Skip to main content
Top
Published in: Cancer Cell International 1/2021

Open Access 01-12-2021 | Hepatocellular Carcinoma | Primary research

Ring finger protein 152-dependent degradation of TSPAN12 suppresses hepatocellular carcinoma progression

Authors: Jian Wan, Shunfang Liu, Wanju Sun, Haiyi Yu, Wenlian Tang, Wei Liu, Jing Ji, Bin Liu

Published in: Cancer Cell International | Issue 1/2021

Login to get access

Abstract

Background

Hepatocellular carcinoma (HCC) is the third cause of cancer death in the world, and few molecularly targeted anticancer therapies have been developed to treat it. The E3 ubiquitin ligase RNF152 has been reported to regulate the activity of the mechanistic target of rapamycin complex 1 (mTORC1), induce autophagy and apoptosis. However, the relationship between RNF152 and HCC is unclear.

Methods

Transcriptome RNA-sequencing data of HCC samples and normal tissues were used to detect the mRNA expression of RNF152. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays were used to determine the transcriptional regulation of RNF152 in HCC by FoxO1. RNAi, cell proliferation, colony formation and transwell assays were used to determine the in vitro functions of RNF152. Mouse xenograft models were used to study the in vivo effects of RNF152. The immunoprecipitation assay was used to determine the interaction between RNF152 and TSPAN12. The in vivo ubiquitination assay was performed to determine the regulation of TSPAN12 by RNF152.

Results

We found that RNF152 is significantly down-regulated in clinic HCC samples, and its down-regulation is associated with pool overall survival (OS), progression-free survival (PFS) and disease-specific survival (DSS) in HCC patients. The transcription factor FoxO1 was significantly positively correlated RNF152 expression in HCC tissues. FoxO1 recognizes a classic insulin response element (IRE) on the RNF152 promoter to regulate its expression in HCC. RNF152 suppressed HCC cell proliferation, clonogenic survival, invasion in vitro, and tumorigenesis in vivo. Mechanistically, RNF152 interacted with TSPAN12 and targeted it for ubiquitination and proteasomal degradation, thereby inhibiting TSPAN12-dependent CXCL6 expression and HCC progression.

Conclusion

Collectively, our data revealed a tumor suppressor role of RNF152 and a connection between RNF152 and FoxO1 in HCC. Our results support an important role of the FoxO1-RNF152-TSPAN12 axis in the development of HCC. Therapeutic targeting this axis may be an effective means of treating HCC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sia D, Villanueva A, Friedman SL, Llovet JM. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2017;152:745–61.CrossRef Sia D, Villanueva A, Friedman SL, Llovet JM. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2017;152:745–61.CrossRef
2.
go back to reference Poon D, Anderson BO, Chen LT, Tanaka K, Lau WY, Van Cutsem E, Singh H, Chow WC, Ooi LL, Chow P, Khin MW, Koo WH. Asian Oncology S. Management of hepatocellular carcinoma in Asia: consensus statement from the Asian Oncology Summit 2009. Lancet Oncol. 2009;10:1111–8.CrossRef Poon D, Anderson BO, Chen LT, Tanaka K, Lau WY, Van Cutsem E, Singh H, Chow WC, Ooi LL, Chow P, Khin MW, Koo WH. Asian Oncology S. Management of hepatocellular carcinoma in Asia: consensus statement from the Asian Oncology Summit 2009. Lancet Oncol. 2009;10:1111–8.CrossRef
3.
go back to reference Arzumanyan A, Reis HM, Feitelson MA. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer. 2013;13:123–35.CrossRef Arzumanyan A, Reis HM, Feitelson MA. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer. 2013;13:123–35.CrossRef
4.
go back to reference Caruso S, O’Brien DR, Cleary SP, Roberts LR, Zucman-Rossi J. Genetics of HCC: novel approaches to explore molecular diversity. Hepatology. 2020. Caruso S, O’Brien DR, Cleary SP, Roberts LR, Zucman-Rossi J. Genetics of HCC: novel approaches to explore molecular diversity. Hepatology. 2020.
5.
go back to reference Ciechanover A. The unravelling of the ubiquitin system. Nat Rev Mol Cell Biol. 2015;16:322–4.CrossRef Ciechanover A. The unravelling of the ubiquitin system. Nat Rev Mol Cell Biol. 2015;16:322–4.CrossRef
6.
go back to reference Crunkhorn S. Cancer: targeting the ubiquitin pathway. Nat Rev Drug Discov. 2018;17:166.PubMed Crunkhorn S. Cancer: targeting the ubiquitin pathway. Nat Rev Drug Discov. 2018;17:166.PubMed
7.
go back to reference Senft D, Qi J, Ronai ZA. Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat Rev Cancer. 2018;18:69–88.CrossRef Senft D, Qi J, Ronai ZA. Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat Rev Cancer. 2018;18:69–88.CrossRef
8.
go back to reference Lipkowitz S, Weissman AM. RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer. 2011;11:629–43.CrossRef Lipkowitz S, Weissman AM. RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer. 2011;11:629–43.CrossRef
9.
go back to reference Zhang S, Wu W, Wu Y, Zheng J, Suo T, Tang H, Tang J. RNF152, a novel lysosome localized E3 ligase with pro-apoptotic activities. Protein Cell. 2010;1:656–63.CrossRef Zhang S, Wu W, Wu Y, Zheng J, Suo T, Tang H, Tang J. RNF152, a novel lysosome localized E3 ligase with pro-apoptotic activities. Protein Cell. 2010;1:656–63.CrossRef
10.
go back to reference Deng L, Jiang C, Chen L, Jin J, Wei J, Zhao L, Chen M, Pan W, Xu Y, Chu H, Wang X, Ge X, Li D, Liao L, Liu M, Li L, Wang P. The ubiquitination of rag A GTPase by RNF152 negatively regulates mTORC1 activation. Mol Cell. 2015;58:804–18.CrossRef Deng L, Jiang C, Chen L, Jin J, Wei J, Zhao L, Chen M, Pan W, Xu Y, Chu H, Wang X, Ge X, Li D, Liao L, Liu M, Li L, Wang P. The ubiquitination of rag A GTPase by RNF152 negatively regulates mTORC1 activation. Mol Cell. 2015;58:804–18.CrossRef
11.
go back to reference Deng L, Chen L, Zhao L, Xu Y, Peng X, Wang X, Ding L, Jin J, Teng H, Wang Y, Pan W, Yu F, Liao L, Li L, Ge X, Wang P. Ubiquitination of Rheb governs growth factor-induced mTORC1 activation. Cell Res. 2019;29:136–50.CrossRef Deng L, Chen L, Zhao L, Xu Y, Peng X, Wang X, Ding L, Jin J, Teng H, Wang Y, Pan W, Yu F, Liao L, Li L, Ge X, Wang P. Ubiquitination of Rheb governs growth factor-induced mTORC1 activation. Cell Res. 2019;29:136–50.CrossRef
12.
go back to reference Cui X, Shen W, Wang G, Huang Z, Wen D, Yang Y, Liu Y, Cui L. Ring finger protein 152 inhibits colorectal cancer cell growth and is a novel prognostic biomarker. Am J Transl Res. 2018;10:3701–12.PubMedPubMedCentral Cui X, Shen W, Wang G, Huang Z, Wen D, Yang Y, Liu Y, Cui L. Ring finger protein 152 inhibits colorectal cancer cell growth and is a novel prognostic biomarker. Am J Transl Res. 2018;10:3701–12.PubMedPubMedCentral
13.
go back to reference Liu B, Jiang S, Li M, Xiong X, Zhu M, Li D, Zhao L, Qian L, Zhai L, Li J, Lu H, Sun S, Lin J, Lu Y, Li X, Tan M. Proteome-wide analysis of USP14 substrates revealed its role in hepatosteatosis via stabilization of FASN. Nat Commun. 2018;9:4770.CrossRef Liu B, Jiang S, Li M, Xiong X, Zhu M, Li D, Zhao L, Qian L, Zhai L, Li J, Lu H, Sun S, Lin J, Lu Y, Li X, Tan M. Proteome-wide analysis of USP14 substrates revealed its role in hepatosteatosis via stabilization of FASN. Nat Commun. 2018;9:4770.CrossRef
14.
go back to reference Li L, Xue W, Shen Z, Liu J, Hu M, Cheng Z, Wang Y, Chen Y, Chang H, Liu Y, Liu B, Zhao J. A cereblon modulator CC-885 induces CRBN- and p97-dependent PLK1 degradation and synergizes with volasertib to suppress lung cancer. Mol Ther Oncolytics. 2020;18:215–25.CrossRef Li L, Xue W, Shen Z, Liu J, Hu M, Cheng Z, Wang Y, Chen Y, Chang H, Liu Y, Liu B, Zhao J. A cereblon modulator CC-885 induces CRBN- and p97-dependent PLK1 degradation and synergizes with volasertib to suppress lung cancer. Mol Ther Oncolytics. 2020;18:215–25.CrossRef
15.
go back to reference Tada M, Yokosuka O, Fukai K, Chiba T, Imazeki F, Tokuhisa T, Saisho H. Hypermethylation of NAD(P)H: quinone oxidoreductase 1 (NQO1) gene in human hepatocellular carcinoma. J Hepatol. 2005;42:511–9.CrossRef Tada M, Yokosuka O, Fukai K, Chiba T, Imazeki F, Tokuhisa T, Saisho H. Hypermethylation of NAD(P)H: quinone oxidoreductase 1 (NQO1) gene in human hepatocellular carcinoma. J Hepatol. 2005;42:511–9.CrossRef
16.
go back to reference Jung HS, Seo YR, Yang YM, Koo JH, An J, Lee SJ, Kim KM, Kim SG. Galpha12gep oncogene inhibits FOXO1 in hepatocellular carcinoma as a consequence of miR-135b and miR-194 dysregulation. Cell Signal. 2014;26:1456–65.CrossRef Jung HS, Seo YR, Yang YM, Koo JH, An J, Lee SJ, Kim KM, Kim SG. Galpha12gep oncogene inhibits FOXO1 in hepatocellular carcinoma as a consequence of miR-135b and miR-194 dysregulation. Cell Signal. 2014;26:1456–65.CrossRef
17.
go back to reference Lee SY, Lee GR, Woo DH, Park NH, Cha HJ, Moon YH, Han IS. Depletion of Aurora A leads to upregulation of FoxO1 to induce cell cycle arrest in hepatocellular carcinoma cells. Cell Cycle. 2013;12:67–75.CrossRef Lee SY, Lee GR, Woo DH, Park NH, Cha HJ, Moon YH, Han IS. Depletion of Aurora A leads to upregulation of FoxO1 to induce cell cycle arrest in hepatocellular carcinoma cells. Cell Cycle. 2013;12:67–75.CrossRef
18.
go back to reference Jiramongkol Y, Lam EW. FOXO transcription factor family in cancer and metastasis. Cancer Metastasis Rev. 2020. Jiramongkol Y, Lam EW. FOXO transcription factor family in cancer and metastasis. Cancer Metastasis Rev. 2020.
19.
go back to reference Graves DT, Milovanova TN. Mucosal immunity and the FOXO1 transcription factors. Front Immunol. 2019;10:2530.CrossRef Graves DT, Milovanova TN. Mucosal immunity and the FOXO1 transcription factors. Front Immunol. 2019;10:2530.CrossRef
20.
go back to reference Wang HX, Li Q, Sharma C, Knoblich K, Hemler ME. Tetraspanin protein contributions to cancer. Biochem Soc Trans. 2011;39:547–52.CrossRef Wang HX, Li Q, Sharma C, Knoblich K, Hemler ME. Tetraspanin protein contributions to cancer. Biochem Soc Trans. 2011;39:547–52.CrossRef
21.
go back to reference Hu Z, Hou D, Wang X, You Z, Cao X. TSPAN12 is overexpressed in NSCLC via p53 inhibition and promotes NSCLC cell growth in vitro and in vivo. Onco Targets Ther. 2018;11:1095–103.CrossRef Hu Z, Hou D, Wang X, You Z, Cao X. TSPAN12 is overexpressed in NSCLC via p53 inhibition and promotes NSCLC cell growth in vitro and in vivo. Onco Targets Ther. 2018;11:1095–103.CrossRef
22.
go back to reference Liu J, Chen C, Li G, Chen D, Zhou Q. Upregulation of TSPAN12 is associated with the colorectal cancer growth and metastasis. Am J Transl Res. 2017;9:812–22.PubMedPubMedCentral Liu J, Chen C, Li G, Chen D, Zhou Q. Upregulation of TSPAN12 is associated with the colorectal cancer growth and metastasis. Am J Transl Res. 2017;9:812–22.PubMedPubMedCentral
23.
go back to reference Ye M, Wei T, Wang Q, Sun Y, Tang R, Guo L, Zhu W. TSPAN12 promotes chemoresistance and proliferation of SCLC under the regulation of miR-495. Biochem Biophys Res Commun. 2017;486:349–56.CrossRef Ye M, Wei T, Wang Q, Sun Y, Tang R, Guo L, Zhu W. TSPAN12 promotes chemoresistance and proliferation of SCLC under the regulation of miR-495. Biochem Biophys Res Commun. 2017;486:349–56.CrossRef
24.
go back to reference Otomo R, Otsubo C, Matsushima-Hibiya Y, Miyazaki M, Tashiro F, Ichikawa H, Kohno T, Ochiya T, Yokota J, Nakagama H, Taya Y, Enari M. TSPAN12 is a critical factor for cancer-fibroblast cell contact-mediated cancer invasion. Proc Natl Acad Sci USA. 2014;111:18691–6.CrossRef Otomo R, Otsubo C, Matsushima-Hibiya Y, Miyazaki M, Tashiro F, Ichikawa H, Kohno T, Ochiya T, Yokota J, Nakagama H, Taya Y, Enari M. TSPAN12 is a critical factor for cancer-fibroblast cell contact-mediated cancer invasion. Proc Natl Acad Sci USA. 2014;111:18691–6.CrossRef
25.
go back to reference Knoblich K, Wang HX, Sharma C, Fletcher AL, Turley SJ, Hemler ME. Tetraspanin TSPAN12 regulates tumor growth and metastasis and inhibits beta-catenin degradation. Cell Mol Life Sci. 2014;71:1305–14.CrossRef Knoblich K, Wang HX, Sharma C, Fletcher AL, Turley SJ, Hemler ME. Tetraspanin TSPAN12 regulates tumor growth and metastasis and inhibits beta-catenin degradation. Cell Mol Life Sci. 2014;71:1305–14.CrossRef
26.
go back to reference Okumura T, Ikeda K, Ujihira T, Okamoto K, Horie-Inoue K, Takeda S, Inoue S. Proteasome 26S subunit PSMD1 regulates breast cancer cell growth through p53 protein degradation. J Biochem. 2018;163:19–29.CrossRef Okumura T, Ikeda K, Ujihira T, Okamoto K, Horie-Inoue K, Takeda S, Inoue S. Proteasome 26S subunit PSMD1 regulates breast cancer cell growth through p53 protein degradation. J Biochem. 2018;163:19–29.CrossRef
27.
go back to reference Ji G, Liang H, Wang F, Wang N, Fu S, Cui X. TSPAN12 precedes tumor proliferation by cell cycle control in ovarian cancer. Mol Cells. 2019;42:557–67.PubMedPubMedCentral Ji G, Liang H, Wang F, Wang N, Fu S, Cui X. TSPAN12 precedes tumor proliferation by cell cycle control in ovarian cancer. Mol Cells. 2019;42:557–67.PubMedPubMedCentral
28.
go back to reference Xiong MG, Xu ZS, Li YH, Wang SY, Wang YY, Ran Y. RNF152 positively regulates TLR/IL-1R signaling by enhancing MyD88 oligomerization. EMBO Rep. 2020;21:e48860.CrossRef Xiong MG, Xu ZS, Li YH, Wang SY, Wang YY, Ran Y. RNF152 positively regulates TLR/IL-1R signaling by enhancing MyD88 oligomerization. EMBO Rep. 2020;21:e48860.CrossRef
Metadata
Title
Ring finger protein 152-dependent degradation of TSPAN12 suppresses hepatocellular carcinoma progression
Authors
Jian Wan
Shunfang Liu
Wanju Sun
Haiyi Yu
Wenlian Tang
Wei Liu
Jing Ji
Bin Liu
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2021
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-021-01806-1

Other articles of this Issue 1/2021

Cancer Cell International 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine