Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2013

01-06-2013

Humanised xenograft models of bone metastasis revisited: novel insights into species-specific mechanisms of cancer cell osteotropism

Authors: Boris Michael Holzapfel, Laure Thibaudeau, Parisa Hesami, Anna Taubenberger, Nina Pauline Holzapfel, Susanne Mayer-Wagner, Carl Power, Judith Clements, Pamela Russell, Dietmar Werner Hutmacher

Published in: Cancer and Metastasis Reviews | Issue 1-2/2013

Login to get access

Abstract

The determinants and key mechanisms of cancer cell osteotropism have not been identified, mainly due to the lack of reproducible animal models representing the biological, genetic and clinical features seen in humans. An ideal model should be capable of recapitulating as many steps of the metastatic cascade as possible, thus facilitating the development of prognostic markers and novel therapeutic strategies. Most animal models of bone metastasis still have to be derived experimentally as most syngeneic and transgeneic approaches do not provide a robust skeletal phenotype and do not recapitulate the biological processes seen in humans. The xenotransplantation of human cancer cells or tumour tissue into immunocompromised murine hosts provides the possibility to simulate early and late stages of the human disease. Human bone or tissue-engineered human bone constructs can be implanted into the animal to recapitulate more subtle, species-specific aspects of the mutual interaction between human cancer cells and the human bone microenvironment. Moreover, the replication of the entire “organ” bone makes it possible to analyse the interaction between cancer cells and the haematopoietic niche and to confer at least a partial human immunity to the murine host. This process of humanisation is facilitated by novel immunocompromised mouse strains that allow a high engraftment rate of human cells or tissue. These humanised xenograft models provide an important research tool to study human biological processes of bone metastasis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brown, J. E., Neville-Webbe, H., & Coleman, R. E. (2004). The role of bisphosphonates in breast and prostate cancers. Endocrine-Related Cancer, 11, 207–224.PubMedCrossRef Brown, J. E., Neville-Webbe, H., & Coleman, R. E. (2004). The role of bisphosphonates in breast and prostate cancers. Endocrine-Related Cancer, 11, 207–224.PubMedCrossRef
7.
go back to reference Welch, D. R. (1997). Technical considerations for studying cancer metastasis in vivo. Clinical & Experimental Metastasis, 15, 272–306.CrossRef Welch, D. R. (1997). Technical considerations for studying cancer metastasis in vivo. Clinical & Experimental Metastasis, 15, 272–306.CrossRef
8.
go back to reference Goldstein, R. H., Weinberg, R. A., & Rosenblatt, M. (2010). Of mice and (wo)men: mouse models of breast cancer metastasis to bone. Journal of Bone and Mineral Research, 25, 431–436. doi:10.1002/jbmr.68.PubMedCrossRef Goldstein, R. H., Weinberg, R. A., & Rosenblatt, M. (2010). Of mice and (wo)men: mouse models of breast cancer metastasis to bone. Journal of Bone and Mineral Research, 25, 431–436. doi:10.​1002/​jbmr.​68.PubMedCrossRef
12.
go back to reference Nemeth, J. A., Harb, J. F., Barroso, U., Jr., et al. (1999). Severe combined immunodeficient-hu model of human prostate cancer metastasis to human bone. Cancer Research, 59, 1987–1993.PubMed Nemeth, J. A., Harb, J. F., Barroso, U., Jr., et al. (1999). Severe combined immunodeficient-hu model of human prostate cancer metastasis to human bone. Cancer Research, 59, 1987–1993.PubMed
13.
go back to reference Yonou, H., Yokose, T., Kamijo, T., et al. (2001). Establishment of a novel species- and tissue-specific metastasis model of human prostate cancer in humanized non-obese diabetic/severe combined immunodeficient mice engrafted with human adult lung and bone. Cancer Research, 61, 2177–2182.PubMed Yonou, H., Yokose, T., Kamijo, T., et al. (2001). Establishment of a novel species- and tissue-specific metastasis model of human prostate cancer in humanized non-obese diabetic/severe combined immunodeficient mice engrafted with human adult lung and bone. Cancer Research, 61, 2177–2182.PubMed
14.
15.
go back to reference Kuperwasser, C., Chavarria, T., Wu, M., et al. (2004). Reconstruction of functionally normal and malignant human breast tissues in mice. Proceedings of the National Academy of Sciences of the United States of America, 101, 4966–4971. doi:10.1073/pnas.0401064101.PubMedCrossRef Kuperwasser, C., Chavarria, T., Wu, M., et al. (2004). Reconstruction of functionally normal and malignant human breast tissues in mice. Proceedings of the National Academy of Sciences of the United States of America, 101, 4966–4971. doi:10.​1073/​pnas.​0401064101.PubMedCrossRef
16.
go back to reference Ganick, D. J., Sarnwick, R. D., Shahidi, N. T., et al. (1980). Inability of intravenously injected monocellular suspensions of human bone marrow to establish in the nude mouse. International Archives of Allergy and Applied Immunology, 62, 330–333.PubMedCrossRef Ganick, D. J., Sarnwick, R. D., Shahidi, N. T., et al. (1980). Inability of intravenously injected monocellular suspensions of human bone marrow to establish in the nude mouse. International Archives of Allergy and Applied Immunology, 62, 330–333.PubMedCrossRef
18.
go back to reference Bosma, G. C., Custer, R. P., & Bosma, M. J. (1983). A severe combined immunodeficiency mutation in the mouse. Nature, 301, 527–530.PubMedCrossRef Bosma, G. C., Custer, R. P., & Bosma, M. J. (1983). A severe combined immunodeficiency mutation in the mouse. Nature, 301, 527–530.PubMedCrossRef
19.
go back to reference Kyoizumi, S., Baum, C. M., Kaneshima, H., et al. (1992). Implantation and maintenance of functional human bone marrow in SCID-hu mice. Blood, 79, 1704–1711.PubMed Kyoizumi, S., Baum, C. M., Kaneshima, H., et al. (1992). Implantation and maintenance of functional human bone marrow in SCID-hu mice. Blood, 79, 1704–1711.PubMed
21.
go back to reference Shultz, L. D., Schweitzer, P. A., Christianson, S. W., et al. (1995). Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. Journal of Immunology, 154, 180–191. Shultz, L. D., Schweitzer, P. A., Christianson, S. W., et al. (1995). Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. Journal of Immunology, 154, 180–191.
22.
go back to reference Boynton, E., Aubin, J., Gross, A., et al. (1996). Human osteoblasts survive and deposit new bone when human bone is implanted in SCID mouse. Bone, 18, 321–326.PubMedCrossRef Boynton, E., Aubin, J., Gross, A., et al. (1996). Human osteoblasts survive and deposit new bone when human bone is implanted in SCID mouse. Bone, 18, 321–326.PubMedCrossRef
23.
go back to reference Christianson, S. W., Greiner, D. L., Schweitzer, I. B., et al. (1996). Role of natural killer cells on engraftment of human lymphoid cells and on metastasis of human T-lymphoblastoid leukemia cells in C57BL/6J-scid mice and in C57BL/6J-scid bg mice. Cellular Immunology, 171, 186–199. doi:10.1006/cimm.1996.0193.PubMed Christianson, S. W., Greiner, D. L., Schweitzer, I. B., et al. (1996). Role of natural killer cells on engraftment of human lymphoid cells and on metastasis of human T-lymphoblastoid leukemia cells in C57BL/6J-scid mice and in C57BL/6J-scid bg mice. Cellular Immunology, 171, 186–199. doi:10.​1006/​cimm.​1996.​0193.PubMed
24.
go back to reference Prochazka, M., Gaskins, H. R., Shultz, L. D., et al. (1992). The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency. Proceedings of the National Academy of Sciences of the United States of America, 89, 3290–3294.PubMedCrossRef Prochazka, M., Gaskins, H. R., Shultz, L. D., et al. (1992). The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency. Proceedings of the National Academy of Sciences of the United States of America, 89, 3290–3294.PubMedCrossRef
25.
go back to reference Meyerrose, T. E., Herrbrich, P., Hess, D. A., et al. (2003). Immune-deficient mouse models for analysis of human stem cells. Biotechniques, 35, 1262–1272.PubMed Meyerrose, T. E., Herrbrich, P., Hess, D. A., et al. (2003). Immune-deficient mouse models for analysis of human stem cells. Biotechniques, 35, 1262–1272.PubMed
27.
go back to reference Shultz, L. D., Lyons, B. L., Burzenski, L. M., et al. (2005). Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. Journal of Immunology, 174, 6477–6489. Shultz, L. D., Lyons, B. L., Burzenski, L. M., et al. (2005). Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. Journal of Immunology, 174, 6477–6489.
30.
go back to reference Shultz, L. D., Saito, Y., Najima, Y., et al. (2010). Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proceedings of the National Academy of Sciences of the United States of America, 107, 13022–13027. doi:10.1073/pnas.1000475107.PubMedCrossRef Shultz, L. D., Saito, Y., Najima, Y., et al. (2010). Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proceedings of the National Academy of Sciences of the United States of America, 107, 13022–13027. doi:10.​1073/​pnas.​1000475107.PubMedCrossRef
31.
go back to reference Shtivelman, E., & Namikawa, R. (1995). Species-specific metastasis of human tumor cells in the severe combined immunodeficiency mouse engrafted with human tissue. Proceedings of the National Academy of Sciences of the United States of America, 92, 4661–4665.PubMedCrossRef Shtivelman, E., & Namikawa, R. (1995). Species-specific metastasis of human tumor cells in the severe combined immunodeficiency mouse engrafted with human tissue. Proceedings of the National Academy of Sciences of the United States of America, 92, 4661–4665.PubMedCrossRef
33.
go back to reference Deng, X., He, G., Levine, A., et al. (2008). Adenovirus-mediated expression of TIMP-1 and TIMP-2 in bone inhibits osteolytic degradation by human prostate cancer. International Journal of Cancer, 122, 209–218. doi:10.1002/ijc.23053.CrossRef Deng, X., He, G., Levine, A., et al. (2008). Adenovirus-mediated expression of TIMP-1 and TIMP-2 in bone inhibits osteolytic degradation by human prostate cancer. International Journal of Cancer, 122, 209–218. doi:10.​1002/​ijc.​23053.CrossRef
34.
go back to reference Nie, D., Nemeth, J., Qiao, Y., et al. (2003). Increased metastatic potential in human prostate carcinoma cells by overexpression of arachidonate 12-lipoxygenase. Clinical & Experimental Metastasis, 20, 657–663. doi:10.1023/A:1027302408187.CrossRef Nie, D., Nemeth, J., Qiao, Y., et al. (2003). Increased metastatic potential in human prostate carcinoma cells by overexpression of arachidonate 12-lipoxygenase. Clinical & Experimental Metastasis, 20, 657–663. doi:10.​1023/​A:​1027302408187.CrossRef
35.
go back to reference Carbonell, F., Calvo, W., & Fliedner, T. M. (1982). Cellular composition of human fetal bone marrow. Histologic study in methacrylate sections. Acta Anatomica (Basel), 113, 371–375.CrossRef Carbonell, F., Calvo, W., & Fliedner, T. M. (1982). Cellular composition of human fetal bone marrow. Histologic study in methacrylate sections. Acta Anatomica (Basel), 113, 371–375.CrossRef
36.
go back to reference LeBien, T. W., Wormann, B., Villablanca, J. G., et al. (1990). Multiparameter flow cytometric analysis of human fetal bone marrow B cells. Leukemia, 4, 354–358.PubMed LeBien, T. W., Wormann, B., Villablanca, J. G., et al. (1990). Multiparameter flow cytometric analysis of human fetal bone marrow B cells. Leukemia, 4, 354–358.PubMed
37.
go back to reference Villablanca, J. G., Anderson, J. M., Moseley, M., et al. (1990). Differentiation of normal human pre-B cells in vitro. The Journal of Experimental Medicine, 172, 325–334.PubMedCrossRef Villablanca, J. G., Anderson, J. M., Moseley, M., et al. (1990). Differentiation of normal human pre-B cells in vitro. The Journal of Experimental Medicine, 172, 325–334.PubMedCrossRef
38.
go back to reference Christensen, R. D., Harper, T. E., & Rothstein, G. (1986). Granulocyte-macrophage progenitor cells in term and preterm neonates. Journal of Pediatrics, 109, 1047–1051.PubMedCrossRef Christensen, R. D., Harper, T. E., & Rothstein, G. (1986). Granulocyte-macrophage progenitor cells in term and preterm neonates. Journal of Pediatrics, 109, 1047–1051.PubMedCrossRef
39.
go back to reference Emerson, S. G., Thomas, S., Ferrara, J. L., et al. (1989). Developmental regulation of erythropoiesis by hematopoietic growth factors: analysis on populations of BFU-E from bone marrow, peripheral blood, and fetal liver. Blood, 74, 49–55.PubMed Emerson, S. G., Thomas, S., Ferrara, J. L., et al. (1989). Developmental regulation of erythropoiesis by hematopoietic growth factors: analysis on populations of BFU-E from bone marrow, peripheral blood, and fetal liver. Blood, 74, 49–55.PubMed
40.
go back to reference Ikuta, K., Kina, T., MacNeil, I., et al. (1990). A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell, 62, 863–874.PubMedCrossRef Ikuta, K., Kina, T., MacNeil, I., et al. (1990). A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell, 62, 863–874.PubMedCrossRef
41.
go back to reference Goya, M., Miyamoto, S., Nagai, K., et al. (2004). Growth inhibition of human prostate cancer cells in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice by a ligand-specific antibody to human insulin-like growth factors. Cancer Research, 64, 6252–6258. doi:10.1158/0008-5472.CAN-04-0919.PubMedCrossRef Goya, M., Miyamoto, S., Nagai, K., et al. (2004). Growth inhibition of human prostate cancer cells in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice by a ligand-specific antibody to human insulin-like growth factors. Cancer Research, 64, 6252–6258. doi:10.​1158/​0008-5472.​CAN-04-0919.PubMedCrossRef
42.
go back to reference Ling, L. J., Wang, S., Liu, X. A., et al. (2008). A novel mouse model of human breast cancer stem-like cells with high CD44 + CD24-/lower phenotype metastasis to human bone. Chinese Medical Journal, 121, 1980–1986.PubMed Ling, L. J., Wang, S., Liu, X. A., et al. (2008). A novel mouse model of human breast cancer stem-like cells with high CD44 + CD24-/lower phenotype metastasis to human bone. Chinese Medical Journal, 121, 1980–1986.PubMed
43.
go back to reference Sangai, T., Fujimoto, H., Miyamoto, S., et al. (2008). Roles of osteoclasts and bone-derived IGFs in the survival and growth of human breast cancer cells in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice. Clinical & Experimental Metastasis, 25, 401–410. doi:10.1007/s10585-008-9144-8.CrossRef Sangai, T., Fujimoto, H., Miyamoto, S., et al. (2008). Roles of osteoclasts and bone-derived IGFs in the survival and growth of human breast cancer cells in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice. Clinical & Experimental Metastasis, 25, 401–410. doi:10.​1007/​s10585-008-9144-8.CrossRef
44.
go back to reference Yang, W., Lam, P., Kitching, R., et al. (2007). Breast cancer metastasis in a human bone NOD/SCID mouse model. Cancer Biology & Therapy, 6, 1289–1294. Yang, W., Lam, P., Kitching, R., et al. (2007). Breast cancer metastasis in a human bone NOD/SCID mouse model. Cancer Biology & Therapy, 6, 1289–1294.
45.
go back to reference Yonou, H., Ochiai, A., Goya, M., et al. (2004). Intraosseous growth of human prostate cancer in implanted adult human bone: relationship of prostate cancer cells to osteoclasts in osteoblastic metastatic lesions. Prostate, 58, 406–413. doi:10.1002/pros.10349.PubMedCrossRef Yonou, H., Ochiai, A., Goya, M., et al. (2004). Intraosseous growth of human prostate cancer in implanted adult human bone: relationship of prostate cancer cells to osteoclasts in osteoblastic metastatic lesions. Prostate, 58, 406–413. doi:10.​1002/​pros.​10349.PubMedCrossRef
46.
go back to reference Lam, P., Yang, W., Amemiya, Y., et al. (2009). A human bone NOD/SCID mouse model to distinguish metastatic potential in primary breast cancers. Cancer Biology & Therapy, 8, 1010–1017.CrossRef Lam, P., Yang, W., Amemiya, Y., et al. (2009). A human bone NOD/SCID mouse model to distinguish metastatic potential in primary breast cancers. Cancer Biology & Therapy, 8, 1010–1017.CrossRef
48.
go back to reference Amemiya, Y., Yang, W., Benatar, T., et al. (2011). Insulin like growth factor binding protein-7 reduces growth of human breast cancer cells and xenografted tumors. Breast Cancer Research and Treatment, 126, 373–384. doi:10.1007/s10549-010-0921-0.PubMedCrossRef Amemiya, Y., Yang, W., Benatar, T., et al. (2011). Insulin like growth factor binding protein-7 reduces growth of human breast cancer cells and xenografted tumors. Breast Cancer Research and Treatment, 126, 373–384. doi:10.​1007/​s10549-010-0921-0.PubMedCrossRef
49.
go back to reference Murphy, W. J., Kumar, V., & Bennett, M. (1987). Rejection of bone marrow allografts by mice with severe combined immune deficiency (SCID). Evidence that natural killer cells can mediate the specificity of marrow graft rejection. The Journal of Experimental Medicine, 165, 1212–1217.PubMedCrossRef Murphy, W. J., Kumar, V., & Bennett, M. (1987). Rejection of bone marrow allografts by mice with severe combined immune deficiency (SCID). Evidence that natural killer cells can mediate the specificity of marrow graft rejection. The Journal of Experimental Medicine, 165, 1212–1217.PubMedCrossRef
50.
go back to reference Heike, Y., Ohira, T., Takahashi, M., et al. (1995). Long-term human hematopoiesis in SCID-hu mice bearing transplanted fragments of adult bone and bone marrow cells. Blood, 86, 524–530.PubMed Heike, Y., Ohira, T., Takahashi, M., et al. (1995). Long-term human hematopoiesis in SCID-hu mice bearing transplanted fragments of adult bone and bone marrow cells. Blood, 86, 524–530.PubMed
51.
go back to reference Sandhu, J. S., Clark, B. R., Boynton, E. L., et al. (1996). Human hematopoiesis in SCID mice implanted with human adult cancellous bone. Blood, 88, 1973–1982.PubMed Sandhu, J. S., Clark, B. R., Boynton, E. L., et al. (1996). Human hematopoiesis in SCID mice implanted with human adult cancellous bone. Blood, 88, 1973–1982.PubMed
52.
go back to reference Hubin, F., Humblet, C., Belaid, Z., et al. (2004). Maintenance of functional human cancellous bone and human hematopoiesis in NOD/SCID mice. Cell Transplantation, 13, 823–831.PubMedCrossRef Hubin, F., Humblet, C., Belaid, Z., et al. (2004). Maintenance of functional human cancellous bone and human hematopoiesis in NOD/SCID mice. Cell Transplantation, 13, 823–831.PubMedCrossRef
54.
55.
go back to reference Shiozawa, Y., Pedersen, E. A., Havens, A. M., et al. (2011). Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. The Journal of Clinical Investigation, 121, 1298–1312. doi:10.1172/JCI43414.PubMedCrossRef Shiozawa, Y., Pedersen, E. A., Havens, A. M., et al. (2011). Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. The Journal of Clinical Investigation, 121, 1298–1312. doi:10.​1172/​JCI43414.PubMedCrossRef
56.
go back to reference Kahn, D., Weiner, G. J., Ben-Haim, S., et al. (1994). Positron emission tomographic measurement of bone marrow blood flow to the pelvis and lumbar vertebrae in young normal adults. Blood, 83, 958–963.PubMed Kahn, D., Weiner, G. J., Ben-Haim, S., et al. (1994). Positron emission tomographic measurement of bone marrow blood flow to the pelvis and lumbar vertebrae in young normal adults. Blood, 83, 958–963.PubMed
59.
go back to reference Xia, T. S., Wang, J., Yin, H., et al. (2010). Human tissue-specific microenvironment: an essential requirement for mouse models of breast cancer. Oncology Reports, 24, 203–211.PubMed Xia, T. S., Wang, J., Yin, H., et al. (2010). Human tissue-specific microenvironment: an essential requirement for mouse models of breast cancer. Oncology Reports, 24, 203–211.PubMed
60.
go back to reference Waitches, G., Zawin, J. K., & Poznanski, A. K. (1994). Sequence and rate of bone marrow conversion in the femora of children as seen on MR imaging: are accepted standards accurate? AJR. American Journal of Roentgenology, 162, 1399–1406.PubMedCrossRef Waitches, G., Zawin, J. K., & Poznanski, A. K. (1994). Sequence and rate of bone marrow conversion in the femora of children as seen on MR imaging: are accepted standards accurate? AJR. American Journal of Roentgenology, 162, 1399–1406.PubMedCrossRef
61.
go back to reference Atkinson, H. R. (1962). Bone marrow distribution as a factor in estimating radiation to the blood-forming organ: a survey of present knowledge. Journal of the College of Radiologists of Australasia, 6, 149–154.PubMedCrossRef Atkinson, H. R. (1962). Bone marrow distribution as a factor in estimating radiation to the blood-forming organ: a survey of present knowledge. Journal of the College of Radiologists of Australasia, 6, 149–154.PubMedCrossRef
62.
go back to reference Ellis, R. E. (1961). The distribution of active bone marrow in the adult. Physics in Medicine and Biology, 5, 255–258.PubMedCrossRef Ellis, R. E. (1961). The distribution of active bone marrow in the adult. Physics in Medicine and Biology, 5, 255–258.PubMedCrossRef
63.
70.
73.
go back to reference Hutmacher, D. W., Schantz, J. T., Lam, C. X., et al. (2007). State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. Journal of Tissue Engineering and Regenerative Medicine, 1, 245–260. doi:10.1002/term.24.PubMedCrossRef Hutmacher, D. W., Schantz, J. T., Lam, C. X., et al. (2007). State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. Journal of Tissue Engineering and Regenerative Medicine, 1, 245–260. doi:10.​1002/​term.​24.PubMedCrossRef
74.
75.
76.
go back to reference Reichert, J. C., Epari, D. R., Wullschleger, M. E., et al. (2010). Establishment of a preclinical ovine model for tibial segmental bone defect repair by applying bone tissue engineering strategies. Tissue Engineering. Part B, Reviews, 16, 93–104. doi:10.1089/ten.TEB.2009.0455.PubMedCrossRef Reichert, J. C., Epari, D. R., Wullschleger, M. E., et al. (2010). Establishment of a preclinical ovine model for tibial segmental bone defect repair by applying bone tissue engineering strategies. Tissue Engineering. Part B, Reviews, 16, 93–104. doi:10.​1089/​ten.​TEB.​2009.​0455.PubMedCrossRef
78.
go back to reference Zeidman, I., & Buss, J. M. (1952). Transpulmonary passage of tumor cell emboli. Cancer Research, 12, 731–733.PubMed Zeidman, I., & Buss, J. M. (1952). Transpulmonary passage of tumor cell emboli. Cancer Research, 12, 731–733.PubMed
79.
go back to reference Fidler, I. J. (2001). Seed and soil revisited: contribution of the organ microenvironment to cancer metastasis. Surgical Oncology Clinics of North America, 10, 257–269. vii-viiii.PubMed Fidler, I. J. (2001). Seed and soil revisited: contribution of the organ microenvironment to cancer metastasis. Surgical Oncology Clinics of North America, 10, 257–269. vii-viiii.PubMed
80.
go back to reference Halperin, E. C., Schmidt-Ulrich, R. K., Perez, C. A., & Brady, L. W. (2004). The discipline of radiation oncology. In C. A. Perez, L. W. Brady, E. C. Halperin, & R. K. Schmidt-Ulrich (Eds.), Hrsg. Principles and Practice of Radiation Oncology (4th ed., pp. 1–95). Philadelphia: Lippincott Williams & Wilkins. Halperin, E. C., Schmidt-Ulrich, R. K., Perez, C. A., & Brady, L. W. (2004). The discipline of radiation oncology. In C. A. Perez, L. W. Brady, E. C. Halperin, & R. K. Schmidt-Ulrich (Eds.), Hrsg. Principles and Practice of Radiation Oncology (4th ed., pp. 1–95). Philadelphia: Lippincott Williams & Wilkins.
81.
go back to reference Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet, 1, 571–573.CrossRef Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet, 1, 571–573.CrossRef
82.
go back to reference Bauerle, T., Adwan, H., Kiessling, F., et al. (2005). Characterization of a rat model with site-specific bone metastasis induced by MDA-MB-231 breast cancer cells and its application to the effects of an antibody against bone sialoprotein. International Journal of Cancer, 115, 177–186. doi:10.1002/ijc.20840.CrossRef Bauerle, T., Adwan, H., Kiessling, F., et al. (2005). Characterization of a rat model with site-specific bone metastasis induced by MDA-MB-231 breast cancer cells and its application to the effects of an antibody against bone sialoprotein. International Journal of Cancer, 115, 177–186. doi:10.​1002/​ijc.​20840.CrossRef
83.
go back to reference Bauerle, T., Peterschmitt, J., Hilbig, H., et al. (2006). Treatment of bone metastasis induced by MDA-MB-231 breast cancer cells with an antibody against bone sialoprotein. International Journal of Oncology, 28, 573–583.PubMed Bauerle, T., Peterschmitt, J., Hilbig, H., et al. (2006). Treatment of bone metastasis induced by MDA-MB-231 breast cancer cells with an antibody against bone sialoprotein. International Journal of Oncology, 28, 573–583.PubMed
84.
go back to reference Neudert, M., Fischer, C., Krempien, B., et al. (2003). Site-specific human breast cancer (MDA-MB-231) metastases in nude rats: model characterisation and in vivo effects of ibandronate on tumour growth. International Journal of Cancer, 107, 468–477. doi:10.1002/ijc.11397.CrossRef Neudert, M., Fischer, C., Krempien, B., et al. (2003). Site-specific human breast cancer (MDA-MB-231) metastases in nude rats: model characterisation and in vivo effects of ibandronate on tumour growth. International Journal of Cancer, 107, 468–477. doi:10.​1002/​ijc.​11397.CrossRef
85.
go back to reference Halpern, J., Lynch, C. C., Fleming, J., et al. (2006). The application of a murine bone bioreactor as a model of tumor: bone interaction. Clinical & Experimental Metastasis, 23, 345–356. doi:10.1007/s10585-006-9044-8.CrossRef Halpern, J., Lynch, C. C., Fleming, J., et al. (2006). The application of a murine bone bioreactor as a model of tumor: bone interaction. Clinical & Experimental Metastasis, 23, 345–356. doi:10.​1007/​s10585-006-9044-8.CrossRef
86.
go back to reference Tamura, H., Ishii, S., Ikeda, T., et al. (1999). The relationship between urinary pyridinoline, deoxypyridinoline and bone metastasis in a rat breast cancer model. Breast Cancer, 6, 23–28.PubMedCrossRef Tamura, H., Ishii, S., Ikeda, T., et al. (1999). The relationship between urinary pyridinoline, deoxypyridinoline and bone metastasis in a rat breast cancer model. Breast Cancer, 6, 23–28.PubMedCrossRef
87.
go back to reference Tamura, H., Ishii, S., Ikeda, T., et al. (1996). Therapeutic efficacy of pamidronate in combination with chemotherapy to bone metastasis of breast cancer in a rat model. Surgical Oncology, 5, 141–147.PubMedCrossRef Tamura, H., Ishii, S., Ikeda, T., et al. (1996). Therapeutic efficacy of pamidronate in combination with chemotherapy to bone metastasis of breast cancer in a rat model. Surgical Oncology, 5, 141–147.PubMedCrossRef
88.
go back to reference Mayevski, A. (1978). Ischemia in the brain: the effects of carotid artery ligation and decapitation on the energy state of the awake and anesthetized rat. Brain Research, 140, 217–230.CrossRef Mayevski, A. (1978). Ischemia in the brain: the effects of carotid artery ligation and decapitation on the energy state of the awake and anesthetized rat. Brain Research, 140, 217–230.CrossRef
89.
go back to reference Yoneda, T., Williams, P. J., Hiraga, T., et al. (2001). A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. Journal of Bone and Mineral Research, 16, 1486–1495. doi:10.1359/jbmr.2001.16.8.1486.PubMedCrossRef Yoneda, T., Williams, P. J., Hiraga, T., et al. (2001). A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. Journal of Bone and Mineral Research, 16, 1486–1495. doi:10.​1359/​jbmr.​2001.​16.​8.​1486.PubMedCrossRef
90.
go back to reference Goodale, D., Phay, C., Postenka, C. O., et al. (2009). Characterization of tumor cell dissemination patterns in preclinical models of cancer metastasis using flow cytometry and laser scanning cytometry. Cytometry. Part A, 75, 344–355. doi:10.1002/cyto.a.20657.CrossRef Goodale, D., Phay, C., Postenka, C. O., et al. (2009). Characterization of tumor cell dissemination patterns in preclinical models of cancer metastasis using flow cytometry and laser scanning cytometry. Cytometry. Part A, 75, 344–355. doi:10.​1002/​cyto.​a.​20657.CrossRef
91.
go back to reference Havens, A. M., Pedersen, E. A., Shiozawa, Y., et al. (2008). An in vivo mouse model for human prostate cancer metastasis. Neoplasia, 10, 371–380.PubMed Havens, A. M., Pedersen, E. A., Shiozawa, Y., et al. (2008). An in vivo mouse model for human prostate cancer metastasis. Neoplasia, 10, 371–380.PubMed
92.
go back to reference Thalmann, G. N., Anezinis, P. E., Chang, S. M., et al. (1994). Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Research, 54, 2577–2581.PubMed Thalmann, G. N., Anezinis, P. E., Chang, S. M., et al. (1994). Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Research, 54, 2577–2581.PubMed
93.
go back to reference Tsingotjidou, A. S., Ahluwalia, R., Zhang, X., et al. (2003). A metastatic human prostate cancer model using intraprostatic implantation of tumor produced by PC-3 neolacZ transfected cells. International Journal of Oncology, 23, 1569–1574.PubMed Tsingotjidou, A. S., Ahluwalia, R., Zhang, X., et al. (2003). A metastatic human prostate cancer model using intraprostatic implantation of tumor produced by PC-3 neolacZ transfected cells. International Journal of Oncology, 23, 1569–1574.PubMed
94.
go back to reference Al Nakouzi, N., Bawa, O., Le Pape, A., et al. (2012). The IGR-CaP1 xenograft model recapitulates mixed osteolytic/blastic bone lesions observed in metastatic prostate cancer. Neoplasia, 14, 376–387.PubMed Al Nakouzi, N., Bawa, O., Le Pape, A., et al. (2012). The IGR-CaP1 xenograft model recapitulates mixed osteolytic/blastic bone lesions observed in metastatic prostate cancer. Neoplasia, 14, 376–387.PubMed
95.
go back to reference An, Z., Wang, X., Geller, J., et al. (1998). Surgical orthotopic implantation allows high lung and lymph node metastatic expression of human prostate carcinoma cell line PC-3 in nude mice. Prostate, 34, 169–174.PubMedCrossRef An, Z., Wang, X., Geller, J., et al. (1998). Surgical orthotopic implantation allows high lung and lymph node metastatic expression of human prostate carcinoma cell line PC-3 in nude mice. Prostate, 34, 169–174.PubMedCrossRef
96.
go back to reference Rembrink, K., Romijn, J. C., van der Kwast, T. H., et al. (1997). Orthotopic implantation of human prostate cancer cell lines: a clinically relevant animal model for metastatic prostate cancer. Prostate, 31, 168–174.PubMedCrossRef Rembrink, K., Romijn, J. C., van der Kwast, T. H., et al. (1997). Orthotopic implantation of human prostate cancer cell lines: a clinically relevant animal model for metastatic prostate cancer. Prostate, 31, 168–174.PubMedCrossRef
97.
go back to reference Nemeth, J. A., Yousif, R., Herzog, M., et al. (2002). Matrix metalloproteinase activity, bone matrix turnover, and tumor cell proliferation in prostate cancer bone metastasis. Journal of the National Cancer Institute, 94, 17–25.PubMedCrossRef Nemeth, J. A., Yousif, R., Herzog, M., et al. (2002). Matrix metalloproteinase activity, bone matrix turnover, and tumor cell proliferation in prostate cancer bone metastasis. Journal of the National Cancer Institute, 94, 17–25.PubMedCrossRef
98.
go back to reference Yonou, H., Kanomata, N., Goya, M., et al. (2003). Osteoprotegerin/osteoclastogenesis inhibitory factor decreases human prostate cancer burden in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice. Cancer Research, 63, 2096–2102.PubMed Yonou, H., Kanomata, N., Goya, M., et al. (2003). Osteoprotegerin/osteoclastogenesis inhibitory factor decreases human prostate cancer burden in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice. Cancer Research, 63, 2096–2102.PubMed
100.
go back to reference Butler, T. P., & Gullino, P. M. (1975). Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Research, 35, 512–516.PubMed Butler, T. P., & Gullino, P. M. (1975). Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Research, 35, 512–516.PubMed
101.
102.
go back to reference Welch, D. R. (2006). Do we need to redefine a cancer metastasis and staging definitions? Breast Disease, 26, 3–12.PubMed Welch, D. R. (2006). Do we need to redefine a cancer metastasis and staging definitions? Breast Disease, 26, 3–12.PubMed
104.
107.
go back to reference Nicolson, G. L. (1988). Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites. Biochimica et Biophysica Acta, 948, 175–224.PubMed Nicolson, G. L. (1988). Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites. Biochimica et Biophysica Acta, 948, 175–224.PubMed
Metadata
Title
Humanised xenograft models of bone metastasis revisited: novel insights into species-specific mechanisms of cancer cell osteotropism
Authors
Boris Michael Holzapfel
Laure Thibaudeau
Parisa Hesami
Anna Taubenberger
Nina Pauline Holzapfel
Susanne Mayer-Wagner
Carl Power
Judith Clements
Pamela Russell
Dietmar Werner Hutmacher
Publication date
01-06-2013
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2013
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-013-9437-5

Other articles of this Issue 1-2/2013

Cancer and Metastasis Reviews 1-2/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine