Skip to main content
Top
Published in: Seminars in Immunopathology 4/2008

01-12-2008 | Review

Human intrathymic development: a selective approach

Authors: J. Plum, M. De Smedt, G. Leclercq, T. Taghon, T. Kerre, B. Vandekerckhove

Published in: Seminars in Immunopathology | Issue 4/2008

Login to get access

Abstract

Human T lymphocytes can be generated from CD34 progenitor cells from different sources. This can be obtained in an in vivo model wherein human thymic tissue and fetal liver is transplanted in an immunodeficient mouse. However, human T cells are also generated in immunodeficient mice without co-transplantation of human thymus or in in vitro hybrid human–mouse fetal thymus organ culture. This shows that xenogeneic mouse thymus tissue supports human T cell differentiation. Finally, human T cells are generated on co-culture with murine stromal cells that express the Delta-like1 ligand for the Notch receptor. How these different environments influence the human T cell repertoire is reviewed and discussed.
Literature
1.
go back to reference Touraine JL, Roncarolo MG, Royo C et al (1987) Fetal tissue transplantation, bone marrow transplantation and prospective gene therapy in severe immunodeficiencies and enzyme deficiencies. Thymus 10:75–87PubMed Touraine JL, Roncarolo MG, Royo C et al (1987) Fetal tissue transplantation, bone marrow transplantation and prospective gene therapy in severe immunodeficiencies and enzyme deficiencies. Thymus 10:75–87PubMed
2.
go back to reference Hong R, Schulte-Wissermann H, Horowitz SD (1979) Thymic transplantation for relief of immunodeficiency diseases. Surg Clin North Am 59:299–312PubMed Hong R, Schulte-Wissermann H, Horowitz SD (1979) Thymic transplantation for relief of immunodeficiency diseases. Surg Clin North Am 59:299–312PubMed
4.
go back to reference Editorial (2008) Assessing the status of human immunology. Nat Immunol 9:569CrossRef Editorial (2008) Assessing the status of human immunology. Nat Immunol 9:569CrossRef
8.
go back to reference Plum J, De Smedt M, Defresne MP et al (1994) Human CD34+ fetal liver stem cells differentiate to T cells in a mouse thymic microenvironment. Blood 84:1587–1593PubMed Plum J, De Smedt M, Defresne MP et al (1994) Human CD34+ fetal liver stem cells differentiate to T cells in a mouse thymic microenvironment. Blood 84:1587–1593PubMed
11.
go back to reference Lanier LL, Allison JP, Phillips JH (1986) Correlation of cell surface antigen expression on human thymocytes by multi-color flow cytometric analysis: implications for differentiation. J Immunol 137:2501–2507PubMed Lanier LL, Allison JP, Phillips JH (1986) Correlation of cell surface antigen expression on human thymocytes by multi-color flow cytometric analysis: implications for differentiation. J Immunol 137:2501–2507PubMed
12.
go back to reference Dik WA, Pike-Overzet K, Weerkamp F et al (2005) New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med 201:1715–1723. doi:10.1084/jem.20042524 PubMedCrossRef Dik WA, Pike-Overzet K, Weerkamp F et al (2005) New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med 201:1715–1723. doi:10.​1084/​jem.​20042524 PubMedCrossRef
13.
go back to reference Vanhecke D, Leclercq G, Plum J et al (1995) Characterization of distinct stages during the differentiation of human CD69+CD3+ thymocytes and identification of thymic emigrants. J Immunol 155:1862–1872PubMed Vanhecke D, Leclercq G, Plum J et al (1995) Characterization of distinct stages during the differentiation of human CD69+CD3+ thymocytes and identification of thymic emigrants. J Immunol 155:1862–1872PubMed
14.
go back to reference Vanhecke D, Verhasselt B, De Smedt M et al (1997) MHC class II molecules are required for initiation of positive selection but not during terminal differentiation of human CD4 single positive thymocytes. J Immunol 158:3730–3737PubMed Vanhecke D, Verhasselt B, De Smedt M et al (1997) MHC class II molecules are required for initiation of positive selection but not during terminal differentiation of human CD4 single positive thymocytes. J Immunol 158:3730–3737PubMed
15.
go back to reference Vanhecke D, Verhasselt B, De Smedt M et al (1997) Human thymocytes become lineage committed at an early postselection CD69+ stage, before the onset of functional maturation. J Immunol 159:5973–5983PubMed Vanhecke D, Verhasselt B, De Smedt M et al (1997) Human thymocytes become lineage committed at an early postselection CD69+ stage, before the onset of functional maturation. J Immunol 159:5973–5983PubMed
18.
go back to reference Sandberg JK, Franksson L, Sundback J et al (2000) T cell tolerance based on avidity thresholds rather than complete deletion allows maintenance of maximal repertoire diversity. J Immunol 165:25–33PubMed Sandberg JK, Franksson L, Sundback J et al (2000) T cell tolerance based on avidity thresholds rather than complete deletion allows maintenance of maximal repertoire diversity. J Immunol 165:25–33PubMed
21.
go back to reference Hemmer B, Pinilla C, Gran B et al (2000) Contribution of individual amino acids within MHC molecule or antigenic peptide to TCR ligand potency. J Immunol 164:861–871PubMed Hemmer B, Pinilla C, Gran B et al (2000) Contribution of individual amino acids within MHC molecule or antigenic peptide to TCR ligand potency. J Immunol 164:861–871PubMed
24.
go back to reference Romero P, Dunbar PR, Valmori D et al (1998) Ex vivo staining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor-specific cytolytic T lymphocytes. J Exp Med 188:1641–1650. doi:10.1084/jem.188.9.1641 PubMedCrossRef Romero P, Dunbar PR, Valmori D et al (1998) Ex vivo staining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor-specific cytolytic T lymphocytes. J Exp Med 188:1641–1650. doi:10.​1084/​jem.​188.​9.​1641 PubMedCrossRef
26.
27.
go back to reference Romero P, Gervois N, Schneider J et al (1997) Cytolytic T lymphocyte recognition of the immunodominant HLA-A*0201-restricted Melan-A/MART-1 antigenic peptide in melanoma. J Immunol 159:2366–2374PubMed Romero P, Gervois N, Schneider J et al (1997) Cytolytic T lymphocyte recognition of the immunodominant HLA-A*0201-restricted Melan-A/MART-1 antigenic peptide in melanoma. J Immunol 159:2366–2374PubMed
28.
go back to reference Zippelius A, Bioley G, Le Gal FA et al (2004) Human thymus exports naive CD8 T cells that can home to nonlymphoid tissues. J Immunol 172:2773–2777PubMed Zippelius A, Bioley G, Le Gal FA et al (2004) Human thymus exports naive CD8 T cells that can home to nonlymphoid tissues. J Immunol 172:2773–2777PubMed
29.
go back to reference Lima M, Almeida J, Santos AH et al (2001) Immunophenotypic analysis of the TCR-Vbeta repertoire in 98 persistent expansions of CD3(+)/TCR-alphabeta(+) large granular lymphocytes: utility in assessing clonality and insights into the pathogenesis of the disease. Am J Pathol 159:1861–1868PubMed Lima M, Almeida J, Santos AH et al (2001) Immunophenotypic analysis of the TCR-Vbeta repertoire in 98 persistent expansions of CD3(+)/TCR-alphabeta(+) large granular lymphocytes: utility in assessing clonality and insights into the pathogenesis of the disease. Am J Pathol 159:1861–1868PubMed
31.
go back to reference De Rossi A, Calabro ML, Panozzo M et al (1990) In vitro studies of HIV-1 infection in thymic lymphocytes: a putative role of the thymus in AIDS pathogenesis. AIDS Res Hum Retroviruses 6:287–298PubMed De Rossi A, Calabro ML, Panozzo M et al (1990) In vitro studies of HIV-1 infection in thymic lymphocytes: a putative role of the thymus in AIDS pathogenesis. AIDS Res Hum Retroviruses 6:287–298PubMed
37.
40.
go back to reference Kirberg J, Bosco N, Deloulme JC et al (2008) Peripheral T lymphocytes recirculating back into the thymus can mediate thymocyte positive selection. J Immunol 181:1207–1214PubMed Kirberg J, Bosco N, Deloulme JC et al (2008) Peripheral T lymphocytes recirculating back into the thymus can mediate thymocyte positive selection. J Immunol 181:1207–1214PubMed
43.
go back to reference Van Laethem F, Sarafova SD, Park JH et al (2007) Deletion of CD4 and CD8 coreceptors permits generation of alphabetaT cells that recognize antigens independently of the MHC. Immunity 27:735–750PubMedCrossRef Van Laethem F, Sarafova SD, Park JH et al (2007) Deletion of CD4 and CD8 coreceptors permits generation of alphabetaT cells that recognize antigens independently of the MHC. Immunity 27:735–750PubMedCrossRef
44.
go back to reference Moots RJ, Samberg NL, Pazmany L et al (1992) A cross-species functional interaction between the murine major histocompatibility complex class I alpha 3 domain and human CD8 revealed by peptide-specific cytotoxic T lymphocytes. Eur J Immunol 22:1643–1646. doi:10.1002/eji.1830220645 PubMedCrossRef Moots RJ, Samberg NL, Pazmany L et al (1992) A cross-species functional interaction between the murine major histocompatibility complex class I alpha 3 domain and human CD8 revealed by peptide-specific cytotoxic T lymphocytes. Eur J Immunol 22:1643–1646. doi:10.​1002/​eji.​1830220645 PubMedCrossRef
45.
go back to reference Barzaga-Gilbert E, Grass D, Lawrance SK et al (1992) Species specificity and augmentation of responses to class II major histocompatibility complex molecules in human CD4 transgenic mice. J Exp Med 175:1707–1715. doi:10.1084/jem.175.6.1707 PubMedCrossRef Barzaga-Gilbert E, Grass D, Lawrance SK et al (1992) Species specificity and augmentation of responses to class II major histocompatibility complex molecules in human CD4 transgenic mice. J Exp Med 175:1707–1715. doi:10.​1084/​jem.​175.​6.​1707 PubMedCrossRef
51.
go back to reference Li W, Sofi MH, Yeh N et al (2007) Thymic selection pathway regulates the effector function of CD4 T cells. J Exp Med 204:2145–2157PubMed Li W, Sofi MH, Yeh N et al (2007) Thymic selection pathway regulates the effector function of CD4 T cells. J Exp Med 204:2145–2157PubMed
53.
go back to reference Legrand N, Weijer K, Spits H (2006) Experimental models to study development and function of the human immune system in vivo. J Immunol 176:2053–2058PubMed Legrand N, Weijer K, Spits H (2006) Experimental models to study development and function of the human immune system in vivo. J Immunol 176:2053–2058PubMed
61.
go back to reference De Smedt M, Reynvoet K, Kerre T et al (2002) Active form of Notch imposes T cell fate in human progenitor cells. J Immunol 169:3021–3029PubMed De Smedt M, Reynvoet K, Kerre T et al (2002) Active form of Notch imposes T cell fate in human progenitor cells. J Immunol 169:3021–3029PubMed
62.
go back to reference De Smedt M, Hoebeke I, Reynvoet K et al (2005) Different thresholds of Notch signaling bias human precursor cells toward B-, NK-, monocytic/dendritic-, or T-cell lineage in thymus microenvironment. Blood 106:3498–3506. doi:10.1182/blood-2005-02-0496 PubMedCrossRef De Smedt M, Hoebeke I, Reynvoet K et al (2005) Different thresholds of Notch signaling bias human precursor cells toward B-, NK-, monocytic/dendritic-, or T-cell lineage in thymus microenvironment. Blood 106:3498–3506. doi:10.​1182/​blood-2005-02-0496 PubMedCrossRef
65.
go back to reference van Lent AU, Nagasawa M, van Loenen MM et al (2007) Functional human antigen-specific T cells produced in vitro using retroviral T cell receptor transfer into hematopoietic progenitors. J Immunol 179:4959–4968PubMed van Lent AU, Nagasawa M, van Loenen MM et al (2007) Functional human antigen-specific T cells produced in vitro using retroviral T cell receptor transfer into hematopoietic progenitors. J Immunol 179:4959–4968PubMed
67.
go back to reference Offner F, Van Beneden K, Debacker V et al (1997) Phenotypic and functional maturation of TCR gammadelta cells in the human thymus. J Immunol 158:4634–4641PubMed Offner F, Van Beneden K, Debacker V et al (1997) Phenotypic and functional maturation of TCR gammadelta cells in the human thymus. J Immunol 158:4634–4641PubMed
70.
go back to reference Boyden LM, Lewis JM, Barbee SD et al (2008) Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gammadelta T cells. Nat Genet 40:656–662. doi:10.1038/ng.108 PubMedCrossRef Boyden LM, Lewis JM, Barbee SD et al (2008) Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gammadelta T cells. Nat Genet 40:656–662. doi:10.​1038/​ng.​108 PubMedCrossRef
Metadata
Title
Human intrathymic development: a selective approach
Authors
J. Plum
M. De Smedt
G. Leclercq
T. Taghon
T. Kerre
B. Vandekerckhove
Publication date
01-12-2008
Publisher
Springer-Verlag
Published in
Seminars in Immunopathology / Issue 4/2008
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-008-0135-2

Other articles of this Issue 4/2008

Seminars in Immunopathology 4/2008 Go to the issue