Skip to main content
Top
Published in: Discover Oncology 1/2024

Open Access 01-12-2024 | Hepatocellular Carcinoma | Case Report

Genomic and transcriptomic profiling of hepatocellular carcinoma reveals a rare molecular subtype

Authors: Mengting Zhu, Valentina Rovella, Manuel Scimeca, Alessandro Mauriello, Yufang Shi, Julia Bischof, Jonathan Woodsmith, Alessandro Anselmo, Gerry Melino, Giuseppe Tisone, Massimiliano Agostini

Published in: Discover Oncology | Issue 1/2024

Login to get access

Abstract

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, occurring predominantly in patients with underlying chronic liver disease and cirrhosis. Here, we describe a case of a 62-year-old man that was admitted to our hospital and diagnosed with HCC where the cancer has already metastasized to the retroperitoneum and peritoneum. In order to better characterize the HCC, both the cancerous liver tissue and the adjacent normal liver tissue of the patient were collected and subjected to a genomic, transcriptomic and proteomic analysis. Our patient carries a highly mutated HCC, which is characterized by both somatic mutation in the following genes ALK, CDK6, TP53, PGR. In addition, we observe several molecular alterations that are associated with potential therapy resistance, for example the expression of the organic-anion-transporting polypeptide (OATP) family members B1 and B3, that mediate the transport of the anticancer drugs, has been found decreased. Overall, our molecular profiling potentially classify the patient with poor prognosis and possibly displaying resistance to pharmacological therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J, Finn RS. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6.PubMedCrossRef Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J, Finn RS. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6.PubMedCrossRef
2.
go back to reference Menghini R, Hoyles L, Cardellini M, Casagrande V, Marino A, Gentileschi P, Davato F, Mavilio M, Arisi I, Mauriello A, Montanaro M, Scimeca M, Barton RH, Rappa F, Cappello F, Vinciguerra M, Moreno-Navarrete JM, Ricart W, Porzio O, Fernández-Real JM, Burcelin R, Dumas ME, Federici M. ITCH E3 ubiquitin ligase downregulation compromises hepatic degradation of branched-chain amino acids. Mol Metab. 2022;59: 101454.PubMedPubMedCentralCrossRef Menghini R, Hoyles L, Cardellini M, Casagrande V, Marino A, Gentileschi P, Davato F, Mavilio M, Arisi I, Mauriello A, Montanaro M, Scimeca M, Barton RH, Rappa F, Cappello F, Vinciguerra M, Moreno-Navarrete JM, Ricart W, Porzio O, Fernández-Real JM, Burcelin R, Dumas ME, Federici M. ITCH E3 ubiquitin ligase downregulation compromises hepatic degradation of branched-chain amino acids. Mol Metab. 2022;59: 101454.PubMedPubMedCentralCrossRef
3.
go back to reference Casagrande V, Mauriello A, Anemona L, Mavilio M, Iuliani G, De Angelis L, D’Onofrio M, Arisi I, Federici M, Menghini R. Timp3 deficiency affects the progression of DEN-related hepatocellular carcinoma during diet-induced obesity in mice. Acta Diabetol. 2019;56(12):1265–74.PubMedCrossRef Casagrande V, Mauriello A, Anemona L, Mavilio M, Iuliani G, De Angelis L, D’Onofrio M, Arisi I, Federici M, Menghini R. Timp3 deficiency affects the progression of DEN-related hepatocellular carcinoma during diet-induced obesity in mice. Acta Diabetol. 2019;56(12):1265–74.PubMedCrossRef
5.
go back to reference Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, Srinivasan P, Gao J, Chakravarty D, Devlin SM, Hellmann MD, Barron DA, Schram AM, Hameed M, Dogan S, Ross DS, Hechtman JF, DeLair DF, Yao J, Mandelker DL, Cheng DT, Chandramohan R, Mohanty AS, Ptashkin RN, Jayakumaran G, Prasad M, Syed MH, Rema AB, Liu ZY, Nafa K, Borsu L, Sadowska J, Casanova J, Bacares R, Kiecka IJ, Razumova A, Son JB, Stewart L, Baldi T, Mullaney KA, Al-Ahmadie H, Vakiani E, Abeshouse AA, Penson AV, Jonsson P, Camacho N, Chang MT, Won HH, Gross BE, Kundra R, Heins ZJ, Chen HW, Phillips S, Zhang H, Wang J, Ochoa A, Wills J, Eubank M, Thomas SB, Gardos SM, Reales DN, Galle J, Durany R, Cambria R, Abida W, Cercek A, Feldman DR, Gounder MM, Hakimi AA, Harding JJ, Iyer G, Janjigian YY, Jordan EJ, Kelly CM, Lowery MA, Morris LGT, Omuro AM, Raj N, Razavi P, Shoushtari AN, Shukla N, Soumerai TE, Varghese AM, Yaeger R, Coleman J, Bochner B, Riely GJ, Saltz LB, Scher HI, Sabbatini PJ, Robson ME, Klimstra DS, Taylor BS, Baselga J, Schultz N, Hyman DM, Arcila ME, Solit DB, Ladanyi M, Berger MF. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23(6):703–13.PubMedPubMedCentralCrossRef Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, Srinivasan P, Gao J, Chakravarty D, Devlin SM, Hellmann MD, Barron DA, Schram AM, Hameed M, Dogan S, Ross DS, Hechtman JF, DeLair DF, Yao J, Mandelker DL, Cheng DT, Chandramohan R, Mohanty AS, Ptashkin RN, Jayakumaran G, Prasad M, Syed MH, Rema AB, Liu ZY, Nafa K, Borsu L, Sadowska J, Casanova J, Bacares R, Kiecka IJ, Razumova A, Son JB, Stewart L, Baldi T, Mullaney KA, Al-Ahmadie H, Vakiani E, Abeshouse AA, Penson AV, Jonsson P, Camacho N, Chang MT, Won HH, Gross BE, Kundra R, Heins ZJ, Chen HW, Phillips S, Zhang H, Wang J, Ochoa A, Wills J, Eubank M, Thomas SB, Gardos SM, Reales DN, Galle J, Durany R, Cambria R, Abida W, Cercek A, Feldman DR, Gounder MM, Hakimi AA, Harding JJ, Iyer G, Janjigian YY, Jordan EJ, Kelly CM, Lowery MA, Morris LGT, Omuro AM, Raj N, Razavi P, Shoushtari AN, Shukla N, Soumerai TE, Varghese AM, Yaeger R, Coleman J, Bochner B, Riely GJ, Saltz LB, Scher HI, Sabbatini PJ, Robson ME, Klimstra DS, Taylor BS, Baselga J, Schultz N, Hyman DM, Arcila ME, Solit DB, Ladanyi M, Berger MF. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23(6):703–13.PubMedPubMedCentralCrossRef
6.
go back to reference Amelio I, Bertolo R, Bove P, Candi E, Chiocchi M, Cipriani C, Di Daniele N, Ganini C, Juhl H, Mauriello A, Marani C, Marshall J, Montanaro M, Palmieri G, Piacentini M, Sica G, Tesauro M, Rovella V, Tisone G, Shi Y, Wang Y, Melino G. Cancer predictive studies. Biol Direct. 2020;15(1):18.PubMedPubMedCentralCrossRef Amelio I, Bertolo R, Bove P, Candi E, Chiocchi M, Cipriani C, Di Daniele N, Ganini C, Juhl H, Mauriello A, Marani C, Marshall J, Montanaro M, Palmieri G, Piacentini M, Sica G, Tesauro M, Rovella V, Tisone G, Shi Y, Wang Y, Melino G. Cancer predictive studies. Biol Direct. 2020;15(1):18.PubMedPubMedCentralCrossRef
7.
go back to reference Liu C, Kuang J, Wang Y, Duan T, Min L, Lu C, Zhang T, Chen R, Wu Y, Zhu L. A functional reference map of the RNF8 interactome in cancer. Biol Direct. 2022;17(1):17.PubMedPubMedCentralCrossRef Liu C, Kuang J, Wang Y, Duan T, Min L, Lu C, Zhang T, Chen R, Wu Y, Zhu L. A functional reference map of the RNF8 interactome in cancer. Biol Direct. 2022;17(1):17.PubMedPubMedCentralCrossRef
8.
go back to reference Liang J, Li G, Liao J, Huang Z, Wen J, Wang Y, Chen Z, Cai G, Xu W, Ding Z, Liang H, Datta PK, Chu L, Chen X, Zhang B. Non-coding small nucleolar RNA SNORD17 promotes the progression of hepatocellular carcinoma through a positive feedback loop upon p53 inactivation. Cell Death Differ. 2022;29(5):988–1003.PubMedPubMedCentralCrossRef Liang J, Li G, Liao J, Huang Z, Wen J, Wang Y, Chen Z, Cai G, Xu W, Ding Z, Liang H, Datta PK, Chu L, Chen X, Zhang B. Non-coding small nucleolar RNA SNORD17 promotes the progression of hepatocellular carcinoma through a positive feedback loop upon p53 inactivation. Cell Death Differ. 2022;29(5):988–1003.PubMedPubMedCentralCrossRef
9.
go back to reference Li X, Yuan J, Song C, Lei Y, Xu J, Zhang G, Wang W, Song G. Deubiquitinase USP39 and E3 ligase TRIM26 balance the level of ZEB1 ubiquitination and thereby determine the progression of hepatocellular carcinoma. Cell Death Differ. 2021;28(8):2315–32.PubMedPubMedCentralCrossRef Li X, Yuan J, Song C, Lei Y, Xu J, Zhang G, Wang W, Song G. Deubiquitinase USP39 and E3 ligase TRIM26 balance the level of ZEB1 ubiquitination and thereby determine the progression of hepatocellular carcinoma. Cell Death Differ. 2021;28(8):2315–32.PubMedPubMedCentralCrossRef
10.
go back to reference Wu Y, Jiao H, Yue Y, He K, Jin Y, Zhang J, Zhang J, Wei Y, Luo H, Hao Z, Zhao X, Xia Q, Zhong Q, Zhang J. Ubiquitin ligase E3 HUWE1/MULE targets transferrin receptor for degradation and suppresses ferroptosis in acute liver injury. Cell Death Differ. 2022;29(9):1705–18.PubMedPubMedCentralCrossRef Wu Y, Jiao H, Yue Y, He K, Jin Y, Zhang J, Zhang J, Wei Y, Luo H, Hao Z, Zhao X, Xia Q, Zhong Q, Zhang J. Ubiquitin ligase E3 HUWE1/MULE targets transferrin receptor for degradation and suppresses ferroptosis in acute liver injury. Cell Death Differ. 2022;29(9):1705–18.PubMedPubMedCentralCrossRef
11.
go back to reference Cao HJ, Jiang H, Ding K, Qiu XS, Ma N, Zhang FK, Wang YK, Zheng QW, Xia J, Ni QZ, Xu S, Zhu B, Ding XF, Chen TW, Qiu L, Chen W, Li ZG, Zhou B, Feng WM, Xie D, Li JJ. ARID2 mitigates hepatic steatosis via promoting the ubiquitination of JAK2. Cell Death Differ. 2023;30(2):383–96.PubMedCrossRef Cao HJ, Jiang H, Ding K, Qiu XS, Ma N, Zhang FK, Wang YK, Zheng QW, Xia J, Ni QZ, Xu S, Zhu B, Ding XF, Chen TW, Qiu L, Chen W, Li ZG, Zhou B, Feng WM, Xie D, Li JJ. ARID2 mitigates hepatic steatosis via promoting the ubiquitination of JAK2. Cell Death Differ. 2023;30(2):383–96.PubMedCrossRef
12.
go back to reference Liang X, Yao J, Cui D, Zheng W, Liu Y, Lou G, Ye B, Shui L, Sun Y, Zhao Y, Zheng M. The TRAF2-p62 axis promotes proliferation and survival of liver cancer by activating mTORC1 pathway. Cell Death Differ. 2023;30(6):1550–62.PubMedPubMedCentralCrossRef Liang X, Yao J, Cui D, Zheng W, Liu Y, Lou G, Ye B, Shui L, Sun Y, Zhao Y, Zheng M. The TRAF2-p62 axis promotes proliferation and survival of liver cancer by activating mTORC1 pathway. Cell Death Differ. 2023;30(6):1550–62.PubMedPubMedCentralCrossRef
14.
go back to reference Humpton TJ, Hall H, Kiourtis C, Nixon C, Clark W, Hedley A, Shaw R, Bird TG, Blyth K, Vousden KH. p53-mediated redox control promotes liver regeneration and maintains liver function in response to CCl4. Cell Death Differ. 2022;29(3):514–26.PubMedCrossRef Humpton TJ, Hall H, Kiourtis C, Nixon C, Clark W, Hedley A, Shaw R, Bird TG, Blyth K, Vousden KH. p53-mediated redox control promotes liver regeneration and maintains liver function in response to CCl4. Cell Death Differ. 2022;29(3):514–26.PubMedCrossRef
15.
go back to reference Panatta E, Butera A, Celardo I, Leist M, Melino G, Amelio I. p53 regulates expression of nuclear envelope components in cancer cells. Biol Direct. 2022;17(1):38.PubMedPubMedCentralCrossRef Panatta E, Butera A, Celardo I, Leist M, Melino G, Amelio I. p53 regulates expression of nuclear envelope components in cancer cells. Biol Direct. 2022;17(1):38.PubMedPubMedCentralCrossRef
16.
go back to reference Rozenberg JM, Zvereva S, Dalina A, Blatov I, Zubarev I, Luppov D, Bessmertnyi A, Romanishin A, Alsoulaiman L, Kumeiko V, Kagansky A, Melino G, Ganini C, Barlev NA. The p53 family member p73 in the regulation of cell stress response. Biol Direct. 2021;16(1):23.PubMedPubMedCentralCrossRef Rozenberg JM, Zvereva S, Dalina A, Blatov I, Zubarev I, Luppov D, Bessmertnyi A, Romanishin A, Alsoulaiman L, Kumeiko V, Kagansky A, Melino G, Ganini C, Barlev NA. The p53 family member p73 in the regulation of cell stress response. Biol Direct. 2021;16(1):23.PubMedPubMedCentralCrossRef
18.
go back to reference Butera A, Roy M, Zampieri C, Mammarella E, Panatta E, Melino G, D’Alessandro A, Amelio I. p53-driven lipidome influences non-cell-autonomous lysophospholipids in pancreatic cancer. Biol Direct. 2022;17(1):6.PubMedPubMedCentralCrossRef Butera A, Roy M, Zampieri C, Mammarella E, Panatta E, Melino G, D’Alessandro A, Amelio I. p53-driven lipidome influences non-cell-autonomous lysophospholipids in pancreatic cancer. Biol Direct. 2022;17(1):6.PubMedPubMedCentralCrossRef
19.
go back to reference Yan Q, Zhang Y, Fang X, Liu B, Wong TL, Gong L, Liu S, Yu D, Liu M, Jiang L, Wang X, Wei T, Jia Y, Li L, Sun L, Tang Y, Zhou N, Yuan YF, Li Y, Ma S, Guan XY. PGC7 promotes tumor oncogenic dedifferentiation through remodeling DNA methylation pattern for key developmental transcription factors. Cell Death Differ. 2021;28(6):1955–70.PubMedPubMedCentralCrossRef Yan Q, Zhang Y, Fang X, Liu B, Wong TL, Gong L, Liu S, Yu D, Liu M, Jiang L, Wang X, Wei T, Jia Y, Li L, Sun L, Tang Y, Zhou N, Yuan YF, Li Y, Ma S, Guan XY. PGC7 promotes tumor oncogenic dedifferentiation through remodeling DNA methylation pattern for key developmental transcription factors. Cell Death Differ. 2021;28(6):1955–70.PubMedPubMedCentralCrossRef
20.
go back to reference Chen Q, Zheng W, Guan J, Liu H, Dan Y, Zhu L, Song Y, Zhou Y, Zhao X, Zhang Y, Bai Y, Pan Y, Zhang J, Shao C. SOCS2-enhanced ubiquitination of SLC7A11 promotes ferroptosis and radiosensitization in hepatocellular carcinoma. Cell Death Differ. 2023;30(1):137–51.PubMedCrossRef Chen Q, Zheng W, Guan J, Liu H, Dan Y, Zhu L, Song Y, Zhou Y, Zhao X, Zhang Y, Bai Y, Pan Y, Zhang J, Shao C. SOCS2-enhanced ubiquitination of SLC7A11 promotes ferroptosis and radiosensitization in hepatocellular carcinoma. Cell Death Differ. 2023;30(1):137–51.PubMedCrossRef
22.
go back to reference Zhang Y, Luo M, Cui X, O’Connell D, Yang Y. Long noncoding RNA NEAT1 promotes ferroptosis by modulating the miR-362-3p/MIOX axis as a ceRNA. Cell Death Differ. 2022;29(9):1850–63.PubMedPubMedCentralCrossRef Zhang Y, Luo M, Cui X, O’Connell D, Yang Y. Long noncoding RNA NEAT1 promotes ferroptosis by modulating the miR-362-3p/MIOX axis as a ceRNA. Cell Death Differ. 2022;29(9):1850–63.PubMedPubMedCentralCrossRef
23.
go back to reference Zhao C, Gong J, Bai Y, Yin T, Zhou M, Pan S, Liu Y, Gao Y, Zhang Z, Shi Y, Zhu F, Zhang H, Wang M, Qin R. A self-amplifying USP14-TAZ loop drives the progression and liver metastasis of pancreatic ductal adenocarcinoma. Cell Death Differ. 2023;30(1):1–15.PubMedCrossRef Zhao C, Gong J, Bai Y, Yin T, Zhou M, Pan S, Liu Y, Gao Y, Zhang Z, Shi Y, Zhu F, Zhang H, Wang M, Qin R. A self-amplifying USP14-TAZ loop drives the progression and liver metastasis of pancreatic ductal adenocarcinoma. Cell Death Differ. 2023;30(1):1–15.PubMedCrossRef
24.
go back to reference Garrison DA, Talebi Z, Eisenmann ED, Sparreboom A, Baker SD. Role of OATP1B1 and OATP1B3 in drug-drug interactions mediated by tyrosine kinase inhibitors. Pharmaceutics. 2020;12(9):856.PubMedPubMedCentralCrossRef Garrison DA, Talebi Z, Eisenmann ED, Sparreboom A, Baker SD. Role of OATP1B1 and OATP1B3 in drug-drug interactions mediated by tyrosine kinase inhibitors. Pharmaceutics. 2020;12(9):856.PubMedPubMedCentralCrossRef
25.
go back to reference Tsai HW, Ho CL, Cheng SW, Lin YJ, Chen CC, Cheng PN, Yen CJ, Chang TT, Chiang PM, Chan SH, Ho CH, Chen SH, Wang YW, Chow NH, Lin JC. Progesterone receptor membrane component 1 as a potential prognostic biomarker for hepatocellular carcinoma. World J Gastroenterol. 2018;24(10):1152–66.PubMedPubMedCentralCrossRef Tsai HW, Ho CL, Cheng SW, Lin YJ, Chen CC, Cheng PN, Yen CJ, Chang TT, Chiang PM, Chan SH, Ho CH, Chen SH, Wang YW, Chow NH, Lin JC. Progesterone receptor membrane component 1 as a potential prognostic biomarker for hepatocellular carcinoma. World J Gastroenterol. 2018;24(10):1152–66.PubMedPubMedCentralCrossRef
26.
go back to reference Lee SR, Lee JG, Heo JH, Jo SL, Ryu J, Kim G, Yon JM, Lee MS, Lee GS, An BS, Shin HJ, Woo DC, Baek IJ, Hong EJ. Loss of PGRMC1 delays the progression of hepatocellular carcinoma via suppression of pro-inflammatory immune responses. Cancers. 2021;13(10):2438.PubMedPubMedCentralCrossRef Lee SR, Lee JG, Heo JH, Jo SL, Ryu J, Kim G, Yon JM, Lee MS, Lee GS, An BS, Shin HJ, Woo DC, Baek IJ, Hong EJ. Loss of PGRMC1 delays the progression of hepatocellular carcinoma via suppression of pro-inflammatory immune responses. Cancers. 2021;13(10):2438.PubMedPubMedCentralCrossRef
27.
go back to reference Jia SW, Fu S, Wang F, Shao Q, Huang HB, Shao JY. ALK gene copy number gain and its clinical significance in hepatocellular carcinoma. World J Gastroenterol. 2014;20(1):183–92.PubMedPubMedCentralCrossRef Jia SW, Fu S, Wang F, Shao Q, Huang HB, Shao JY. ALK gene copy number gain and its clinical significance in hepatocellular carcinoma. World J Gastroenterol. 2014;20(1):183–92.PubMedPubMedCentralCrossRef
28.
go back to reference Tan AC, Tan DSW. targeted therapies for lung cancer patients with oncogenic driver molecular alterations. J Clin Oncol. 2022;40(6):611–25.PubMedCrossRef Tan AC, Tan DSW. targeted therapies for lung cancer patients with oncogenic driver molecular alterations. J Clin Oncol. 2022;40(6):611–25.PubMedCrossRef
29.
go back to reference Hoyos D, Greenbaum B, Levine AJ. The genotypes and phenotypes of missense mutations in the proline domain of the p53 protein. Cell Death Differ. 2022;29(5):938–45.PubMedPubMedCentralCrossRef Hoyos D, Greenbaum B, Levine AJ. The genotypes and phenotypes of missense mutations in the proline domain of the p53 protein. Cell Death Differ. 2022;29(5):938–45.PubMedPubMedCentralCrossRef
30.
go back to reference Koh G, Degasperi A, Zou X, Momen S, Nik-Zainal S. Mutational signatures: emerging concepts, caveats and clinical applications. Nat Rev Cancer. 2021;21(10):619–37.PubMedCrossRef Koh G, Degasperi A, Zou X, Momen S, Nik-Zainal S. Mutational signatures: emerging concepts, caveats and clinical applications. Nat Rev Cancer. 2021;21(10):619–37.PubMedCrossRef
31.
go back to reference Degasperi A, Amarante TD, Czarnecki J, Shooter S, Zou X, Glodzik D, Morganella S, Nanda AS, Badja C, Koh G, Momen SE, Georgakopoulos-Soares I, Dias JML, Young J, Memari Y, Davies H, Nik-Zainal S. A practical framework and online tool for mutational signature analyses show inter-tissue variation and driver dependencies. Nat Cancer. 2020;1(2):249–63.PubMedPubMedCentralCrossRef Degasperi A, Amarante TD, Czarnecki J, Shooter S, Zou X, Glodzik D, Morganella S, Nanda AS, Badja C, Koh G, Momen SE, Georgakopoulos-Soares I, Dias JML, Young J, Memari Y, Davies H, Nik-Zainal S. A practical framework and online tool for mutational signature analyses show inter-tissue variation and driver dependencies. Nat Cancer. 2020;1(2):249–63.PubMedPubMedCentralCrossRef
32.
go back to reference Chartron E, Theillet C, Guiu S, Jacot W. Targeting homologous repair deficiency in breast and ovarian cancers: biological pathways, preclinical and clinical data. Crit Rev Oncol Hematol. 2019;133:58–73.PubMedCrossRef Chartron E, Theillet C, Guiu S, Jacot W. Targeting homologous repair deficiency in breast and ovarian cancers: biological pathways, preclinical and clinical data. Crit Rev Oncol Hematol. 2019;133:58–73.PubMedCrossRef
33.
go back to reference Yang XD, Kong FE, Qi L, Lin JX, Yan Q, Loong JHC, Xi SY, Zhao Y, Zhang Y, Yuan YF, Ma NF, Ma S, Guan XY, Liu M. PARP inhibitor Olaparib overcomes Sorafenib resistance through reshaping the pluripotent transcriptome in hepatocellular carcinoma. Mol Cancer. 2021;20(1):20.PubMedPubMedCentralCrossRef Yang XD, Kong FE, Qi L, Lin JX, Yan Q, Loong JHC, Xi SY, Zhao Y, Zhang Y, Yuan YF, Ma NF, Ma S, Guan XY, Liu M. PARP inhibitor Olaparib overcomes Sorafenib resistance through reshaping the pluripotent transcriptome in hepatocellular carcinoma. Mol Cancer. 2021;20(1):20.PubMedPubMedCentralCrossRef
34.
go back to reference Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, Schrock A, Campbell B, Shlien A, Chmielecki J, Huang F, He Y, Sun J, Tabori U, Kennedy M, Lieber DS, Roels S, White J, Otto GA, Ross JS, Garraway L, Miller VA, Stephens PJ, Frampton GM. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9(1):34.PubMedPubMedCentralCrossRef Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, Schrock A, Campbell B, Shlien A, Chmielecki J, Huang F, He Y, Sun J, Tabori U, Kennedy M, Lieber DS, Roels S, White J, Otto GA, Ross JS, Garraway L, Miller VA, Stephens PJ, Frampton GM. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9(1):34.PubMedPubMedCentralCrossRef
35.
go back to reference Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363(6429):558–61.PubMedCrossRef Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363(6429):558–61.PubMedCrossRef
37.
go back to reference Dudley JC, Lin MT, Le DT, Eshleman JR. Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res. 2016;22(4):813–20.PubMedCrossRef Dudley JC, Lin MT, Le DT, Eshleman JR. Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res. 2016;22(4):813–20.PubMedCrossRef
38.
go back to reference Bonfiglio R, Nardozi D, Scimeca M, Cerroni C, Mauriello A, Bonanno E. PD-L1 in immune-escape of breast and prostate cancers: from biology to therapy. Future Oncol. 2017;13(24):2129–31.PubMedCrossRef Bonfiglio R, Nardozi D, Scimeca M, Cerroni C, Mauriello A, Bonanno E. PD-L1 in immune-escape of breast and prostate cancers: from biology to therapy. Future Oncol. 2017;13(24):2129–31.PubMedCrossRef
39.
go back to reference Scimeca M, Bonfiglio R, Urbano N, Cerroni C, Anemona L, Montanaro M, Fazi S, Schillaci O, Mauriello A, Bonanno E. Programmed death ligand 1 expression in prostate cancer cells is associated with deep changes of the tumor inflammatory infiltrate composition. Urol Oncol. 2019;37(5):297.e19-297.e31.PubMedCrossRef Scimeca M, Bonfiglio R, Urbano N, Cerroni C, Anemona L, Montanaro M, Fazi S, Schillaci O, Mauriello A, Bonanno E. Programmed death ligand 1 expression in prostate cancer cells is associated with deep changes of the tumor inflammatory infiltrate composition. Urol Oncol. 2019;37(5):297.e19-297.e31.PubMedCrossRef
40.
go back to reference Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5(3):219–34.PubMedCrossRef Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5(3):219–34.PubMedCrossRef
41.
go back to reference Scimeca M, Urbano N, Bonfiglio R, Mapelli SN, Catapano CV, Carbone GM, Ciuffa S, Tavolozza M, Schillaci O, Mauriello A, Bonanno E. prostate osteoblast-like cells: a reliable prognostic marker of bone metastasis in prostate cancer patients. Contrast Media Mol Imaging. 2018;9(2018):9840962. Scimeca M, Urbano N, Bonfiglio R, Mapelli SN, Catapano CV, Carbone GM, Ciuffa S, Tavolozza M, Schillaci O, Mauriello A, Bonanno E. prostate osteoblast-like cells: a reliable prognostic marker of bone metastasis in prostate cancer patients. Contrast Media Mol Imaging. 2018;9(2018):9840962.
42.
go back to reference Scimeca M, Giocondo R, Montanaro M, Granaglia A, Bonfiglio R, Tancredi V, Mauriello A, Urbano N, Schillaci O, Bonanno E. BMP-2 variants in breast epithelial to mesenchymal transition and microcalcifications origin. Cells. 2020;9(6):1381.PubMedPubMedCentralCrossRef Scimeca M, Giocondo R, Montanaro M, Granaglia A, Bonfiglio R, Tancredi V, Mauriello A, Urbano N, Schillaci O, Bonanno E. BMP-2 variants in breast epithelial to mesenchymal transition and microcalcifications origin. Cells. 2020;9(6):1381.PubMedPubMedCentralCrossRef
43.
go back to reference Luk IY, Jenkins LJ, Schoffer KL, Ng I, Tse JWT, Mouradov D, Kaczmarczyk S, Nightingale R, Burrows AD, Anderson RL, Arango D, Dopeso H, Croft L, Richardson MF, Sieber OM, Liao Y, Mooi JK, Vukelic N, Reehorst CM, Afshar-Sterle S, Whitehall VLJ, Fennell L, Abud HE, Tebbutt NC, Phillips WA, Williams DS, Shi W, Mielke LA, Ernst M, Dhillon AS, Clemons NJ, Mariadason JM. Epithelial de-differentiation triggered by co-ordinate epigenetic inactivation of the EHF and CDX1 transcription factors drives colorectal cancer progression. Cell Death Differ. 2022;29(11):2288–302.PubMedPubMedCentralCrossRef Luk IY, Jenkins LJ, Schoffer KL, Ng I, Tse JWT, Mouradov D, Kaczmarczyk S, Nightingale R, Burrows AD, Anderson RL, Arango D, Dopeso H, Croft L, Richardson MF, Sieber OM, Liao Y, Mooi JK, Vukelic N, Reehorst CM, Afshar-Sterle S, Whitehall VLJ, Fennell L, Abud HE, Tebbutt NC, Phillips WA, Williams DS, Shi W, Mielke LA, Ernst M, Dhillon AS, Clemons NJ, Mariadason JM. Epithelial de-differentiation triggered by co-ordinate epigenetic inactivation of the EHF and CDX1 transcription factors drives colorectal cancer progression. Cell Death Differ. 2022;29(11):2288–302.PubMedPubMedCentralCrossRef
44.
go back to reference Zhao Y, Huang X, Zhu D, Wei M, Luo J, Yu S, Tian Y, Zheng X. Deubiquitinase OTUD6A promotes breast cancer progression by increasing TopBP1 stability and rendering tumor cells resistant to DNA-damaging therapy. Cell Death Differ. 2022;29(12):2531–44.PubMedPubMedCentralCrossRef Zhao Y, Huang X, Zhu D, Wei M, Luo J, Yu S, Tian Y, Zheng X. Deubiquitinase OTUD6A promotes breast cancer progression by increasing TopBP1 stability and rendering tumor cells resistant to DNA-damaging therapy. Cell Death Differ. 2022;29(12):2531–44.PubMedPubMedCentralCrossRef
46.
go back to reference Vogel A, Saborowski A. Current strategies for the treatment of intermediate and advanced hepatocellular carcinoma. Cancer Treat Rev. 2020;82: 101946.PubMedCrossRef Vogel A, Saborowski A. Current strategies for the treatment of intermediate and advanced hepatocellular carcinoma. Cancer Treat Rev. 2020;82: 101946.PubMedCrossRef
47.
go back to reference Vitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, et al. Apoptotic cell death in disease-current understanding of the NCCD 2023. Cell Death Differ. 2023;30(5):1097–154.PubMedPubMedCentralCrossRef Vitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, et al. Apoptotic cell death in disease-current understanding of the NCCD 2023. Cell Death Differ. 2023;30(5):1097–154.PubMedPubMedCentralCrossRef
48.
go back to reference Lindström MS, Bartek J, Maya-Mendoza A. p53 at the crossroad of DNA replication and ribosome biogenesis stress pathways. Cell Death Differ. 2022;29(5):972–82.PubMedPubMedCentralCrossRef Lindström MS, Bartek J, Maya-Mendoza A. p53 at the crossroad of DNA replication and ribosome biogenesis stress pathways. Cell Death Differ. 2022;29(5):972–82.PubMedPubMedCentralCrossRef
49.
go back to reference Thomas AF, Kelly GL, Strasser A. Of the many cellular responses activated by TP53, which ones are critical for tumour suppression? Cell Death Differ. 2022;29(5):961–71.PubMedPubMedCentralCrossRef Thomas AF, Kelly GL, Strasser A. Of the many cellular responses activated by TP53, which ones are critical for tumour suppression? Cell Death Differ. 2022;29(5):961–71.PubMedPubMedCentralCrossRef
50.
go back to reference Letouzé E, Shinde J, Renault V, Couchy G, Blanc JF, Tubacher E, Bayard Q, Bacq D, Meyer V, Semhoun J, Bioulac-Sage P, Prévôt S, Azoulay D, Paradis V, Imbeaud S, Deleuze JF, Zucman-Rossi J. Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis. Nat Commun. 2017;8(1):1315.PubMedPubMedCentralCrossRef Letouzé E, Shinde J, Renault V, Couchy G, Blanc JF, Tubacher E, Bayard Q, Bacq D, Meyer V, Semhoun J, Bioulac-Sage P, Prévôt S, Azoulay D, Paradis V, Imbeaud S, Deleuze JF, Zucman-Rossi J. Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis. Nat Commun. 2017;8(1):1315.PubMedPubMedCentralCrossRef
51.
go back to reference Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjörd JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinski M, Jäger N, Jones DT, Jones D, Knappskog S, Kool M, Lakhani SR, López-Otín C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt AN, Valdés-Mas R, Buuren MM, van Veer L, Vincent-Salomon A, Waddell N, Yates LR, PedBrain ICGC, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR, Australian Pancreatic Cancer Genome Initiative; ICGC Breast Cancer Consortium; ICGC MMML-Seq Consortium. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.PubMedPubMedCentralCrossRef Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjörd JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinski M, Jäger N, Jones DT, Jones D, Knappskog S, Kool M, Lakhani SR, López-Otín C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt AN, Valdés-Mas R, Buuren MM, van Veer L, Vincent-Salomon A, Waddell N, Yates LR, PedBrain ICGC, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR, Australian Pancreatic Cancer Genome Initiative; ICGC Breast Cancer Consortium; ICGC MMML-Seq Consortium. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.PubMedPubMedCentralCrossRef
52.
go back to reference Lu J, Wang XZ, Zhang TQ, Huang XY, Yao JG, Wang C, Wei ZH, Ma Y, Wu XM, Luo CY, Xia Q, Long XD. Prognostic significance of XRCC4 expression in hepatocellular carcinoma. Oncotarget. 2017;8(50):87955–70.PubMedPubMedCentralCrossRef Lu J, Wang XZ, Zhang TQ, Huang XY, Yao JG, Wang C, Wei ZH, Ma Y, Wu XM, Luo CY, Xia Q, Long XD. Prognostic significance of XRCC4 expression in hepatocellular carcinoma. Oncotarget. 2017;8(50):87955–70.PubMedPubMedCentralCrossRef
53.
go back to reference Sangro B, Gomez-Martin C, de la Mata M, Iñarrairaegui M, Garralda E, Barrera P, Riezu-Boj JI, Larrea E, Alfaro C, Sarobe P, Lasarte JJ, Pérez-Gracia JL, Melero I, Prieto J. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59(1):81–8.PubMedCrossRef Sangro B, Gomez-Martin C, de la Mata M, Iñarrairaegui M, Garralda E, Barrera P, Riezu-Boj JI, Larrea E, Alfaro C, Sarobe P, Lasarte JJ, Pérez-Gracia JL, Melero I, Prieto J. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59(1):81–8.PubMedCrossRef
54.
go back to reference Yang X, Smirnov A, Buonomo OC, Mauriello A, Shi Y, Bischof J, Woodsmith J, Melino G, Candi E, Bernassola F, TOR CENTRE. A primary luminal/HER2 negative breast cancer patient with mismatch repair deficiency. Cell Death Discov. 2023;9(1):365.PubMedPubMedCentralCrossRef Yang X, Smirnov A, Buonomo OC, Mauriello A, Shi Y, Bischof J, Woodsmith J, Melino G, Candi E, Bernassola F, TOR CENTRE. A primary luminal/HER2 negative breast cancer patient with mismatch repair deficiency. Cell Death Discov. 2023;9(1):365.PubMedPubMedCentralCrossRef
55.
go back to reference McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.PubMedPubMedCentralCrossRef McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.PubMedPubMedCentralCrossRef
56.
go back to reference van der Auwera G, O'Connor BD. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra. 2020: O'Reilly Media. Incorporated. van der Auwera G, O'Connor BD. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra. 2020: O'Reilly Media. Incorporated.
57.
go back to reference Kim S, Scheffler K, Halpern AL, Bekritsky MA, Noh E, Källberg M, Chen X, Kim Y, Beyter D, Krusche P, Saunders CT. Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods. 2018;15(8):591–4.PubMedCrossRef Kim S, Scheffler K, Halpern AL, Bekritsky MA, Noh E, Källberg M, Chen X, Kim Y, Beyter D, Krusche P, Saunders CT. Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods. 2018;15(8):591–4.PubMedCrossRef
58.
go back to reference Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, Weinstock GM, Wilson RK, Ding L. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics. 2009;25(17):2283–5.PubMedPubMedCentralCrossRef Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, Weinstock GM, Wilson RK, Ding L. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics. 2009;25(17):2283–5.PubMedPubMedCentralCrossRef
59.
go back to reference Larson DE, Harris CC, Chen K, Koboldt DC, Abbott TE, Dooling DJ, Ley TJ, Mardis ER, Wilson RK, Ding L. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics. 2012;28(3):311–7.PubMedCrossRef Larson DE, Harris CC, Chen K, Koboldt DC, Abbott TE, Dooling DJ, Ley TJ, Mardis ER, Wilson RK, Ding L. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics. 2012;28(3):311–7.PubMedCrossRef
60.
go back to reference Ha G, Roth A, Khattra J, Ho J, Yap D, Prentice LM, Melnyk N, McPherson A, Bashashati A, Laks E, Biele J, Ding J, Le A, Rosner J, Shumansky K, Marra MA, Gilks CB, Huntsman DG, McAlpine JN, Aparicio S, Shah SP. TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data. Genome Res. 2014;24(11):1881–93.PubMedPubMedCentralCrossRef Ha G, Roth A, Khattra J, Ho J, Yap D, Prentice LM, Melnyk N, McPherson A, Bashashati A, Laks E, Biele J, Ding J, Le A, Rosner J, Shumansky K, Marra MA, Gilks CB, Huntsman DG, McAlpine JN, Aparicio S, Shah SP. TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data. Genome Res. 2014;24(11):1881–93.PubMedPubMedCentralCrossRef
61.
go back to reference Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28(18):i333–9.PubMedPubMedCentralCrossRef Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28(18):i333–9.PubMedPubMedCentralCrossRef
62.
go back to reference Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, Cox AJ, Kruglyak S, Saunders CT. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32(8):1220–2.PubMedCrossRef Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, Cox AJ, Kruglyak S, Saunders CT. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32(8):1220–2.PubMedCrossRef
63.
go back to reference Han Y, Rovella V, Smirnov A, Buonomo OC, Mauriello A, Perretta T, Shi Y, Woodmsith J, Bischof J, Melino Candi G, Bernassola E, F TOR CENTRE. A BRCA2 germline mutation and high expression of immune checkpoints in a TNBC patient. Cell Death Discov. 2023;9(1):370.PubMedPubMedCentralCrossRef Han Y, Rovella V, Smirnov A, Buonomo OC, Mauriello A, Perretta T, Shi Y, Woodmsith J, Bischof J, Melino Candi G, Bernassola E, F TOR CENTRE. A BRCA2 germline mutation and high expression of immune checkpoints in a TNBC patient. Cell Death Discov. 2023;9(1):370.PubMedPubMedCentralCrossRef
65.
go back to reference Manders F, Brandsma AM, de Kanter J, Verheul M, Oka R, van Roosmalen MJ, van der Roest B, van Hoeck A, Cuppen E, van Boxtel R. MutationalPatterns: the one stop shop for the analysis of mutational processes. BMC Genomics. 2022;23(1):134.PubMedPubMedCentralCrossRef Manders F, Brandsma AM, de Kanter J, Verheul M, Oka R, van Roosmalen MJ, van der Roest B, van Hoeck A, Cuppen E, van Boxtel R. MutationalPatterns: the one stop shop for the analysis of mutational processes. BMC Genomics. 2022;23(1):134.PubMedPubMedCentralCrossRef
66.
go back to reference Huang MN, McPherson JR, Cutcutache I, Teh BT, Tan P, Rozen SG. MSIseq: software for assessing microsatellite instability from catalogs of somatic mutations. Sci Rep. 2015;26(5):13321.CrossRef Huang MN, McPherson JR, Cutcutache I, Teh BT, Tan P, Rozen SG. MSIseq: software for assessing microsatellite instability from catalogs of somatic mutations. Sci Rep. 2015;26(5):13321.CrossRef
67.
go back to reference Oza VH, Fisher JL, Darji R, Lasseigne BN. CINmetrics: an R package for analyzing copy number aberrations as a measure of chromosomal instability. PeerJ. 2023;25(11): e15244.CrossRef Oza VH, Fisher JL, Darji R, Lasseigne BN. CINmetrics: an R package for analyzing copy number aberrations as a measure of chromosomal instability. PeerJ. 2023;25(11): e15244.CrossRef
Metadata
Title
Genomic and transcriptomic profiling of hepatocellular carcinoma reveals a rare molecular subtype
Authors
Mengting Zhu
Valentina Rovella
Manuel Scimeca
Alessandro Mauriello
Yufang Shi
Julia Bischof
Jonathan Woodsmith
Alessandro Anselmo
Gerry Melino
Giuseppe Tisone
Massimiliano Agostini
Publication date
01-12-2024
Publisher
Springer US
Published in
Discover Oncology / Issue 1/2024
Print ISSN: 1868-8497
Electronic ISSN: 2730-6011
DOI
https://doi.org/10.1007/s12672-023-00850-9

Other articles of this Issue 1/2024

Discover Oncology 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine