Skip to main content
Top
Published in: Cancer Cell International 1/2024

Open Access 01-12-2024 | Hepatocellular Carcinoma | Review

Biological roles of SLC16A1-AS1 lncRNA and its clinical impacts in tumors

Authors: Bing Liao, Jialing Wang, Yalin Yuan, Hongliang Luo, Xi Ouyang

Published in: Cancer Cell International | Issue 1/2024

Login to get access

Abstract

Recent studies have increasingly highlighted the aberrant expression of SLC16A1-AS1 in a variety of tumor types, where it functions as either an oncogene or a tumor suppressor in the pathogenesis of different cancers. The expression levels of SLC16A1-AS1 have been found to significantly correlate with clinical features and the prognosis of cancer patients. Furthermore, SLC16A1-AS1 modulates a range of cellular functions, including proliferation, migration, and invasion, through its interactions with diverse molecules and signaling pathways. This review examines the latest evidence regarding the role of SLC16A1-AS1 in the progression of various tumors and explores its potential clinical applications as a novel prognostic and diagnostic biomarker. Our comprehensive review aims to deepen the understanding of SLC16A1-AS1’s multifaceted role in oncology, underscoring its potential as a significant biomarker and therapeutic target.
Literature
5.
go back to reference Jarroux J, Morillon A, Pinskaya M. History, Discovery, and classification of lncRNAs. Adv Exp Med Biol. 2017;1008:1–46.PubMedCrossRef Jarroux J, Morillon A, Pinskaya M. History, Discovery, and classification of lncRNAs. Adv Exp Med Biol. 2017;1008:1–46.PubMedCrossRef
7.
go back to reference Louro R, Smirnova AS, Verjovski-Almeida S. Long intronic noncoding RNA transcription: expression noise or expression choice? Genomics. 2009;93(4):291–8.PubMedCrossRef Louro R, Smirnova AS, Verjovski-Almeida S. Long intronic noncoding RNA transcription: expression noise or expression choice? Genomics. 2009;93(4):291–8.PubMedCrossRef
8.
go back to reference Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet, 2006. 15 Spec No 1: p. R17-29. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet, 2006. 15 Spec No 1: p. R17-29.
9.
11.
go back to reference Agnelli L, Bortoluzzi S, Pruneri G. Bioinformatic pipelines to analyze lncRNAs RNAseq Data. Methods Mol Biol. 2021;2348:55–69.PubMedCrossRef Agnelli L, Bortoluzzi S, Pruneri G. Bioinformatic pipelines to analyze lncRNAs RNAseq Data. Methods Mol Biol. 2021;2348:55–69.PubMedCrossRef
12.
go back to reference Chu C, Spitale RC, Chang HY. Technologies to probe functions and mechanisms of long noncoding RNAs. Nat Struct Mol Biol. 2015;22(1):29–35.PubMedCrossRef Chu C, Spitale RC, Chang HY. Technologies to probe functions and mechanisms of long noncoding RNAs. Nat Struct Mol Biol. 2015;22(1):29–35.PubMedCrossRef
13.
go back to reference Signal B, Gloss BS, Dinger ME. Computational approaches for functional prediction and characterisation of long noncoding RNAs. Trends Genet. 2016;32(10):620–37.PubMedCrossRef Signal B, Gloss BS, Dinger ME. Computational approaches for functional prediction and characterisation of long noncoding RNAs. Trends Genet. 2016;32(10):620–37.PubMedCrossRef
14.
go back to reference Iwakiri J, Hamada M, Asai K. Bioinformatics tools for lncRNA research. Biochim Biophys Acta. 2016;1859(1):23–30.PubMedCrossRef Iwakiri J, Hamada M, Asai K. Bioinformatics tools for lncRNA research. Biochim Biophys Acta. 2016;1859(1):23–30.PubMedCrossRef
15.
17.
go back to reference Hu SP, et al. LncRNA HCP5 as a potential therapeutic target and prognostic biomarker for various cancers: a meta–analysis and bioinformatics analysis. Cancer Cell Int. 2021;21(1):686.PubMedPubMedCentralCrossRef Hu SP, et al. LncRNA HCP5 as a potential therapeutic target and prognostic biomarker for various cancers: a meta–analysis and bioinformatics analysis. Cancer Cell Int. 2021;21(1):686.PubMedPubMedCentralCrossRef
18.
go back to reference Zhang L, Sun H, Chen X. Long noncoding RNAs in human reproductive processes and diseases. Mol Reprod Dev. 2024;91(1):e23728.PubMedCrossRef Zhang L, Sun H, Chen X. Long noncoding RNAs in human reproductive processes and diseases. Mol Reprod Dev. 2024;91(1):e23728.PubMedCrossRef
19.
go back to reference Tavares ESJ et al. The impact of long noncoding RNAs in tissue regeneration and senescence. Cells, 2024. 13(2). Tavares ESJ et al. The impact of long noncoding RNAs in tissue regeneration and senescence. Cells, 2024. 13(2).
20.
21.
22.
go back to reference Rajagopal T, et al. HOTAIR LncRNA: a novel oncogenic propellant in human cancer. Clin Chim Acta. 2020;503:1–18.PubMedCrossRef Rajagopal T, et al. HOTAIR LncRNA: a novel oncogenic propellant in human cancer. Clin Chim Acta. 2020;503:1–18.PubMedCrossRef
23.
go back to reference Hajjari M, Salavaty A. HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer Biol Med. 2015;12(1):1–9.PubMedPubMedCentral Hajjari M, Salavaty A. HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer Biol Med. 2015;12(1):1–9.PubMedPubMedCentral
24.
go back to reference Kuo FC, et al. LncRNA HOTAIR impairs the prognosis of papillary thyroid cancer via regulating cellular malignancy and epigenetically suppressing DLX1. Cancer Cell Int. 2022;22(1):396.PubMedPubMedCentralCrossRef Kuo FC, et al. LncRNA HOTAIR impairs the prognosis of papillary thyroid cancer via regulating cellular malignancy and epigenetically suppressing DLX1. Cancer Cell Int. 2022;22(1):396.PubMedPubMedCentralCrossRef
26.
go back to reference Hakami MA, et al. A key regulator of the Wnt/β-catenin signaling cascade in cancer progression and treatment. Pathol Res Pract. 2024;253:154957.PubMedCrossRef Hakami MA, et al. A key regulator of the Wnt/β-catenin signaling cascade in cancer progression and treatment. Pathol Res Pract. 2024;253:154957.PubMedCrossRef
27.
go back to reference Wang J, et al. Long noncoding RNA HOTAIR regulates the stemness of breast cancer cells via activation of the NF-κB signaling pathway. J Biol Chem. 2022;298(12):102630.PubMedPubMedCentralCrossRef Wang J, et al. Long noncoding RNA HOTAIR regulates the stemness of breast cancer cells via activation of the NF-κB signaling pathway. J Biol Chem. 2022;298(12):102630.PubMedPubMedCentralCrossRef
28.
go back to reference Sadeghalvad M, et al. Long non-coding RNA HOTAIR induces the PI3K/AKT/mTOR signaling pathway in breast cancer cells. Rev Assoc Med Bras (1992). 2022;68(4):456–62.PubMedCrossRef Sadeghalvad M, et al. Long non-coding RNA HOTAIR induces the PI3K/AKT/mTOR signaling pathway in breast cancer cells. Rev Assoc Med Bras (1992). 2022;68(4):456–62.PubMedCrossRef
29.
go back to reference Ma Y, et al. Long non-coding RNA HOTAIR promotes cancer cell energy metabolism in pancreatic adenocarcinoma by upregulating hexokinase-2. Oncol Lett. 2019;18(3):2212–9.PubMedPubMedCentral Ma Y, et al. Long non-coding RNA HOTAIR promotes cancer cell energy metabolism in pancreatic adenocarcinoma by upregulating hexokinase-2. Oncol Lett. 2019;18(3):2212–9.PubMedPubMedCentral
30.
go back to reference Hu M, et al. LncRNA HOTAIR knockdown inhibits glycolysis by regulating miR-130a-3p/HIF1A in hepatocellular carcinoma under hypoxia. Biomed Pharmacother. 2020;125:109703.PubMedCrossRef Hu M, et al. LncRNA HOTAIR knockdown inhibits glycolysis by regulating miR-130a-3p/HIF1A in hepatocellular carcinoma under hypoxia. Biomed Pharmacother. 2020;125:109703.PubMedCrossRef
31.
go back to reference Wei S, et al. Promotion of glycolysis by HOTAIR through GLUT1 upregulation via mTOR signaling. Oncol Rep. 2017;38(3):1902–8.PubMedCrossRef Wei S, et al. Promotion of glycolysis by HOTAIR through GLUT1 upregulation via mTOR signaling. Oncol Rep. 2017;38(3):1902–8.PubMedCrossRef
33.
go back to reference Ma Q et al. Inducible lncRNA transgenic mice reveal continual role of HOTAIR in promoting breast cancer metastasis. Elife, 2022. 11. Ma Q et al. Inducible lncRNA transgenic mice reveal continual role of HOTAIR in promoting breast cancer metastasis. Elife, 2022. 11.
34.
37.
go back to reference Zhu JQ, et al. Sodium fluoride disrupts DNA methylation of H19 and Peg3 imprinted genes during the early development of mouse embryo. Arch Toxicol. 2014;88(2):241–8.PubMedCrossRef Zhu JQ, et al. Sodium fluoride disrupts DNA methylation of H19 and Peg3 imprinted genes during the early development of mouse embryo. Arch Toxicol. 2014;88(2):241–8.PubMedCrossRef
38.
go back to reference Ratajczak MZ. Igf2-H19, an imprinted tandem gene, is an important regulator of embryonic development, a guardian of proliferation of adult pluripotent stem cells, a regulator of longevity, and a ‘passkey’ to cancerogenesis. Folia Histochem Cytobiol. 2012;50(2):171–9.PubMedCrossRef Ratajczak MZ. Igf2-H19, an imprinted tandem gene, is an important regulator of embryonic development, a guardian of proliferation of adult pluripotent stem cells, a regulator of longevity, and a ‘passkey’ to cancerogenesis. Folia Histochem Cytobiol. 2012;50(2):171–9.PubMedCrossRef
39.
go back to reference Tabano S, et al. Epigenetic modulation of the IGF2/H19 imprinted domain in human embryonic and extra-embryonic compartments and its possible role in fetal growth restriction. Epigenetics. 2010;5(4):313–24.PubMedCrossRef Tabano S, et al. Epigenetic modulation of the IGF2/H19 imprinted domain in human embryonic and extra-embryonic compartments and its possible role in fetal growth restriction. Epigenetics. 2010;5(4):313–24.PubMedCrossRef
40.
go back to reference Gabory A, Jammes H, Dandolo L. The H19 locus: role of an imprinted non-coding RNA in growth and development. BioEssays. 2010;32(6):473–80.PubMedCrossRef Gabory A, Jammes H, Dandolo L. The H19 locus: role of an imprinted non-coding RNA in growth and development. BioEssays. 2010;32(6):473–80.PubMedCrossRef
41.
go back to reference Gabory A, et al. The H19 gene: regulation and function of a non-coding RNA. Cytogenet Genome Res. 2006;113(1–4):188–93.PubMedCrossRef Gabory A, et al. The H19 gene: regulation and function of a non-coding RNA. Cytogenet Genome Res. 2006;113(1–4):188–93.PubMedCrossRef
42.
go back to reference Viville S, Surani MA. Towards unravelling the Igf2/H19 imprinted domain. BioEssays. 1995;17(10):835–8.PubMedCrossRef Viville S, Surani MA. Towards unravelling the Igf2/H19 imprinted domain. BioEssays. 1995;17(10):835–8.PubMedCrossRef
44.
go back to reference Yu L, et al. lncRNA-HIT promotes cell proliferation of non-small cell lung cancer by association with E2F1. Cancer Gene Ther. 2017;24(5):221–6.PubMedCrossRef Yu L, et al. lncRNA-HIT promotes cell proliferation of non-small cell lung cancer by association with E2F1. Cancer Gene Ther. 2017;24(5):221–6.PubMedCrossRef
45.
go back to reference Zhang J, et al. Lnc-LRRTM4 promotes proliferation, metastasis and EMT of colorectal cancer through activating LRRTM4 transcription. Cancer Cell Int. 2023;23(1):142.PubMedPubMedCentralCrossRef Zhang J, et al. Lnc-LRRTM4 promotes proliferation, metastasis and EMT of colorectal cancer through activating LRRTM4 transcription. Cancer Cell Int. 2023;23(1):142.PubMedPubMedCentralCrossRef
47.
go back to reference Tao T et al. The molecular mechanisms of LncRNA-correlated PKM2 in cancer metabolism. Biosci Rep, 2019. 39(11). Tao T et al. The molecular mechanisms of LncRNA-correlated PKM2 in cancer metabolism. Biosci Rep, 2019. 39(11).
49.
go back to reference Chen D, et al. LncRNA NEAT1 suppresses cellular senescence in hepatocellular carcinoma via KIF11-dependent repression of CDKN2A. Clin Transl Med. 2023;13(9):e1418.PubMedPubMedCentralCrossRef Chen D, et al. LncRNA NEAT1 suppresses cellular senescence in hepatocellular carcinoma via KIF11-dependent repression of CDKN2A. Clin Transl Med. 2023;13(9):e1418.PubMedPubMedCentralCrossRef
50.
51.
go back to reference Wang PS, Wang Z, Yang C. Dysregulations of long non-coding RNAs - the emerging lnc in environmental carcinogenesis. Semin Cancer Biol. 2021;76:163–72.PubMedPubMedCentralCrossRef Wang PS, Wang Z, Yang C. Dysregulations of long non-coding RNAs - the emerging lnc in environmental carcinogenesis. Semin Cancer Biol. 2021;76:163–72.PubMedPubMedCentralCrossRef
52.
go back to reference Nemeth K et al. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet, 2023. Nemeth K et al. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet, 2023.
53.
55.
go back to reference Ghasemian M, et al. Long non-coding RNA MIR4435-2HG: a key molecule in progression of cancer and non-cancerous disorders. Cancer Cell Int. 2022;22(1):215.PubMedPubMedCentralCrossRef Ghasemian M, et al. Long non-coding RNA MIR4435-2HG: a key molecule in progression of cancer and non-cancerous disorders. Cancer Cell Int. 2022;22(1):215.PubMedPubMedCentralCrossRef
56.
go back to reference Ma Y, et al. LncRNA: an important Regulator of Atherosclerosis. Curr Med Chem. 2023;30(38):4340–54.PubMedCrossRef Ma Y, et al. LncRNA: an important Regulator of Atherosclerosis. Curr Med Chem. 2023;30(38):4340–54.PubMedCrossRef
57.
go back to reference Mao Y, Yue H, Dong F. LncRNA CDKN2B-AS1 in atherosclerosis: friend or foe? Int J Cardiol. 2021;343:106.PubMedCrossRef Mao Y, Yue H, Dong F. LncRNA CDKN2B-AS1 in atherosclerosis: friend or foe? Int J Cardiol. 2021;343:106.PubMedCrossRef
58.
go back to reference Bian W, et al. Downregulation of LncRNA NORAD promotes Ox-LDL-induced vascular endothelial cell injury and atherosclerosis. Aging. 2020;12(7):6385–400.PubMedPubMedCentralCrossRef Bian W, et al. Downregulation of LncRNA NORAD promotes Ox-LDL-induced vascular endothelial cell injury and atherosclerosis. Aging. 2020;12(7):6385–400.PubMedPubMedCentralCrossRef
59.
go back to reference Li Y, et al. Targeting lncRNA NEAT1 hampers Alzheimer’s Disease Progression. Neuroscience. 2023;529:88–98.PubMedCrossRef Li Y, et al. Targeting lncRNA NEAT1 hampers Alzheimer’s Disease Progression. Neuroscience. 2023;529:88–98.PubMedCrossRef
61.
go back to reference Maoz R, Garfinkel BP, Soreq H. Alzheimer’s Disease and ncRNAs. Adv Exp Med Biol. 2017;978:337–61.PubMedCrossRef Maoz R, Garfinkel BP, Soreq H. Alzheimer’s Disease and ncRNAs. Adv Exp Med Biol. 2017;978:337–61.PubMedCrossRef
62.
go back to reference Lei HT, et al. LncRNA-mediated cell autophagy: an emerging field in bone destruction in rheumatoid arthritis. Biomed Pharmacother. 2023;168:115716.PubMedCrossRef Lei HT, et al. LncRNA-mediated cell autophagy: an emerging field in bone destruction in rheumatoid arthritis. Biomed Pharmacother. 2023;168:115716.PubMedCrossRef
63.
go back to reference Yang J, et al. The role of non-coding RNAs (miRNA and lncRNA) in the clinical management of rheumatoid arthritis. Pharmacol Res. 2022;186:106549.PubMedCrossRef Yang J, et al. The role of non-coding RNAs (miRNA and lncRNA) in the clinical management of rheumatoid arthritis. Pharmacol Res. 2022;186:106549.PubMedCrossRef
64.
go back to reference Li Z et al. Long non-coding RNAs in rheumatoid arthritis. Cell Prolif, 2018. 51(1). Li Z et al. Long non-coding RNAs in rheumatoid arthritis. Cell Prolif, 2018. 51(1).
67.
68.
go back to reference Ouyang J, et al. Long non-coding RNAs are involved in alternative splicing and promote cancer progression. Br J Cancer. 2022;126(8):1113–24.PubMedCrossRef Ouyang J, et al. Long non-coding RNAs are involved in alternative splicing and promote cancer progression. Br J Cancer. 2022;126(8):1113–24.PubMedCrossRef
69.
go back to reference Najafi S, et al. Long non-coding RNAs (lncRNAs); roles in tumorigenesis and potentials as biomarkers in cancer diagnosis. Exp Cell Res. 2022;418(2):113294.PubMedCrossRef Najafi S, et al. Long non-coding RNAs (lncRNAs); roles in tumorigenesis and potentials as biomarkers in cancer diagnosis. Exp Cell Res. 2022;418(2):113294.PubMedCrossRef
71.
go back to reference Chen Y, et al. Long non-coding RNAs: from disease code to drug role. Acta Pharm Sin B. 2021;11(2):340–54.PubMedCrossRef Chen Y, et al. Long non-coding RNAs: from disease code to drug role. Acta Pharm Sin B. 2021;11(2):340–54.PubMedCrossRef
72.
go back to reference Pierce JB, et al. Long noncoding RNAs as therapeutic targets. Adv Exp Med Biol. 2022;1363:161–75.PubMedCrossRef Pierce JB, et al. Long noncoding RNAs as therapeutic targets. Adv Exp Med Biol. 2022;1363:161–75.PubMedCrossRef
73.
go back to reference Nemeth K, et al. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet. 2024;25(3):211–32.PubMedCrossRef Nemeth K, et al. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet. 2024;25(3):211–32.PubMedCrossRef
74.
go back to reference Xing H, Meng L-h. CRISPR-cas9: a powerful tool towards precision medicine in cancer treatment. Acta Pharmacol Sin. 2020;41(5):583–7.PubMedCrossRef Xing H, Meng L-h. CRISPR-cas9: a powerful tool towards precision medicine in cancer treatment. Acta Pharmacol Sin. 2020;41(5):583–7.PubMedCrossRef
75.
go back to reference Srinivas T, Siqueira E, Guil S. Techniques for investigating lncRNA transcript functions in neurodevelopment. Mol Psychiatry, 2023. Srinivas T, Siqueira E, Guil S. Techniques for investigating lncRNA transcript functions in neurodevelopment. Mol Psychiatry, 2023.
76.
go back to reference Mahato RK, et al. Targeting long non-coding RNAs in cancer therapy using CRISPR-Cas9 technology: a novel paradigm for precision oncology. J Biotechnol. 2024;379:98–119.PubMedCrossRef Mahato RK, et al. Targeting long non-coding RNAs in cancer therapy using CRISPR-Cas9 technology: a novel paradigm for precision oncology. J Biotechnol. 2024;379:98–119.PubMedCrossRef
77.
go back to reference M SZ, Hartford CCR, Lal A. Interrogating lncRNA functions via CRISPR/Cas systems. RNA Biol. 2021;18(12):2097–106.CrossRef M SZ, Hartford CCR, Lal A. Interrogating lncRNA functions via CRISPR/Cas systems. RNA Biol. 2021;18(12):2097–106.CrossRef
78.
79.
go back to reference Mattick JS, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24(6):430–47.PubMedCrossRef Mattick JS, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24(6):430–47.PubMedCrossRef
81.
go back to reference Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10(6):925–33.PubMedCrossRef Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10(6):925–33.PubMedCrossRef
82.
go back to reference Yousefi H, et al. Long noncoding RNAs and exosomal lncRNAs: classification, and mechanisms in breast cancer metastasis and drug resistance. Oncogene. 2020;39(5):953–74.PubMedCrossRef Yousefi H, et al. Long noncoding RNAs and exosomal lncRNAs: classification, and mechanisms in breast cancer metastasis and drug resistance. Oncogene. 2020;39(5):953–74.PubMedCrossRef
83.
go back to reference Sebastian-delaCruz M et al. The role of lncRNAs in Gene expression regulation through mRNA stabilization. Noncoding RNA, 2021. 7(1). Sebastian-delaCruz M et al. The role of lncRNAs in Gene expression regulation through mRNA stabilization. Noncoding RNA, 2021. 7(1).
84.
go back to reference Statello L, et al. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118.PubMedCrossRef Statello L, et al. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118.PubMedCrossRef
87.
go back to reference Pisignano G, Ladomery M. Post-transcriptional regulation through long non-coding RNAs (lncRNAs). Noncoding RNA, 2021. 7(2). Pisignano G, Ladomery M. Post-transcriptional regulation through long non-coding RNAs (lncRNAs). Noncoding RNA, 2021. 7(2).
90.
92.
go back to reference Rehman SU, et al. Recent insights into the functions and mechanisms of antisense RNA: emerging applications in cancer therapy and precision medicine. Front Chem. 2023;11:1335330.PubMedCrossRef Rehman SU, et al. Recent insights into the functions and mechanisms of antisense RNA: emerging applications in cancer therapy and precision medicine. Front Chem. 2023;11:1335330.PubMedCrossRef
93.
go back to reference Jin Z, et al. MicroRNA-1269 is downregulated in glioblastoma and its maturation is regulated by long non-coding RNA SLC16A1 antisense RNA 1. Bioengineered. 2022;13(5):12749–59.PubMedPubMedCentralCrossRef Jin Z, et al. MicroRNA-1269 is downregulated in glioblastoma and its maturation is regulated by long non-coding RNA SLC16A1 antisense RNA 1. Bioengineered. 2022;13(5):12749–59.PubMedPubMedCentralCrossRef
94.
go back to reference Long Y, et al. LncRNA SLC16A1-AS1 is upregulated in Glioblastoma and promotes Cancer Cell Proliferation by regulating miR-149 methylation. Cancer Manag Res. 2021;13:1215–23.PubMedPubMedCentralCrossRef Long Y, et al. LncRNA SLC16A1-AS1 is upregulated in Glioblastoma and promotes Cancer Cell Proliferation by regulating miR-149 methylation. Cancer Manag Res. 2021;13:1215–23.PubMedPubMedCentralCrossRef
95.
go back to reference Li T, Wang D, Yang S. Analysis of the subcellular location of lncRNA SLC16A1-AS1 and its interaction with premature mir-5088-5p in oral squamous cell carcinoma. Odontology. 2023;111(1):41–8.PubMedCrossRef Li T, Wang D, Yang S. Analysis of the subcellular location of lncRNA SLC16A1-AS1 and its interaction with premature mir-5088-5p in oral squamous cell carcinoma. Odontology. 2023;111(1):41–8.PubMedCrossRef
96.
go back to reference Feng H, et al. Long non-coding RNA SLC16A1-AS1: its multiple tumorigenesis features and regulatory role in cell cycle in oral squamous cell carcinoma. Cell Cycle. 2020;19(13):1641–53.PubMedPubMedCentralCrossRef Feng H, et al. Long non-coding RNA SLC16A1-AS1: its multiple tumorigenesis features and regulatory role in cell cycle in oral squamous cell carcinoma. Cell Cycle. 2020;19(13):1641–53.PubMedPubMedCentralCrossRef
97.
go back to reference Tian J, Hu D. LncRNA SLC16A1-AS1 is upregulated in hepatocellular carcinoma and predicts poor survival. Clin Res Hepatol Gastroenterol. 2021;45(2):101490.PubMedCrossRef Tian J, Hu D. LncRNA SLC16A1-AS1 is upregulated in hepatocellular carcinoma and predicts poor survival. Clin Res Hepatol Gastroenterol. 2021;45(2):101490.PubMedCrossRef
98.
go back to reference Pei S, et al. SLC16A1-AS1 enhances radiosensitivity and represses cell proliferation and invasion by regulating the miR-301b-3p/CHD5 axis in hepatocellular carcinoma. Environ Sci Pollut Res Int. 2020;27(34):42778–90.PubMedCrossRef Pei S, et al. SLC16A1-AS1 enhances radiosensitivity and represses cell proliferation and invasion by regulating the miR-301b-3p/CHD5 axis in hepatocellular carcinoma. Environ Sci Pollut Res Int. 2020;27(34):42778–90.PubMedCrossRef
99.
go back to reference Duan C. LncRNA SLC16A1-AS1 contributes to the progression of hepatocellular carcinoma cells by modulating miR-411/MITD1 axis. J Clin Lab Anal. 2022;36(4):e24344.PubMedPubMedCentralCrossRef Duan C. LncRNA SLC16A1-AS1 contributes to the progression of hepatocellular carcinoma cells by modulating miR-411/MITD1 axis. J Clin Lab Anal. 2022;36(4):e24344.PubMedPubMedCentralCrossRef
100.
go back to reference Song M, et al. Large-scale analyses identify a cluster of novel long noncoding RNAs as potential competitive endogenous RNAs in progression of hepatocellular carcinoma. Aging. 2019;11(22):10422–53.PubMedPubMedCentralCrossRef Song M, et al. Large-scale analyses identify a cluster of novel long noncoding RNAs as potential competitive endogenous RNAs in progression of hepatocellular carcinoma. Aging. 2019;11(22):10422–53.PubMedPubMedCentralCrossRef
101.
go back to reference Li YZ, et al. Silencing lncRNA SLC16A1-AS1 Induced Ferroptosis in Renal Cell Carcinoma through miR-143-3p/SLC7A11 signaling. Technol Cancer Res Treat. 2022;21:15330338221077803.PubMedPubMedCentralCrossRef Li YZ, et al. Silencing lncRNA SLC16A1-AS1 Induced Ferroptosis in Renal Cell Carcinoma through miR-143-3p/SLC7A11 signaling. Technol Cancer Res Treat. 2022;21:15330338221077803.PubMedPubMedCentralCrossRef
102.
go back to reference Logotheti S, et al. LncRNA-SLC16A1-AS1 induces metabolic reprogramming during bladder Cancer progression as target and co-activator of E2F1. Theranostics. 2020;10(21):9620–43.PubMedPubMedCentralCrossRef Logotheti S, et al. LncRNA-SLC16A1-AS1 induces metabolic reprogramming during bladder Cancer progression as target and co-activator of E2F1. Theranostics. 2020;10(21):9620–43.PubMedPubMedCentralCrossRef
103.
go back to reference Zhang H, et al. LncRNA SLC16A1-AS1 suppresses cell proliferation in cervical squamous cell carcinoma (CSCC) through the miR-194/SOCS2 Axis. Cancer Manag Res. 2021;13:1299–306.PubMedPubMedCentralCrossRef Zhang H, et al. LncRNA SLC16A1-AS1 suppresses cell proliferation in cervical squamous cell carcinoma (CSCC) through the miR-194/SOCS2 Axis. Cancer Manag Res. 2021;13:1299–306.PubMedPubMedCentralCrossRef
104.
go back to reference Zhao X, et al. MiR-526b targets lncRNA SLC16A1-AS1 to suppress cell proliferation in triple-negative breast cancer. J Biochem Mol Toxicol. 2023;37(3):e23247.PubMedCrossRef Zhao X, et al. MiR-526b targets lncRNA SLC16A1-AS1 to suppress cell proliferation in triple-negative breast cancer. J Biochem Mol Toxicol. 2023;37(3):e23247.PubMedCrossRef
105.
go back to reference Jiang B, Xia J, Zhou X. Overexpression of lncRNA SLC16A1-AS1 suppresses the growth and metastasis of breast Cancer via the miR-552-5p/WIF1 signaling pathway. Front Oncol. 2022;12:712475.PubMedPubMedCentralCrossRef Jiang B, Xia J, Zhou X. Overexpression of lncRNA SLC16A1-AS1 suppresses the growth and metastasis of breast Cancer via the miR-552-5p/WIF1 signaling pathway. Front Oncol. 2022;12:712475.PubMedPubMedCentralCrossRef
106.
go back to reference Jiang B, et al. LncRNA SLC16A1-AS1 regulates the miR-182/PDCD4 axis and inhibits the triple-negative breast cancer cell cycle. Immunopharmacol Immunotoxicol. 2022;44(4):534–40.PubMedCrossRef Jiang B, et al. LncRNA SLC16A1-AS1 regulates the miR-182/PDCD4 axis and inhibits the triple-negative breast cancer cell cycle. Immunopharmacol Immunotoxicol. 2022;44(4):534–40.PubMedCrossRef
107.
go back to reference Rothzerg E et al. Upregulation of 15 antisense long non-coding RNAs in Osteosarcoma. Genes (Basel), 2021. 12(8). Rothzerg E et al. Upregulation of 15 antisense long non-coding RNAs in Osteosarcoma. Genes (Basel), 2021. 12(8).
108.
go back to reference Liu HY, et al. lncRNA SLC16A1-AS1 as a novel prognostic biomarker in non-small cell lung cancer. J Investig Med. 2020;68(1):52–9.PubMedCrossRef Liu HY, et al. lncRNA SLC16A1-AS1 as a novel prognostic biomarker in non-small cell lung cancer. J Investig Med. 2020;68(1):52–9.PubMedCrossRef
113.
go back to reference Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Radic Biol Med. 2019;133:130–43.PubMedCrossRef Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Radic Biol Med. 2019;133:130–43.PubMedCrossRef
114.
go back to reference Lee J, Roh JL. SLC7A11 as a gateway of metabolic perturbation and ferroptosis vulnerability in Cancer. Antioxid (Basel), 2022. 11(12). Lee J, Roh JL. SLC7A11 as a gateway of metabolic perturbation and ferroptosis vulnerability in Cancer. Antioxid (Basel), 2022. 11(12).
115.
go back to reference Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12(8):599–620.PubMedCrossRef Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12(8):599–620.PubMedCrossRef
116.
go back to reference Lin W, et al. SLC7A11/xCT in cancer: biological functions and therapeutic implications. Am J Cancer Res. 2020;10(10):3106–26.PubMedPubMedCentral Lin W, et al. SLC7A11/xCT in cancer: biological functions and therapeutic implications. Am J Cancer Res. 2020;10(10):3106–26.PubMedPubMedCentral
117.
go back to reference Denechaud PD, Fajas L, Giralt A. E2F1, a Novel Regulator of Metabolism. Front Endocrinol (Lausanne). 2017;8:311.PubMedCrossRef Denechaud PD, Fajas L, Giralt A. E2F1, a Novel Regulator of Metabolism. Front Endocrinol (Lausanne). 2017;8:311.PubMedCrossRef
119.
go back to reference Zu ML, et al. Gypenoside LI arrests the cell cycle of breast cancer in G0/G1 phase by down-regulating E2F1. J Ethnopharmacol. 2021;273:114017.PubMedCrossRef Zu ML, et al. Gypenoside LI arrests the cell cycle of breast cancer in G0/G1 phase by down-regulating E2F1. J Ethnopharmacol. 2021;273:114017.PubMedCrossRef
120.
go back to reference Li P, et al. E2F transcription factor 1 is involved in the phenotypic modulation of esophageal squamous cell carcinoma cells via microRNA-375. Bioengineered. 2021;12(2):10047–62.PubMedPubMedCentralCrossRef Li P, et al. E2F transcription factor 1 is involved in the phenotypic modulation of esophageal squamous cell carcinoma cells via microRNA-375. Bioengineered. 2021;12(2):10047–62.PubMedPubMedCentralCrossRef
121.
go back to reference Shen C, et al. [Advancement of E2F1 in Common Tumors]. Zhongguo Fei Ai Za Zhi. 2020;23(10):921–6.PubMed Shen C, et al. [Advancement of E2F1 in Common Tumors]. Zhongguo Fei Ai Za Zhi. 2020;23(10):921–6.PubMed
122.
go back to reference Ohshima K, Morii E. Metabolic reprogramming of Cancer cells during Tumor Progression and Metastasis. Metabolites, 2021. 11(1). Ohshima K, Morii E. Metabolic reprogramming of Cancer cells during Tumor Progression and Metastasis. Metabolites, 2021. 11(1).
123.
go back to reference Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21(10):669–80.PubMedCrossRef Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21(10):669–80.PubMedCrossRef
124.
go back to reference Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science, 2020. 368(6487). Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science, 2020. 368(6487).
126.
go back to reference Schiliro C, Firestein BL. Mechanisms of metabolic reprogramming in Cancer cells supporting enhanced growth and proliferation. Cells, 2021. 10(5). Schiliro C, Firestein BL. Mechanisms of metabolic reprogramming in Cancer cells supporting enhanced growth and proliferation. Cells, 2021. 10(5).
127.
go back to reference DeBerardinis RJ, et al. The Biology of Cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metabol. 2008;7(1):11–20.CrossRef DeBerardinis RJ, et al. The Biology of Cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metabol. 2008;7(1):11–20.CrossRef
128.
go back to reference Wang B, et al. MiR-194, commonly repressed in colorectal cancer, suppresses tumor growth by regulating the MAP4K4/c-Jun/MDM2 signaling pathway. Cell Cycle. 2015;14(7):1046–58.PubMedPubMedCentralCrossRef Wang B, et al. MiR-194, commonly repressed in colorectal cancer, suppresses tumor growth by regulating the MAP4K4/c-Jun/MDM2 signaling pathway. Cell Cycle. 2015;14(7):1046–58.PubMedPubMedCentralCrossRef
129.
go back to reference Huang P, et al. Genome-wide association studies identify miRNA-194 as a prognostic biomarker for gastrointestinal cancer by targeting ATP6V1F, PPP1R14B, BTF3L4 and SLC7A5. Front Oncol. 2022;12:1025594.PubMedPubMedCentralCrossRef Huang P, et al. Genome-wide association studies identify miRNA-194 as a prognostic biomarker for gastrointestinal cancer by targeting ATP6V1F, PPP1R14B, BTF3L4 and SLC7A5. Front Oncol. 2022;12:1025594.PubMedPubMedCentralCrossRef
130.
go back to reference Yin W, Shi L, Mao Y. MiR-194 regulates nasopharyngeal carcinoma progression by modulating MAP3K3 expression. FEBS Open Bio. 2019;9(1):43–52.PubMedCrossRef Yin W, Shi L, Mao Y. MiR-194 regulates nasopharyngeal carcinoma progression by modulating MAP3K3 expression. FEBS Open Bio. 2019;9(1):43–52.PubMedCrossRef
131.
go back to reference Vitali C, et al. SOCS2 controls proliferation and stemness of Hematopoietic Cells under stress conditions and its Deregulation Marks unfavorable Acute Leukemias. Cancer Res. 2015;75(11):2387–99.PubMedCrossRef Vitali C, et al. SOCS2 controls proliferation and stemness of Hematopoietic Cells under stress conditions and its Deregulation Marks unfavorable Acute Leukemias. Cancer Res. 2015;75(11):2387–99.PubMedCrossRef
132.
go back to reference Jian F, et al. The long-noncoding RNA SOCS2-AS1 suppresses endometrial cancer progression by regulating AURKA degradation. Cell Death Dis. 2021;12(4):351.PubMedPubMedCentralCrossRef Jian F, et al. The long-noncoding RNA SOCS2-AS1 suppresses endometrial cancer progression by regulating AURKA degradation. Cell Death Dis. 2021;12(4):351.PubMedPubMedCentralCrossRef
133.
go back to reference Cabrera-Galván JJ, et al. SOCS2 protects against chemical-induced hepatocellular carcinoma progression by modulating inflammation and cell proliferation in the liver. Biomed Pharmacother. 2023;157:114060.PubMedCrossRef Cabrera-Galván JJ, et al. SOCS2 protects against chemical-induced hepatocellular carcinoma progression by modulating inflammation and cell proliferation in the liver. Biomed Pharmacother. 2023;157:114060.PubMedCrossRef
134.
go back to reference Masuzaki R et al. Suppressors of Cytokine Signaling and Hepatocellular Carcinoma. Cancers (Basel), 2022. 14(10). Masuzaki R et al. Suppressors of Cytokine Signaling and Hepatocellular Carcinoma. Cancers (Basel), 2022. 14(10).
135.
go back to reference Wan W, et al. Isoprenylcysteine carboxyl methyltransferase is critical for glioblastoma growth and survival by activating Ras/Raf/Mek/Erk. Cancer Chemother Pharmacol. 2022;89(3):401–11.PubMedCrossRef Wan W, et al. Isoprenylcysteine carboxyl methyltransferase is critical for glioblastoma growth and survival by activating Ras/Raf/Mek/Erk. Cancer Chemother Pharmacol. 2022;89(3):401–11.PubMedCrossRef
136.
go back to reference Steelman LS, et al. Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia. 2011;25(7):1080–94.PubMedCrossRef Steelman LS, et al. Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia. 2011;25(7):1080–94.PubMedCrossRef
137.
go back to reference McCubrey JA, et al. Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia. 2008;22(4):708–22.PubMedCrossRef McCubrey JA, et al. Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia. 2008;22(4):708–22.PubMedCrossRef
138.
go back to reference Ufuk A et al. Monocarboxylate transporters are involved in Extracellular Matrix Remodelling in Pancreatic Ductal Adenocarcinoma. Cancers (Basel), 2022. 14(5). Ufuk A et al. Monocarboxylate transporters are involved in Extracellular Matrix Remodelling in Pancreatic Ductal Adenocarcinoma. Cancers (Basel), 2022. 14(5).
139.
140.
go back to reference Poursheikhani A, et al. Integration analysis of long non-coding RNA (lncRNA) role in tumorigenesis of colon adenocarcinoma. BMC Med Genomics. 2020;13(1):108.PubMedPubMedCentralCrossRef Poursheikhani A, et al. Integration analysis of long non-coding RNA (lncRNA) role in tumorigenesis of colon adenocarcinoma. BMC Med Genomics. 2020;13(1):108.PubMedPubMedCentralCrossRef
141.
go back to reference Gong M, et al. Upregulation of BMP1 through ncRNAs correlates with adverse outcomes and immune infiltration in clear cell renal cell carcinoma. Eur J Med Res. 2023;28(1):440.PubMedPubMedCentralCrossRef Gong M, et al. Upregulation of BMP1 through ncRNAs correlates with adverse outcomes and immune infiltration in clear cell renal cell carcinoma. Eur J Med Res. 2023;28(1):440.PubMedPubMedCentralCrossRef
142.
143.
go back to reference Zhou X, et al. m6A-related long noncoding RNAs predict prognosis and indicate therapeutic response in endometrial carcinoma. J Clin Lab Anal. 2023;37(1):e24813.PubMedCrossRef Zhou X, et al. m6A-related long noncoding RNAs predict prognosis and indicate therapeutic response in endometrial carcinoma. J Clin Lab Anal. 2023;37(1):e24813.PubMedCrossRef
144.
go back to reference Tang Z, et al. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–w560.PubMedPubMedCentralCrossRef Tang Z, et al. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–w560.PubMedPubMedCentralCrossRef
145.
go back to reference Liu S, et al. COLGALT1 is a potential biomarker for predicting prognosis and immune responses for kidney renal clear cell carcinoma and its mechanisms of ceRNA networks. Eur J Med Res. 2022;27(1):122.PubMedPubMedCentralCrossRef Liu S, et al. COLGALT1 is a potential biomarker for predicting prognosis and immune responses for kidney renal clear cell carcinoma and its mechanisms of ceRNA networks. Eur J Med Res. 2022;27(1):122.PubMedPubMedCentralCrossRef
146.
147.
go back to reference Xiong Y, et al. The VIM-AS1/miR-655/ZEB1 axis modulates bladder cancer cell metastasis by regulating epithelial-mesenchymal transition. Cancer Cell Int. 2021;21(1):233.PubMedPubMedCentralCrossRef Xiong Y, et al. The VIM-AS1/miR-655/ZEB1 axis modulates bladder cancer cell metastasis by regulating epithelial-mesenchymal transition. Cancer Cell Int. 2021;21(1):233.PubMedPubMedCentralCrossRef
149.
go back to reference Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 2019;19(7):405–14.PubMedCrossRef Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 2019;19(7):405–14.PubMedCrossRef
150.
go back to reference Roh J et al. The involvement of long non-coding RNAs in glutamine-metabolic reprogramming and therapeutic resistance in Cancer. Int J Mol Sci, 2022. 23(23). Roh J et al. The involvement of long non-coding RNAs in glutamine-metabolic reprogramming and therapeutic resistance in Cancer. Int J Mol Sci, 2022. 23(23).
151.
go back to reference Weber DG, et al. Evaluation of long noncoding RNA MALAT1 as a candidate blood-based biomarker for the diagnosis of non-small cell lung cancer. BMC Res Notes. 2013;6:518.PubMedPubMedCentralCrossRef Weber DG, et al. Evaluation of long noncoding RNA MALAT1 as a candidate blood-based biomarker for the diagnosis of non-small cell lung cancer. BMC Res Notes. 2013;6:518.PubMedPubMedCentralCrossRef
152.
go back to reference Ren S, et al. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. Eur J Cancer. 2013;49(13):2949–59.PubMedCrossRef Ren S, et al. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. Eur J Cancer. 2013;49(13):2949–59.PubMedCrossRef
153.
go back to reference Mohyeldeen M, et al. Serum expression and diagnostic potential of long non-coding RNAs NEAT1 and TUG1 in viral hepatitis C and viral hepatitis C-associated hepatocellular carcinoma. Clin Biochem. 2020;84:38–44.PubMedCrossRef Mohyeldeen M, et al. Serum expression and diagnostic potential of long non-coding RNAs NEAT1 and TUG1 in viral hepatitis C and viral hepatitis C-associated hepatocellular carcinoma. Clin Biochem. 2020;84:38–44.PubMedCrossRef
154.
go back to reference Yin Q, et al. Elevated serum lncRNA TUG1 levels are a potential diagnostic biomarker of multiple myeloma. Exp Hematol. 2019;79:47–55e2.PubMedCrossRef Yin Q, et al. Elevated serum lncRNA TUG1 levels are a potential diagnostic biomarker of multiple myeloma. Exp Hematol. 2019;79:47–55e2.PubMedCrossRef
Metadata
Title
Biological roles of SLC16A1-AS1 lncRNA and its clinical impacts in tumors
Authors
Bing Liao
Jialing Wang
Yalin Yuan
Hongliang Luo
Xi Ouyang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2024
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-024-03285-6

Other articles of this Issue 1/2024

Cancer Cell International 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine