara M, Vío K, Muñoz RI, Rodríguez S, Rodríguez EM. Understanding how the subcommissural organ and other periventricular secretory structures contribute via the cerebrospinal fluid to neurogenesis. Front Cell Neurosci. 2015;9:480.PubMedPubMedCentralCrossRef
150.
go back to reference Rodríguez S, Rodríguez EM, Jara P, Peruzzo B, Oksche A. Single injection into the cerebrospinal fluid of antibodies against the secretory material of the subcommissural organ reversibly blocks formation of Reissner’s fiber: immunocytochemical investigations in the rat. Exp Brain Res. 1990;81:113–24.PubMedCrossRef Rodríguez S, Rodríguez EM, Jara P, Peruzzo B, Oksche A. Single injection into the cerebrospinal fluid of antibodies against the secretory material of the subcommissural organ reversibly blocks formation of Reissner’s fiber: immunocytochemical investigations in the rat. Exp Brain Res. 1990;81:113–24.PubMedCrossRef
151.
go back to reference Vio K, Rodríguez S, Navarrete EH, Pérez-Fígares JM, Jiménez AJ, Rodríguez EM. Hydrocephalus induced by immunological blockage of the subcommissural organ-Reissner’s fiber (RF) complex by maternal transfer of anti-RF antibodies. Exp Brain Res. 2000;135:41–52.PubMedCrossRef Vio K, Rodríguez S, Navarrete EH, Pérez-Fígares JM, Jiménez AJ, Rodríguez EM. Hydrocephalus induced by immunological blockage of the subcommissural organ-Reissner’s fiber (RF) complex by maternal transfer of anti-RF antibodies. Exp Brain Res. 2000;135:41–52.PubMedCrossRef
152.
go back to reference Ortloff AR, Vío K, Guerra M, Jaramillo K, Kaehne T, Jones H, McAllister JP 2nd, Rodríguez EM. Role of the subcommissural organ in the pathogenesis of congenital hydrocephalus in the HTx rat. Cell Tissue Res. 2013;352:707–25.PubMedCrossRef Ortloff AR, Vío K, Guerra M, Jaramillo K, Kaehne T, Jones H, McAllister JP 2nd, Rodríguez EM. Role of the subcommissural organ in the pathogenesis of congenital hydrocephalus in the HTx rat. Cell Tissue Res. 2013;352:707–25.PubMedCrossRef
153.
go back to reference Montecinos HA, Richter H, Caprile T, Rodriguez EM. Synthesis of transthyretin by the ependymal cells of the subcommissural organ. Cell Tissue Res. 2005;320:487–99.PubMedCrossRef Montecinos HA, Richter H, Caprile T, Rodriguez EM. Synthesis of transthyretin by the ependymal cells of the subcommissural organ. Cell Tissue Res. 2005;320:487–99.PubMedCrossRef
154.
go back to reference Cuevas P, Reimers D, Giménez-Gallego G. Loss of basic fibroblast growth factor in the subcommissural organ of old spontaneously hypertensive rats. Neurosci Lett. 1996;221:25–8.PubMedCrossRef Cuevas P, Reimers D, Giménez-Gallego G. Loss of basic fibroblast growth factor in the subcommissural organ of old spontaneously hypertensive rats. Neurosci Lett. 1996;221:25–8.PubMedCrossRef
155.
go back to reference Schöbitz K, Gonzalez C, Peruzzo B, Yulis CR, Rodríguez EM. Organ culture of the bovine subcommissural organ: evidence for synthesis and release of the secretory material. Microsc Res Tech. 2001;52:496–509.PubMedCrossRef Schöbitz K, Gonzalez C, Peruzzo B, Yulis CR, Rodríguez EM. Organ culture of the bovine subcommissural organ: evidence for synthesis and release of the secretory material. Microsc Res Tech. 2001;52:496–509.PubMedCrossRef
156.
go back to reference Rodríguez S, Navarrete EH, Vio K, González C, Schöbitz K, Rodríguez EM. Isograft and xenograft of the subcommissural organ into the lateral ventricle of the rat and the formation of Reissner’s fiber. Cell Tissue Res. 1999;296:457–69.PubMedCrossRef Rodríguez S, Navarrete EH, Vio K, González C, Schöbitz K, Rodríguez EM. Isograft and xenograft of the subcommissural organ into the lateral ventricle of the rat and the formation of Reissner’s fiber. Cell Tissue Res. 1999;296:457–69.PubMedCrossRef
157.
go back to reference Morris PJ. Immunoprotection of therapeutic cell transplants by encapsulation. Trends Biotechnol. 1996;14:163–7.PubMedCrossRef Morris PJ. Immunoprotection of therapeutic cell transplants by encapsulation. Trends Biotechnol. 1996;14:163–7.PubMedCrossRef
158.
go back to reference Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther. 2004;104:29–45.PubMedCrossRef Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther. 2004;104:29–45.PubMedCrossRef
159.
go back to reference Orive G, Santos E, Poncelet D, Hernández RM, Pedraz JL, Wahlberg LU, De Vos P, Emerich D. Cell encapsulation: technical and clinical advances. Trends Pharmacol Sci. 2015;36:537–46.PubMedCrossRef Orive G, Santos E, Poncelet D, Hernández RM, Pedraz JL, Wahlberg LU, De Vos P, Emerich D. Cell encapsulation: technical and clinical advances. Trends Pharmacol Sci. 2015;36:537–46.PubMedCrossRef
160.
go back to reference Brinker T, Spader H. A translational view of peptide treatment of neurological disorders. Curr Med Chem. 2014;21:2583–90.PubMedCrossRef Brinker T, Spader H. A translational view of peptide treatment of neurological disorders. Curr Med Chem. 2014;21:2583–90.PubMedCrossRef
161.
go back to reference Acarregui A, Orive G, Pedraz JL, Hernández RM. Therapeutic applications of encapsulated cells. Methods Mol Biol. 2013;1051:349–64.PubMedCrossRef Acarregui A, Orive G, Pedraz JL, Hernández RM. Therapeutic applications of encapsulated cells. Methods Mol Biol. 2013;1051:349–64.PubMedCrossRef
162.
go back to reference Koch S, Schwinger C, Kressler J, Heinzen Ch, Rainov NG. Alginate encapsulation of genetically engineered mammalian cells: comparison of production devices, methods and microcapsule characteristics. J Microencapsul. 2003;20:303–16.PubMedCrossRef Koch S, Schwinger C, Kressler J, Heinzen Ch, Rainov NG. Alginate encapsulation of genetically engineered mammalian cells: comparison of production devices, methods and microcapsule characteristics. J Microencapsul. 2003;20:303–16.PubMedCrossRef
163.
go back to reference Zimmermann H, Shirley SG, Zimmermann U. Alginate-based encapsulation of cells: past, present and future. Curr Diabet Rep. 2007;7:314–20.CrossRef Zimmermann H, Shirley SG, Zimmermann U. Alginate-based encapsulation of cells: past, present and future. Curr Diabet Rep. 2007;7:314–20.CrossRef
164.
go back to reference Wahlberg LU, Lind G, Almqvist PM, Kusk P, Tornøe J, Juliusson B, Söderman M, Selldén E, Seiger Å, Eriksdotter-Jönhagen M, Linderoth B. Targeted delivery of nerve growth factor via encapsulated cell biodelivery in Alzheimer disease: a technology platform for restorative neurosurgery. J Neurosurg. 2012;117:340–7.PubMedCrossRef Wahlberg LU, Lind G, Almqvist PM, Kusk P, Tornøe J, Juliusson B, Söderman M, Selldén E, Seiger Å, Eriksdotter-Jönhagen M, Linderoth B. Targeted delivery of nerve growth factor via encapsulated cell biodelivery in Alzheimer disease: a technology platform for restorative neurosurgery. J Neurosurg. 2012;117:340–7.PubMedCrossRef
165.
go back to reference Fernandez-Espejo E. Pathogenesis of Parkinson’s disease: prospects of neuroprotective and restorative therapies. Mol Neurobiol. 2004;29:15–30.PubMedCrossRef Fernandez-Espejo E. Pathogenesis of Parkinson’s disease: prospects of neuroprotective and restorative therapies. Mol Neurobiol. 2004;29:15–30.PubMedCrossRef
166.
go back to reference Kanter-Schlifke I, Fjord-Larsen L, Kusk P, Angehagen M, Wahlberg L, Kokaia M. GDNF released from encapsulated cells suppresses seizure activity in the epileptic hippocampus. Exp Neurol. 2009;216:413–9.PubMedCrossRef Kanter-Schlifke I, Fjord-Larsen L, Kusk P, Angehagen M, Wahlberg L, Kokaia M. GDNF released from encapsulated cells suppresses seizure activity in the epileptic hippocampus. Exp Neurol. 2009;216:413–9.PubMedCrossRef
167.
go back to reference Kuramoto S, Yasuhara T, Agari T, Kondo A, Jing M, Kikuchi Y, Shinko A, Wakamori T, Kameda M, Wang F, Kin K, Edahiro S, Miyoshi Y, Date I. BDNF-secreting capsule exerts neuroprotective effects on epilepsy model of rats. Brain Res. 2011;1368:281–9.PubMedCrossRef Kuramoto S, Yasuhara T, Agari T, Kondo A, Jing M, Kikuchi Y, Shinko A, Wakamori T, Kameda M, Wang F, Kin K, Edahiro S, Miyoshi Y, Date I. BDNF-secreting capsule exerts neuroprotective effects on epilepsy model of rats. Brain Res. 2011;1368:281–9.PubMedCrossRef
168.
go back to reference Borlongan CV, Skinner SJ, Geaney M, Vasconcellos AV, Elliott RB, Emerich DF. CNS grafts of rat choroid plexus protect against cerebral ischemia in adult rats. NeuroReport. 2004;15:1543–7.PubMedCrossRef Borlongan CV, Skinner SJ, Geaney M, Vasconcellos AV, Elliott RB, Emerich DF. CNS grafts of rat choroid plexus protect against cerebral ischemia in adult rats. NeuroReport. 2004;15:1543–7.PubMedCrossRef
169.
go back to reference Winn SR, Emerich DF. Managing chronic pain with encapsulated cell implants releasing catecholamines and endogenous opiods. Front Biosci. 2005;10:367–78.PubMedCrossRef Winn SR, Emerich DF. Managing chronic pain with encapsulated cell implants releasing catecholamines and endogenous opiods. Front Biosci. 2005;10:367–78.PubMedCrossRef
Metadata
Title
Blood–brain barrier and foetal-onset hydrocephalus, with a view on potential novel treatments beyond managing CSF flow
Authors
M. Guerra
J. L. Blázquez
E. M. Rodríguez
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2017
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-017-0067-0

Other articles of this Issue 1/2017

Fluids and Barriers of the CNS 1/2017 Go to the issue