Skip to main content
Top
Published in: Strahlentherapie und Onkologie 4/2021

01-04-2021 | Hepatocellular Carcinoma | Original Article

The role of a knowledge based dose–volume histogram predictive model in the optimisation of intensity-modulated proton plans for hepatocellular carcinoma patients

Training and validation of a novel commercial system

Authors: Luca Cozzi, Reynald Vanderstraeten, Antonella Fogliata, Feng-Ling Chang, Po-Ming Wang

Published in: Strahlentherapie und Onkologie | Issue 4/2021

Login to get access

Abstract

Purpose

To investigate the performance of a knowledge-based RapidPlan, for optimisation of intensity-modulated proton therapy (IMPT) plans applied to hepatocellular cancer (HCC) patients.

Methods

A cohort of 65 patients was retrospectively selected: 50 were used to “train” the model, while the remaining 15 provided independent validation. The performance of the RapidPlan model was benchmarked against manual optimisation and was also compared to volumetric modulated arc therapy (RapidArc) photon plans. A subanalysis appraised the performance of the RapidPlan model applied to patients with lesions ≤300 cm3 or larger. Quantitative assessment was based on several metrics derived from the constraints of the NRG-GI003 clinical trial.

Results

There was an equivalence between manual plans and RapidPlan-optimised IMPT plans, which outperformed the RapidArc plans. The planning dose–volume objectives were met on average for all structures except for D0.5cm3 ≤30 Gy in the bowels. Limiting the results to the class-solution proton plans (all values in Gy), the data for manual plans vs RapidPlan-based IMPT plans, respectively, showed the following: D99% to the target of 47.5 ± 1.4 vs 47.2 ± 1.2; for organs at risk, the mean dose to the healthy liver was 6.7 ± 3.6 vs 6.7 ± 3.7; the mean dose to the kidneys was 0.2 ± 0.5 vs 0.1 ± 0.2; D0.5cm3 for the bowels was 33.4 ± 16.4 vs 30.2 ± 16.0; for the stomach was 17.9 ± 19.9 vs 14.9 ± 18.8; for the oesophagus was 17.9 ± 15.1 vs 14.9 ± 13.9; for the spinal cord was 0.5 ± 1.6 vs 0.2 ± 0.7. The model performed similarly for cases with small or large lesions.

Conclusion

A knowledge-based RapidPlan model was trained and validated for IMPT. The results demonstrate that RapidPlan can be trained adequately for IMPT in HCC. The quality of the RapidPlan-based plans is at least equivalent compared to what is achievable with manual planning. RapidPlan also confirmed the potential to optimise the quality of the proton therapy results, thus reducing the impact of operator planning skills on patient results.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre L, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre L, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424
2.
go back to reference European Association for the Study of the Liver, European Organisation for Research and Treatment of Cancer (2012) EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 56:908–943CrossRef European Association for the Study of the Liver, European Organisation for Research and Treatment of Cancer (2012) EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 56:908–943CrossRef
3.
go back to reference Dawson LA, Normolle D, Balter JM, McGinn CJ, Lawrence TS, Ten Haken RK (2002) Analysis of radiation induced liver disease using the Lyman NTCP model. Int J Radiat Oncol Biol Phys 53:810–821CrossRef Dawson LA, Normolle D, Balter JM, McGinn CJ, Lawrence TS, Ten Haken RK (2002) Analysis of radiation induced liver disease using the Lyman NTCP model. Int J Radiat Oncol Biol Phys 53:810–821CrossRef
4.
go back to reference Wang PM, Hsu WC, Chung NN, Chang FL, Fogliata A, Cozzi L (2013) Radiotherapy with volumetric modulated arc therapy for hepatocellular carcinoma patients ineligible for surgery or ablative treatments. Strahlenther Onkol 189:301–307CrossRef Wang PM, Hsu WC, Chung NN, Chang FL, Fogliata A, Cozzi L (2013) Radiotherapy with volumetric modulated arc therapy for hepatocellular carcinoma patients ineligible for surgery or ablative treatments. Strahlenther Onkol 189:301–307CrossRef
5.
go back to reference Wang PM, Hsu WC, Chung NN, Chang FL, Fogliata A, Cozzi L (2012) Radiation treatment with volumetric modulated arc therapy of hepatocellular carcinoma patients. Early clinical outcome and toxicity profile from a retrospective analysis of 138 patients. Radiat Oncol 7:207CrossRef Wang PM, Hsu WC, Chung NN, Chang FL, Fogliata A, Cozzi L (2012) Radiation treatment with volumetric modulated arc therapy of hepatocellular carcinoma patients. Early clinical outcome and toxicity profile from a retrospective analysis of 138 patients. Radiat Oncol 7:207CrossRef
6.
go back to reference Yeung RH, Chapman TR, Bowen SR, Apisarnthanarax S (2017) Proton beam therapy for hepatocellular carcinoma. Expert Rev Anticancer Ther 17:911–924CrossRef Yeung RH, Chapman TR, Bowen SR, Apisarnthanarax S (2017) Proton beam therapy for hepatocellular carcinoma. Expert Rev Anticancer Ther 17:911–924CrossRef
7.
go back to reference Chuong MD, Kaiser A, Khan F, Parikh P, Ben-Josef E, Crane C et al (2019) Consensus report from the miami liver proton therapy conference. Front Oncol 9:457CrossRef Chuong MD, Kaiser A, Khan F, Parikh P, Ben-Josef E, Crane C et al (2019) Consensus report from the miami liver proton therapy conference. Front Oncol 9:457CrossRef
8.
go back to reference Sanford NN, Pursley J, Noe B, Yeap BY, Goyal L, Clark JW et al (2019) Protons versus photons for unresectable hepatocellular carcinoma: liver decompensation and overall survival. Int J Radiat Oncol Biol Phys 105:64–72CrossRef Sanford NN, Pursley J, Noe B, Yeap BY, Goyal L, Clark JW et al (2019) Protons versus photons for unresectable hepatocellular carcinoma: liver decompensation and overall survival. Int J Radiat Oncol Biol Phys 105:64–72CrossRef
9.
go back to reference Kim TH, Park JW, Kim BH, Kim H, Moon SH, Kim SS et al (2019) Does risk-adapted proton beam therapy have a role as a complementary or alternative therapeutic option for hepatocellular carcinoma? Cancers 11:2 Kim TH, Park JW, Kim BH, Kim H, Moon SH, Kim SS et al (2019) Does risk-adapted proton beam therapy have a role as a complementary or alternative therapeutic option for hepatocellular carcinoma? Cancers 11:2
10.
go back to reference Cozzi L, Comito T, Fogliata A, Franzese C, Tomatis S, Scorsetti M (2018) Critical appraisal of the potential role of intensity modulated proton therapy in the hypofractionated treatment of advanced hepatocellular carcinoma. PloS One 13:e0201992CrossRef Cozzi L, Comito T, Fogliata A, Franzese C, Tomatis S, Scorsetti M (2018) Critical appraisal of the potential role of intensity modulated proton therapy in the hypofractionated treatment of advanced hepatocellular carcinoma. PloS One 13:e0201992CrossRef
11.
go back to reference Chanyavanich V, Das S, Lee W, Lo JY (2011) Knowledge-based IMRT treatment planning for prostate cancer. Med Phys 38:2515–2522CrossRef Chanyavanich V, Das S, Lee W, Lo JY (2011) Knowledge-based IMRT treatment planning for prostate cancer. Med Phys 38:2515–2522CrossRef
12.
go back to reference Zhu X, Ge Y, Li T, Thongphiew D, Yin FF, Wu Q (2011) A planning quality evaluation tool for prostate adaptive IMRT based on machine learning. Med Phys 38:719–726CrossRef Zhu X, Ge Y, Li T, Thongphiew D, Yin FF, Wu Q (2011) A planning quality evaluation tool for prostate adaptive IMRT based on machine learning. Med Phys 38:719–726CrossRef
13.
go back to reference Good D, Lo J, Lee R, Wu QJ, Yin FF, Das SK (2013) A knowledge-based approach to improving and homogenising intensity modulated radiation therapy planning quality among treatment centers: an example application to prostate cancer planning. Int J Radiat Oncol Biol Phys 87:176–181CrossRef Good D, Lo J, Lee R, Wu QJ, Yin FF, Das SK (2013) A knowledge-based approach to improving and homogenising intensity modulated radiation therapy planning quality among treatment centers: an example application to prostate cancer planning. Int J Radiat Oncol Biol Phys 87:176–181CrossRef
14.
go back to reference Moore KL, Brame RS, Low DA, Mutic S (2011) Experience-based quality control of clinical intensity modulated radiotherapy planning. Int J Radiat Oncol Biol Phys 81:545–551CrossRef Moore KL, Brame RS, Low DA, Mutic S (2011) Experience-based quality control of clinical intensity modulated radiotherapy planning. Int J Radiat Oncol Biol Phys 81:545–551CrossRef
15.
go back to reference Appenzoller LM, Michalski JM, Thorstad WL, Mutic S, Moore KL (2012) Predicting dose-volume histograms for organs-at risk in IMRT planning. Med Phys 39:7446–7461CrossRef Appenzoller LM, Michalski JM, Thorstad WL, Mutic S, Moore KL (2012) Predicting dose-volume histograms for organs-at risk in IMRT planning. Med Phys 39:7446–7461CrossRef
16.
go back to reference Ge Y, Wu QJ (2019) Knowledge-based planning for intensity-modulated radiation therapy: a review of data-driven approaches. Med Phys 46:2760–2775CrossRef Ge Y, Wu QJ (2019) Knowledge-based planning for intensity-modulated radiation therapy: a review of data-driven approaches. Med Phys 46:2760–2775CrossRef
17.
go back to reference Fogliata A, Wang PM, Belosi F, Clivio A, Nicolini G, Vanetti E et al (2014) Assessment of a model based optimization engine for volumetric modulated arc therapy for patients with advanced hepatocellular cancer. Radiat Oncol 9:236CrossRef Fogliata A, Wang PM, Belosi F, Clivio A, Nicolini G, Vanetti E et al (2014) Assessment of a model based optimization engine for volumetric modulated arc therapy for patients with advanced hepatocellular cancer. Radiat Oncol 9:236CrossRef
18.
go back to reference Yu G, Li Y, Feng Z, Tao C, Yu Z, Li B et al (2018) Knowledge-based IMRT planning for individual liver cancer patients using a novel specific model. Radiat Oncol 13:52CrossRef Yu G, Li Y, Feng Z, Tao C, Yu Z, Li B et al (2018) Knowledge-based IMRT planning for individual liver cancer patients using a novel specific model. Radiat Oncol 13:52CrossRef
19.
go back to reference Delaney AR, Dahele M, Tol JP, Kuijper IT, Slotman BJ, Verbakel W (2017) Using a knowledge-based planning solution to select patients for proton therapy. Radiother Oncol 124:263–270CrossRef Delaney AR, Dahele M, Tol JP, Kuijper IT, Slotman BJ, Verbakel W (2017) Using a knowledge-based planning solution to select patients for proton therapy. Radiother Oncol 124:263–270CrossRef
20.
go back to reference Delaney AR, Verbakel WF, Lindberg J, Koponen TK, Slotman BJ, Dahele M (2018) Evaluation of an automated proton planning solution. Cureus 10:e3696PubMedPubMedCentral Delaney AR, Verbakel WF, Lindberg J, Koponen TK, Slotman BJ, Dahele M (2018) Evaluation of an automated proton planning solution. Cureus 10:e3696PubMedPubMedCentral
21.
go back to reference Vassiliev ON, Wareing TA, McGhee J, Failla G, Salehpour MR, Mourtada F (2010) Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams. Phys Med Biol 55:581–598CrossRef Vassiliev ON, Wareing TA, McGhee J, Failla G, Salehpour MR, Mourtada F (2010) Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams. Phys Med Biol 55:581–598CrossRef
22.
go back to reference Nocedal J, Wright SJ (2006) Numerical optimisation, 2nd edn.. ISBN 978-0-387-30303‑1 Nocedal J, Wright SJ (2006) Numerical optimisation, 2nd edn.. ISBN 978-0-387-30303‑1
23.
go back to reference Langendijk JA, Boersma LJ, Rasch CRN, van Vulpen M, Reitsma JB, van der Schaaf A et al (2018) Clinical trial strategies to compare protons with photons. Semin Radiat Oncol 28:79–87CrossRef Langendijk JA, Boersma LJ, Rasch CRN, van Vulpen M, Reitsma JB, van der Schaaf A et al (2018) Clinical trial strategies to compare protons with photons. Semin Radiat Oncol 28:79–87CrossRef
24.
go back to reference Langendijk JA, Lambin P, De Ruysscher D, Widder J, Bos M, Verhaij M (2013) Selection of patients for radiotherapy with protons aiming at reduction of side effects: the model-based approach. Radiother Oncol 107:267–273CrossRef Langendijk JA, Lambin P, De Ruysscher D, Widder J, Bos M, Verhaij M (2013) Selection of patients for radiotherapy with protons aiming at reduction of side effects: the model-based approach. Radiother Oncol 107:267–273CrossRef
25.
go back to reference Rwigema JM, Langendijk JA, van der Laan HP, Lukens JN, Swisher-McClure SD, Lin A (2019) A model-based approach to predict short-term toxicity benefits with proton therapy for oropharyngeal cancer. Int J Radiat Oncol Biol Phys 104:553–562CrossRef Rwigema JM, Langendijk JA, van der Laan HP, Lukens JN, Swisher-McClure SD, Lin A (2019) A model-based approach to predict short-term toxicity benefits with proton therapy for oropharyngeal cancer. Int J Radiat Oncol Biol Phys 104:553–562CrossRef
26.
go back to reference Blanchard P, Wong A, Gunn GB, Garden AS, Mohamed ASR, Rosenthal DI et al (2016) Toward a model-based patient selection strategy for proton therapy: external validation of photon-derived normal tissue complication probability models in a head and neck proton therapy cohort. Radiother Oncol 121:381–386CrossRef Blanchard P, Wong A, Gunn GB, Garden AS, Mohamed ASR, Rosenthal DI et al (2016) Toward a model-based patient selection strategy for proton therapy: external validation of photon-derived normal tissue complication probability models in a head and neck proton therapy cohort. Radiother Oncol 121:381–386CrossRef
27.
go back to reference Cheng Q, Roelofs E, Ramaekers BL, Eekers D, van Soest J, Lustberg T et al (2016) Development and evaluation of an online three-level proton vs photon decision support prototype for head and neck cancer—comparison of dose, toxicity and cost-effectiveness. Radiother Oncol 118:281–285CrossRef Cheng Q, Roelofs E, Ramaekers BL, Eekers D, van Soest J, Lustberg T et al (2016) Development and evaluation of an online three-level proton vs photon decision support prototype for head and neck cancer—comparison of dose, toxicity and cost-effectiveness. Radiother Oncol 118:281–285CrossRef
28.
go back to reference Prayongrat A, Kobashi K, Ito YM, Katoh N, Tamura M, Dekura Y et al (2019) The normal tissue complication probability model-based approach considering uncertainties for the selective use of radiation modality in primary liver cancer patients. Radiother Oncol 135:100–106CrossRef Prayongrat A, Kobashi K, Ito YM, Katoh N, Tamura M, Dekura Y et al (2019) The normal tissue complication probability model-based approach considering uncertainties for the selective use of radiation modality in primary liver cancer patients. Radiother Oncol 135:100–106CrossRef
29.
go back to reference International Commission on Radiation Units & Measurements (2010) Prescribing recording and reporting photon beam intensity modulated radiation therapy (IMRT) (ICRU Report 83) International Commission on Radiation Units & Measurements (2010) Prescribing recording and reporting photon beam intensity modulated radiation therapy (IMRT) (ICRU Report 83)
30.
go back to reference Mizuhata M, Takamatsu S, Shibata S, Bou S, Sato Y, Kawamura M et al (2018) Respiratory-gated proton beam therapy for hepatocellular carcinoma adjacent to the gastrointestinal tract without fiducial markers. Cancers 10(2):58CrossRef Mizuhata M, Takamatsu S, Shibata S, Bou S, Sato Y, Kawamura M et al (2018) Respiratory-gated proton beam therapy for hepatocellular carcinoma adjacent to the gastrointestinal tract without fiducial markers. Cancers 10(2):58CrossRef
31.
go back to reference Zhang Y, Huth I, Weber DC, Lomax AJ (2019) Dosimetric uncertainties as a result of temporal resolution in 4D dose calculations for PBS proton therapy. Phys Med Biol 64:125005CrossRef Zhang Y, Huth I, Weber DC, Lomax AJ (2019) Dosimetric uncertainties as a result of temporal resolution in 4D dose calculations for PBS proton therapy. Phys Med Biol 64:125005CrossRef
32.
go back to reference Zhang Y, Huth I, Weber DC, Lomax AJ (2018) A statistical comparison of motion mitigation performances and robustness of various pencil beam scanned proton systems for liver tumour treatments. Radiother Oncol 128:182–188CrossRef Zhang Y, Huth I, Weber DC, Lomax AJ (2018) A statistical comparison of motion mitigation performances and robustness of various pencil beam scanned proton systems for liver tumour treatments. Radiother Oncol 128:182–188CrossRef
33.
go back to reference Bernatowicz K, Zhang Y, Perrin R, Weber DC, Lomax AJ (2017) Advanced treatment planning using direct 4D optimisation for pencil-beam scanned particle therapy. Phys Med Biol 62:6595–6609CrossRef Bernatowicz K, Zhang Y, Perrin R, Weber DC, Lomax AJ (2017) Advanced treatment planning using direct 4D optimisation for pencil-beam scanned particle therapy. Phys Med Biol 62:6595–6609CrossRef
34.
go back to reference Zhang Y, Huth I, Wegner M, Weber DC, Lomax AJ (2016) An evaluation of rescanning technique for liver tumour treatments using a commercial PBS proton therapy system. Radiother Oncol 121:281–287CrossRef Zhang Y, Huth I, Wegner M, Weber DC, Lomax AJ (2016) An evaluation of rescanning technique for liver tumour treatments using a commercial PBS proton therapy system. Radiother Oncol 121:281–287CrossRef
35.
go back to reference Zhang Y, Knopf AC, Weber DC, Lomax AJ (2015) Improving 4D plan quality for PBS-based liver tumour treatments by combining online image guided beam gating with rescanning. Phys Med Biol 60:8141–8159CrossRef Zhang Y, Knopf AC, Weber DC, Lomax AJ (2015) Improving 4D plan quality for PBS-based liver tumour treatments by combining online image guided beam gating with rescanning. Phys Med Biol 60:8141–8159CrossRef
36.
go back to reference Bernatowicz K, Lomax AJ, Knopf A (2013) Comparative study of layered and volumetric rescanning for different scanning speeds of proton beam in liver patients. Phys Med Biol 58:7905–7920CrossRef Bernatowicz K, Lomax AJ, Knopf A (2013) Comparative study of layered and volumetric rescanning for different scanning speeds of proton beam in liver patients. Phys Med Biol 58:7905–7920CrossRef
37.
go back to reference Zhang Y, Boye D, Tanner C, Lomax AJ, Knopf A (2012) Respiratory liver motion estimation and its effect on scanned proton beam therapy. Phys Med Biol 57:1779–1795CrossRef Zhang Y, Boye D, Tanner C, Lomax AJ, Knopf A (2012) Respiratory liver motion estimation and its effect on scanned proton beam therapy. Phys Med Biol 57:1779–1795CrossRef
38.
go back to reference Poulsen PR, Eley J, Langner U, Simone CB, Langen K (2018) Efficient interplay effect mitigation for proton pencil beam scanning by spot-adapted layered repainting evenly spread out over the full breathing cycle. Int J Radiat Oncol Biol Phys 100:226–234CrossRef Poulsen PR, Eley J, Langner U, Simone CB, Langen K (2018) Efficient interplay effect mitigation for proton pencil beam scanning by spot-adapted layered repainting evenly spread out over the full breathing cycle. Int J Radiat Oncol Biol Phys 100:226–234CrossRef
39.
go back to reference Pfeiler T, Ahmad KD, Ayadi M, Bäumer C, Blanck O, Chan M et al (2018) Motion effects in proton treatments of hepatocellular carcinoma-4D robustly optimised pencil beam scanning plans versus double scattering plans. Phys Med Biol 63:235006CrossRef Pfeiler T, Ahmad KD, Ayadi M, Bäumer C, Blanck O, Chan M et al (2018) Motion effects in proton treatments of hepatocellular carcinoma-4D robustly optimised pencil beam scanning plans versus double scattering plans. Phys Med Biol 63:235006CrossRef
Metadata
Title
The role of a knowledge based dose–volume histogram predictive model in the optimisation of intensity-modulated proton plans for hepatocellular carcinoma patients
Training and validation of a novel commercial system
Authors
Luca Cozzi
Reynald Vanderstraeten
Antonella Fogliata
Feng-Ling Chang
Po-Ming Wang
Publication date
01-04-2021
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 4/2021
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-020-01664-2

Other articles of this Issue 4/2021

Strahlentherapie und Onkologie 4/2021 Go to the issue