Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Hepatocellular Carcinoma | Research

SAMD13 serves as a useful prognostic biomarker for hepatocellular carcinoma

Authors: Wonbeak Yoo, Seokho Kim, KyungHee Noh

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Hepatocellular carcinoma (HCC) is the most common form of liver cancer and the 5-year relative overall survival (OS) rate is less than 20%. Since there are no specific symptoms, most patients with HCC are diagnosed in an advanced stage with poor prognosis. Therefore, identifying novel prognostic biomarkers to improve the survival of patients with HCC is urgently needed. In the present study, we attempted to identify SAMD13 (Sterile Alpha Motif Domain-Containing Protein 13) as a novel biomarker associated with the prognosis of HCC using various bioinformatics tools. SAMD13 was found to be highly expressed pan-cancer; however, the SAMD13 expression was significantly correlated with the worst prognosis in HCC. Clinicopathological analysis revealed that SAMD13 upregulation was significantly associated with advanced HCC stage and high-grade tumor type. Simultaneously, high SAMD13 expression resulted in association with various immune markers in the immune cell subsets by TIMER databases and efficacy of immunotherapy. Methylation analysis showed SAMD13 was remarkably associated with prognosis. Furthermore, a six-hub gene signature associated with poor prognosis was correlated with the cell cycle, transcription, and epigenetic regulation and this analysis may support the connection between SAMD13 expression and drug-resistance. Our study illustrated the characteristics of SAMD13 role in patients with HCC using various bioinformatics tools and highlights its potential role as a therapeutic target and promising biomarker for prognosis in HCC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRefPubMed Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRefPubMed
3.
go back to reference Liu PH, Hsu CY, Hsia CY, et al. Surgical resection versus radiofrequency ablation for single hepatocellular carcinoma </= 2 cm in a propensity score model. Ann Surg. 2016;263(3):538–45.PubMedCrossRef Liu PH, Hsu CY, Hsia CY, et al. Surgical resection versus radiofrequency ablation for single hepatocellular carcinoma </= 2 cm in a propensity score model. Ann Surg. 2016;263(3):538–45.PubMedCrossRef
4.
go back to reference Ponziani FR, Bhoori S, Castelli C, et al. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology. 2019;69(1):107–20.PubMedCrossRef Ponziani FR, Bhoori S, Castelli C, et al. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology. 2019;69(1):107–20.PubMedCrossRef
6.
go back to reference Peterson AJ, Kyba M, Bornemann D, et al. A domain shared by the Polycomb group proteins Scm and ph mediates heterotypic and homotypic interactions. Mol Cell Biol. 1997;17(11):6683–92.PubMedPubMedCentralCrossRef Peterson AJ, Kyba M, Bornemann D, et al. A domain shared by the Polycomb group proteins Scm and ph mediates heterotypic and homotypic interactions. Mol Cell Biol. 1997;17(11):6683–92.PubMedPubMedCentralCrossRef
7.
8.
go back to reference Oberstrass FC, Lee A, Stefl R, et al. Shape-specific recognition in the structure of the Vts1p SAM domain with RNA. Nat Struct Mol Biol. 2006;13(2):160–7.PubMedCrossRef Oberstrass FC, Lee A, Stefl R, et al. Shape-specific recognition in the structure of the Vts1p SAM domain with RNA. Nat Struct Mol Biol. 2006;13(2):160–7.PubMedCrossRef
9.
go back to reference Aviv T, Lin Z, Lau S, et al. The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators. Nat Struct Biol. 2003;10(8):614–21.PubMedCrossRef Aviv T, Lin Z, Lau S, et al. The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators. Nat Struct Biol. 2003;10(8):614–21.PubMedCrossRef
10.
go back to reference Li H, Fung KL, Jin DY, et al. Solution structures, dynamics, and lipid-binding of the sterile alpha-motif domain of the deleted in liver cancer 2. Proteins. 2007;67(4):1154–66.PubMedCrossRef Li H, Fung KL, Jin DY, et al. Solution structures, dynamics, and lipid-binding of the sterile alpha-motif domain of the deleted in liver cancer 2. Proteins. 2007;67(4):1154–66.PubMedCrossRef
12.
13.
go back to reference Kanomata N, Kurebayashi J, Koike Y, Yamaguchi R, Moriya T. CD1d- and PJA2-related immune microenvironment differs between invasive breast carcinomas with and without a micropapillary feature. BMC Cancer. 2019;19(1):76.PubMedPubMedCentralCrossRef Kanomata N, Kurebayashi J, Koike Y, Yamaguchi R, Moriya T. CD1d- and PJA2-related immune microenvironment differs between invasive breast carcinomas with and without a micropapillary feature. BMC Cancer. 2019;19(1):76.PubMedPubMedCentralCrossRef
14.
go back to reference Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19(8):649–58.PubMedPubMedCentralCrossRef Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19(8):649–58.PubMedPubMedCentralCrossRef
15.
go back to reference Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98–102.PubMedPubMedCentralCrossRef Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98–102.PubMedPubMedCentralCrossRef
16.
go back to reference Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.PubMedCrossRef Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.PubMedCrossRef
17.
go back to reference Gyorffy B, Lanczky A, Eklund AC, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123(3):725–31.PubMedCrossRef Gyorffy B, Lanczky A, Eklund AC, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123(3):725–31.PubMedCrossRef
18.
go back to reference Ma L, Wang L, Khatib SA, et al. Single-cell atlas of tumor cell evolution in response to therapy in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Hepatol. 2021;75(6):1397–408.PubMedPubMedCentralCrossRef Ma L, Wang L, Khatib SA, et al. Single-cell atlas of tumor cell evolution in response to therapy in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Hepatol. 2021;75(6):1397–408.PubMedPubMedCentralCrossRef
19.
21.
go back to reference Modhukur V, Iljasenko T, Metsalu T, et al. MethSurv: a web tool to perform multivariable survival analysis using DNA methylation data. Epigenomics. 2018;10(3):277–88.PubMedCrossRef Modhukur V, Iljasenko T, Metsalu T, et al. MethSurv: a web tool to perform multivariable survival analysis using DNA methylation data. Epigenomics. 2018;10(3):277–88.PubMedCrossRef
22.
go back to reference Li Y, Ge D, Lu C. The SMART App: an interactive web application for comprehensive DNA methylation analysis and visualization. Epigenetics Chromatin. 2019;12(1):71.PubMedPubMedCentralCrossRef Li Y, Ge D, Lu C. The SMART App: an interactive web application for comprehensive DNA methylation analysis and visualization. Epigenetics Chromatin. 2019;12(1):71.PubMedPubMedCentralCrossRef
23.
go back to reference Rodchenkov I, Babur O, Luna A, et al. Pathway commons 2019 update: integration, analysis and exploration of pathway data. Nucleic Acids Res. 2020;48(D1):D489–97.PubMed Rodchenkov I, Babur O, Luna A, et al. Pathway commons 2019 update: integration, analysis and exploration of pathway data. Nucleic Acids Res. 2020;48(D1):D489–97.PubMed
24.
go back to reference The Gene Ontology C. The gene ontology resource: 20 years and still going strong. Nucleic Acids Res. 2019;47(D1):D330–8.CrossRef The Gene Ontology C. The gene ontology resource: 20 years and still going strong. Nucleic Acids Res. 2019;47(D1):D330–8.CrossRef
25.
go back to reference Ponten F, Jirstrom K, Uhlen M. The human protein atlas–a tool for pathology. J Pathol. 2008;216(4):387–93.PubMedCrossRef Ponten F, Jirstrom K, Uhlen M. The human protein atlas–a tool for pathology. J Pathol. 2008;216(4):387–93.PubMedCrossRef
26.
go back to reference Llovet JM, Zucman-Rossi J, Pikarsky E, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2016;2:16018.PubMedCrossRef Llovet JM, Zucman-Rossi J, Pikarsky E, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2016;2:16018.PubMedCrossRef
27.
go back to reference Kulik LM, Chokechanachaisakul A. Evaluation and management of hepatocellular carcinoma. Clin Liver Dis. 2015;19(1):23–43.PubMedCrossRef Kulik LM, Chokechanachaisakul A. Evaluation and management of hepatocellular carcinoma. Clin Liver Dis. 2015;19(1):23–43.PubMedCrossRef
28.
go back to reference Yuzugullu H, Benhaj K, Ozturk N, et al. Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells. Mol Cancer. 2009;8:90.PubMedPubMedCentralCrossRef Yuzugullu H, Benhaj K, Ozturk N, et al. Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells. Mol Cancer. 2009;8:90.PubMedPubMedCentralCrossRef
29.
go back to reference Ge Z, Ding S. The crosstalk between Tumor-Associated Macrophages (TAMs) and tumor cells and the corresponding targeted therapy. Front Oncol. 2020;10:590941.PubMedPubMedCentralCrossRef Ge Z, Ding S. The crosstalk between Tumor-Associated Macrophages (TAMs) and tumor cells and the corresponding targeted therapy. Front Oncol. 2020;10:590941.PubMedPubMedCentralCrossRef
30.
go back to reference Obradovic A, Chowdhury N, Haake SM, et al. Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages. Cell. 2021;184(11):2988–3005.PubMedPubMedCentralCrossRef Obradovic A, Chowdhury N, Haake SM, et al. Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages. Cell. 2021;184(11):2988–3005.PubMedPubMedCentralCrossRef
31.
go back to reference Guo Y, Yang J, Ren K, et al. The heterogeneity of immune cell infiltration landscape and its immunotherapeutic implications in hepatocellular carcinoma. Front Immunol. 2022;13:861525.PubMedPubMedCentralCrossRef Guo Y, Yang J, Ren K, et al. The heterogeneity of immune cell infiltration landscape and its immunotherapeutic implications in hepatocellular carcinoma. Front Immunol. 2022;13:861525.PubMedPubMedCentralCrossRef
32.
go back to reference Pappas DJ, Coppola G, Gabatto PA, et al. Longitudinal system-based analysis of transcriptional responses to type I interferons. Physiol Genomics. 2009;38(3):362–71.PubMedCrossRef Pappas DJ, Coppola G, Gabatto PA, et al. Longitudinal system-based analysis of transcriptional responses to type I interferons. Physiol Genomics. 2009;38(3):362–71.PubMedCrossRef
33.
go back to reference Margetts J, Ogle LF, Chan SL, et al. Neutrophils: driving progression and poor prognosis in hepatocellular carcinoma? Br J Cancer. 2018;118(2):248–57.PubMedCrossRef Margetts J, Ogle LF, Chan SL, et al. Neutrophils: driving progression and poor prognosis in hepatocellular carcinoma? Br J Cancer. 2018;118(2):248–57.PubMedCrossRef
34.
go back to reference Arvanitakis K, Koletsa T, Mitroulis I, Germanidis G. Tumor-associated macrophages in hepatocellular carcinoma pathogenesis, prognosis and therapy. Cancers (Basel). 2022;14(1):226.PubMedCrossRef Arvanitakis K, Koletsa T, Mitroulis I, Germanidis G. Tumor-associated macrophages in hepatocellular carcinoma pathogenesis, prognosis and therapy. Cancers (Basel). 2022;14(1):226.PubMedCrossRef
35.
go back to reference Zhang X, Fu X, Li T, Yan H. The prognostic value of myeloid derived suppressor cell level in hepatocellular carcinoma: a systematic review and meta-analysis. PLoS ONE. 2019;14(12):e0225327.PubMedPubMedCentralCrossRef Zhang X, Fu X, Li T, Yan H. The prognostic value of myeloid derived suppressor cell level in hepatocellular carcinoma: a systematic review and meta-analysis. PLoS ONE. 2019;14(12):e0225327.PubMedPubMedCentralCrossRef
36.
go back to reference Hao X, Luo H, Krawczyk M, et al. DNA methylation markers for diagnosis and prognosis of common cancers. Proc Natl Acad Sci U S A. 2017;114(28):7414–9.PubMedPubMedCentralCrossRef Hao X, Luo H, Krawczyk M, et al. DNA methylation markers for diagnosis and prognosis of common cancers. Proc Natl Acad Sci U S A. 2017;114(28):7414–9.PubMedPubMedCentralCrossRef
37.
38.
go back to reference Cheng Y, He C, Wang M, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019;4:62.PubMedPubMedCentralCrossRef Cheng Y, He C, Wang M, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019;4:62.PubMedPubMedCentralCrossRef
39.
go back to reference Hernandez-Vargas H, Lambert MP, Le Calvez-Kelm F, et al. Hepatocellular carcinoma displays distinct DNA methylation signatures with potential as clinical predictors. PLoS ONE. 2010;5(3):e9749.PubMedPubMedCentralCrossRef Hernandez-Vargas H, Lambert MP, Le Calvez-Kelm F, et al. Hepatocellular carcinoma displays distinct DNA methylation signatures with potential as clinical predictors. PLoS ONE. 2010;5(3):e9749.PubMedPubMedCentralCrossRef
40.
41.
go back to reference Hlady RA, Zhou D, Puszyk W, et al. Initiation of aberrant DNA methylation patterns and heterogeneity in precancerous lesions of human hepatocellular cancer. Epigenetics. 2017;12(3):215–25.PubMedPubMedCentralCrossRef Hlady RA, Zhou D, Puszyk W, et al. Initiation of aberrant DNA methylation patterns and heterogeneity in precancerous lesions of human hepatocellular cancer. Epigenetics. 2017;12(3):215–25.PubMedPubMedCentralCrossRef
42.
go back to reference Casalino L, Verde P. Multifaceted roles of DNA methylation in neoplastic transformation, from tumor suppressors to EMT and metastasis. Genes (Basel). 2020;11(8):922.PubMedCrossRef Casalino L, Verde P. Multifaceted roles of DNA methylation in neoplastic transformation, from tumor suppressors to EMT and metastasis. Genes (Basel). 2020;11(8):922.PubMedCrossRef
43.
go back to reference Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415–28.PubMedCrossRef Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415–28.PubMedCrossRef
44.
46.
go back to reference Shaulian E. AP-1–the Jun proteins: oncogenes or tumor suppressors in disguise? Cell Signal. 2010;22(6):894–9.PubMedCrossRef Shaulian E. AP-1–the Jun proteins: oncogenes or tumor suppressors in disguise? Cell Signal. 2010;22(6):894–9.PubMedCrossRef
48.
go back to reference Kinkel SA, Galeev R, Flensburg C, et al. Jarid2 regulates hematopoietic stem cell function by acting with polycomb repressive complex 2. Blood. 2015;125(12):1890–900.PubMedPubMedCentralCrossRef Kinkel SA, Galeev R, Flensburg C, et al. Jarid2 regulates hematopoietic stem cell function by acting with polycomb repressive complex 2. Blood. 2015;125(12):1890–900.PubMedPubMedCentralCrossRef
49.
go back to reference Pasini D, Cloos PA, Walfridsson J, et al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature. 2010;464(7286):306–10.PubMedCrossRef Pasini D, Cloos PA, Walfridsson J, et al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature. 2010;464(7286):306–10.PubMedCrossRef
50.
go back to reference Lei X, Xu JF, Chang RM, et al. JARID2 promotes invasion and metastasis of hepatocellular carcinoma by facilitating epithelial-mesenchymal transition through PTEN/AKT signaling. Oncotarget. 2016;7(26):40266–84.PubMedPubMedCentralCrossRef Lei X, Xu JF, Chang RM, et al. JARID2 promotes invasion and metastasis of hepatocellular carcinoma by facilitating epithelial-mesenchymal transition through PTEN/AKT signaling. Oncotarget. 2016;7(26):40266–84.PubMedPubMedCentralCrossRef
51.
go back to reference Li S, Wu Z, Li Q, et al. The prognostic value of AT-Rich Interaction Domain (ARID) family members in patients with hepatocellular carcinoma. Evid Based Complement Alternat Med. 2022;2022:1150390.PubMedPubMedCentral Li S, Wu Z, Li Q, et al. The prognostic value of AT-Rich Interaction Domain (ARID) family members in patients with hepatocellular carcinoma. Evid Based Complement Alternat Med. 2022;2022:1150390.PubMedPubMedCentral
52.
go back to reference Chan BC, Ching AK, To KF, et al. BRE is an antiapoptotic protein in vivo and overexpressed in human hepatocellular carcinoma. Oncogene. 2008;27(9):1208–17.PubMedCrossRef Chan BC, Ching AK, To KF, et al. BRE is an antiapoptotic protein in vivo and overexpressed in human hepatocellular carcinoma. Oncogene. 2008;27(9):1208–17.PubMedCrossRef
53.
go back to reference Chui YL, Ching AK, Chen S, et al. BRE over-expression promotes growth of hepatocellular carcinoma. Biochem Biophys Res Commun. 2010;391(3):1522–5.PubMedCrossRef Chui YL, Ching AK, Chen S, et al. BRE over-expression promotes growth of hepatocellular carcinoma. Biochem Biophys Res Commun. 2010;391(3):1522–5.PubMedCrossRef
54.
go back to reference Qiu J, Zhang S, Wang P, et al. BUB1B promotes hepatocellular carcinoma progression via activation of the mTORC1 signaling pathway. Cancer Med. 2020;9(21):8159–72.PubMedPubMedCentralCrossRef Qiu J, Zhang S, Wang P, et al. BUB1B promotes hepatocellular carcinoma progression via activation of the mTORC1 signaling pathway. Cancer Med. 2020;9(21):8159–72.PubMedPubMedCentralCrossRef
55.
go back to reference Zhuang L, Yang Z, Meng Z. Upregulation of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in tumor tissues predicted worse overall survival and disease-free survival in hepatocellular carcinoma patients. Biomed Res Int. 2018;2018:7897346.PubMedPubMedCentralCrossRef Zhuang L, Yang Z, Meng Z. Upregulation of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in tumor tissues predicted worse overall survival and disease-free survival in hepatocellular carcinoma patients. Biomed Res Int. 2018;2018:7897346.PubMedPubMedCentralCrossRef
57.
Metadata
Title
SAMD13 serves as a useful prognostic biomarker for hepatocellular carcinoma
Authors
Wonbeak Yoo
Seokho Kim
KyungHee Noh
Publication date
01-12-2023
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01347-5

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue