Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Hepatocellular Carcinoma | Research

Anti-cancer effect of nano-encapsulated boswellic acids, curcumin and naringenin against HepG-2 cell line

Authors: Sally Elnawasany, Yusuf A. Haggag, Shahinaz M. Shalaby, Nema A. Soliman, Amira A. EL Saadany, Marwa A. A. Ibrahim, Farid Badria

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Background

liver cancer is one of the most common cancers in the world. So far, there is no gold standard treatment for hepatocellular carcinoma. We conducted this in vitro study to assess the effect of three natural products: Boswellic acids, curcumin and naringin versus corresponding nanoparticles (NPs) on Hep G2 cells proliferation.

Methods

Boswellic acid, curcumin, naringin-loaded NPs were prepared using nanoprecipitation method. Human liver (HepG2) cell line was cultured in Dulbecco’s modified Eagle’s medium (DMEM). The cell growth inhibition and cytotoxicity were evaluated by MTT assay.

Results

Boswellic acid, curcumin, naringin were able to inhibit HepG2 cells proliferation. IC50 at 24 h, 48 h showed significant lower values in NPs versus Free herbs. IC50 values of free Boswellic acids and NPs at 24 h were (24.60 ± 1.89 and 7.78 ± 0.54, P < 0.001), at 48 h were (22.45 ± 1.13 and 5.58 ± 0.27, P < 0.001) respectively. IC50 values of free curcumin and NPs at 24 h were (5.89 ± 0.8 and 3.46 ± 0.23, P < 0.05), at 48 h were (5.57 ± 0.94 and 2.51 ± 0.11, P < 0.05), respectively. For free and naringenin NPs, IC50 values at 24 h were (14.57 ± 1.78 and 7.25 ± 0.17, P < 0.01), at 48 h were (11.37 ± 1.45 and 5.21 ± 0.18, P < 0.01) respectively.

Conclusion

Boswellic acid, curcumin, naringin and their nanoprecipitation prepared nanoparticles suppressed Hep G2 cells proliferation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Akinyemiju T, Abera S, Ahmed M, Alam N, Alemayohu MA, Allen C, et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the global burden of disease study 2015. JAMA Oncol. 2017;3(12):1683–91.PubMedPubMedCentralCrossRef Akinyemiju T, Abera S, Ahmed M, Alam N, Alemayohu MA, Allen C, et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the global burden of disease study 2015. JAMA Oncol. 2017;3(12):1683–91.PubMedPubMedCentralCrossRef
2.
go back to reference Anwar WA, Khaled HM, Amra HA, El-Nezami H, Loffredo CA. Changing pattern of hepatocellular carcinoma (HCC) and its risk factors in Egypt: possibilities for prevention. Mutat research/reviews Mutat Res. 2008;659(1–2):176–84.CrossRef Anwar WA, Khaled HM, Amra HA, El-Nezami H, Loffredo CA. Changing pattern of hepatocellular carcinoma (HCC) and its risk factors in Egypt: possibilities for prevention. Mutat research/reviews Mutat Res. 2008;659(1–2):176–84.CrossRef
3.
go back to reference El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142(6):1264–73. e1.PubMedCrossRef El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142(6):1264–73. e1.PubMedCrossRef
4.
go back to reference Schulze K, Nault J-C, Villanueva A. Genetic profiling of hepatocellular carcinoma using next-generation sequencing. J Hepatol. 2016;65(5):1031–42.PubMedCrossRef Schulze K, Nault J-C, Villanueva A. Genetic profiling of hepatocellular carcinoma using next-generation sequencing. J Hepatol. 2016;65(5):1031–42.PubMedCrossRef
5.
go back to reference Alqahtani A, Khan Z, Alloghbi A, Said Ahmed S, Ashraf T, Hammouda MM. Hepatocellular carcinoma: molecular mechanisms and targeted therapies. Medicina. 2019;55(9):526.PubMedPubMedCentralCrossRef Alqahtani A, Khan Z, Alloghbi A, Said Ahmed S, Ashraf T, Hammouda MM. Hepatocellular carcinoma: molecular mechanisms and targeted therapies. Medicina. 2019;55(9):526.PubMedPubMedCentralCrossRef
6.
go back to reference Yoon SK. Molecular mechanism of hepatocellular carcinoma. Hepatoma Res. 2018;4(8):42.CrossRef Yoon SK. Molecular mechanism of hepatocellular carcinoma. Hepatoma Res. 2018;4(8):42.CrossRef
7.
go back to reference Llovet JM, Real MI, Montaña X, Planas R, Coll S, Aponte J, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet (London England). 2002;359(9319):1734–9.PubMedCrossRef Llovet JM, Real MI, Montaña X, Planas R, Coll S, Aponte J, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet (London England). 2002;359(9319):1734–9.PubMedCrossRef
8.
go back to reference Lo C-M, Ngan H, Tso W-K, Liu C-L, Lam C-M, Poon RT-P, et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology. 2002;35(5):1164–71.PubMedCrossRef Lo C-M, Ngan H, Tso W-K, Liu C-L, Lam C-M, Poon RT-P, et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology. 2002;35(5):1164–71.PubMedCrossRef
9.
go back to reference Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology. 2003;37(2):429–42.PubMedCrossRef Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology. 2003;37(2):429–42.PubMedCrossRef
10.
go back to reference Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90.PubMedCrossRef Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90.PubMedCrossRef
11.
go back to reference Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10(1):25–34.PubMedCrossRef Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10(1):25–34.PubMedCrossRef
12.
go back to reference Kudo M, Finn RS, Qin S, Han K-H, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. The Lancet. 2018;391(10126):1163–73.CrossRef Kudo M, Finn RS, Qin S, Han K-H, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. The Lancet. 2018;391(10126):1163–73.CrossRef
13.
go back to reference Bruix J, Qin S, Merle P, Granito A, Huang Y-H, Bodoky G, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet. 2017;389(10064):56–66.CrossRef Bruix J, Qin S, Merle P, Granito A, Huang Y-H, Bodoky G, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet. 2017;389(10064):56–66.CrossRef
14.
go back to reference Kalogeridi M-A, Zygogianni A, Kyrgias G, Kouvaris J, Chatziioannou S, Kelekis N, et al. Role of radiotherapy in the management of hepatocellular carcinoma: a systematic review. World J Hepatol. 2015;7(1):101.PubMedPubMedCentralCrossRef Kalogeridi M-A, Zygogianni A, Kyrgias G, Kouvaris J, Chatziioannou S, Kelekis N, et al. Role of radiotherapy in the management of hepatocellular carcinoma: a systematic review. World J Hepatol. 2015;7(1):101.PubMedPubMedCentralCrossRef
15.
go back to reference Sangro B, Carpanese L, Cianni R, Golfieri R, Gasparini D, Ezziddin S, et al. Survival after yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: a european evaluation. Hepatology. 2011;54(3):868–78.PubMedCrossRef Sangro B, Carpanese L, Cianni R, Golfieri R, Gasparini D, Ezziddin S, et al. Survival after yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: a european evaluation. Hepatology. 2011;54(3):868–78.PubMedCrossRef
16.
go back to reference Mazzaferro V, Sposito C, Bhoori S, Romito R, Chiesa C, Morosi C, et al. Yttrium-90 radioembolization for intermediate‐advanced hepatocellular carcinoma: a phase 2 study. Hepatology. 2013;57(5):1826–37.PubMedCrossRef Mazzaferro V, Sposito C, Bhoori S, Romito R, Chiesa C, Morosi C, et al. Yttrium-90 radioembolization for intermediate‐advanced hepatocellular carcinoma: a phase 2 study. Hepatology. 2013;57(5):1826–37.PubMedCrossRef
17.
go back to reference Salem R, Gordon AC, Mouli S, Hickey R, Kallini J, Gabr A, et al. Y90 radioembolization significantly prolongs time to progression compared with chemoembolization in patients with hepatocellular carcinoma. Gastroenterology. 2016;151(6):1155–63. e2.PubMedCrossRef Salem R, Gordon AC, Mouli S, Hickey R, Kallini J, Gabr A, et al. Y90 radioembolization significantly prolongs time to progression compared with chemoembolization in patients with hepatocellular carcinoma. Gastroenterology. 2016;151(6):1155–63. e2.PubMedCrossRef
18.
go back to reference Vilgrain V, Pereira H, Assenat E, Guiu B, Ilonca AD, Pageaux G-P, et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. Lancet Oncol. 2017;18(12):1624–36.PubMedCrossRef Vilgrain V, Pereira H, Assenat E, Guiu B, Ilonca AD, Pageaux G-P, et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. Lancet Oncol. 2017;18(12):1624–36.PubMedCrossRef
19.
go back to reference Ikeda M, Mitsunaga S, Ohno I, Hashimoto Y, Takahashi H, Watanabe K, et al. Systemic chemotherapy for advanced hepatocellular carcinoma: past, present, and future. Diseases. 2015;3(4):360–81.PubMedPubMedCentralCrossRef Ikeda M, Mitsunaga S, Ohno I, Hashimoto Y, Takahashi H, Watanabe K, et al. Systemic chemotherapy for advanced hepatocellular carcinoma: past, present, and future. Diseases. 2015;3(4):360–81.PubMedPubMedCentralCrossRef
20.
go back to reference Hasegawa K, Kokudo N, Makuuchi M, Izumi N, Ichida T, Kudo M, et al. Comparison of resection and ablation for hepatocellular carcinoma: a cohort study based on a japanese nationwide survey. J Hepatol. 2013;58(4):724–9.PubMedCrossRef Hasegawa K, Kokudo N, Makuuchi M, Izumi N, Ichida T, Kudo M, et al. Comparison of resection and ablation for hepatocellular carcinoma: a cohort study based on a japanese nationwide survey. J Hepatol. 2013;58(4):724–9.PubMedCrossRef
21.
go back to reference Lu L-C, Cheng A-L, Poon RT, editors. Recent advances in the prevention of hepatocellular carcinoma recurrence. Seminars in liver disease. Thieme Medical Publishers; 2014. Lu L-C, Cheng A-L, Poon RT, editors. Recent advances in the prevention of hepatocellular carcinoma recurrence. Seminars in liver disease. Thieme Medical Publishers; 2014.
22.
go back to reference Nahin RL. Costs of complementary and alternative medicine (CAM) and frequency of visits to CAM practitioners: US 2007. Diane Publishing; 2010. Nahin RL. Costs of complementary and alternative medicine (CAM) and frequency of visits to CAM practitioners: US 2007. Diane Publishing; 2010.
23.
go back to reference Zhai X-f, Chen Z, Li B, Shen F, Fan J, Zhou W-p, et al. Traditional herbal medicine in preventing recurrence after resection of small hepatocellular carcinoma: a multicenter randomized controlled trial. J Integr Med. 2013;11(2):90–100.PubMedCrossRef Zhai X-f, Chen Z, Li B, Shen F, Fan J, Zhou W-p, et al. Traditional herbal medicine in preventing recurrence after resection of small hepatocellular carcinoma: a multicenter randomized controlled trial. J Integr Med. 2013;11(2):90–100.PubMedCrossRef
24.
go back to reference Huang MT, Badmaev V, Ding Y, Liu Y, Xie JG, Ho CT. Anti-tumor and anti‐carcinogenic activities of triterpenoid, β‐boswellic acid. BioFactors. 2000;13(1–4):225–30.PubMedCrossRef Huang MT, Badmaev V, Ding Y, Liu Y, Xie JG, Ho CT. Anti-tumor and anti‐carcinogenic activities of triterpenoid, β‐boswellic acid. BioFactors. 2000;13(1–4):225–30.PubMedCrossRef
25.
go back to reference Xia L, Chen D, Han R, Fang Q, Waxman S, Jing Y. Boswellic acid acetate induces apoptosis through caspase-mediated pathways in myeloid leukemia cells. Mol Cancer Ther. 2005;4(3):381–8.PubMedCrossRef Xia L, Chen D, Han R, Fang Q, Waxman S, Jing Y. Boswellic acid acetate induces apoptosis through caspase-mediated pathways in myeloid leukemia cells. Mol Cancer Ther. 2005;4(3):381–8.PubMedCrossRef
26.
go back to reference Suhail MM, Wu W, Cao A, Mondalek FG, Fung K-M, Shih P-T, et al. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells. BMC Complement Altern Med. 2011;11:1–14.CrossRef Suhail MM, Wu W, Cao A, Mondalek FG, Fung K-M, Shih P-T, et al. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells. BMC Complement Altern Med. 2011;11:1–14.CrossRef
27.
go back to reference Shao Y, Ho C-T, Chin C-K, Badmaev V, Ma W, Huang M-T. Inhibitory activity of boswellic acids from Boswellia serrata against human leukemia HL-60 cells in culture. Planta Med. 1998;64(04):328–31.PubMedCrossRef Shao Y, Ho C-T, Chin C-K, Badmaev V, Ma W, Huang M-T. Inhibitory activity of boswellic acids from Boswellia serrata against human leukemia HL-60 cells in culture. Planta Med. 1998;64(04):328–31.PubMedCrossRef
28.
go back to reference Hoernlein R, Orlikowsky T, Zehrer C, Niethammer D, Sailer E, Simmet T, et al. Acetyl-11-keto-β-boswellic acid induces apoptosis in HL-60 and CCRF-CEM cells and inhibits topoisomerase I. J Pharmacol Exp Ther. 1999;288(2):613–9.PubMed Hoernlein R, Orlikowsky T, Zehrer C, Niethammer D, Sailer E, Simmet T, et al. Acetyl-11-keto-β-boswellic acid induces apoptosis in HL-60 and CCRF-CEM cells and inhibits topoisomerase I. J Pharmacol Exp Ther. 1999;288(2):613–9.PubMed
29.
go back to reference Pang X, Yi Z, Zhang X, Sung B, Qu W, Lian X, et al. Acetyl-11-keto-β-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2–mediated angiogenesis. Cancer Res. 2009;69(14):5893–900.PubMedPubMedCentralCrossRef Pang X, Yi Z, Zhang X, Sung B, Qu W, Lian X, et al. Acetyl-11-keto-β-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2–mediated angiogenesis. Cancer Res. 2009;69(14):5893–900.PubMedPubMedCentralCrossRef
30.
go back to reference Skarke C, Kuczka K, Tausch L, Werz O, Rossmanith T, Barrett JS, et al. Increased bioavailability of 11-keto-β-boswellic acid following single oral dose frankincense extract administration after a standardized meal in healthy male volunteers: modeling and simulation considerations for evaluating drug exposures. J Clin Pharmacol. 2012;52(10):1592–600.PubMedCrossRef Skarke C, Kuczka K, Tausch L, Werz O, Rossmanith T, Barrett JS, et al. Increased bioavailability of 11-keto-β-boswellic acid following single oral dose frankincense extract administration after a standardized meal in healthy male volunteers: modeling and simulation considerations for evaluating drug exposures. J Clin Pharmacol. 2012;52(10):1592–600.PubMedCrossRef
31.
go back to reference Krüger P, Kanzer J, Hummel J, Fricker G, Schubert-Zsilavecz M, Abdel-Tawab M. Permeation of Boswellia extract in the Caco-2 model and possible interactions of its constituents KBA and AKBA with OATP1B3 and MRP2. Eur J Pharm Sci. 2009;36(2–3):275–84.PubMedCrossRef Krüger P, Kanzer J, Hummel J, Fricker G, Schubert-Zsilavecz M, Abdel-Tawab M. Permeation of Boswellia extract in the Caco-2 model and possible interactions of its constituents KBA and AKBA with OATP1B3 and MRP2. Eur J Pharm Sci. 2009;36(2–3):275–84.PubMedCrossRef
32.
go back to reference Hüsch J, Bohnet J, Fricker G, Skarke C, Artaria C, Appendino G, et al. Enhanced absorption of boswellic acids by a lecithin delivery form (Phytosome®) of Boswellia extract. Fitoterapia. 2013;84:89–98.PubMedCrossRef Hüsch J, Bohnet J, Fricker G, Skarke C, Artaria C, Appendino G, et al. Enhanced absorption of boswellic acids by a lecithin delivery form (Phytosome®) of Boswellia extract. Fitoterapia. 2013;84:89–98.PubMedCrossRef
33.
go back to reference Aqil F, Munagala R, Jeyabalan J, Vadhanam MV. Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett. 2013;334(1):133–41.PubMedPubMedCentralCrossRef Aqil F, Munagala R, Jeyabalan J, Vadhanam MV. Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett. 2013;334(1):133–41.PubMedPubMedCentralCrossRef
34.
go back to reference Wanga S, Sua R, Niea S, Suna M, Zhanga J, Wub D, et al. Application of nanotechnology in improving bioavailability and bioactivity of dietderived phytochemicals. J Nutr Biochem. 2014;25:363–76.CrossRef Wanga S, Sua R, Niea S, Suna M, Zhanga J, Wub D, et al. Application of nanotechnology in improving bioavailability and bioactivity of dietderived phytochemicals. J Nutr Biochem. 2014;25:363–76.CrossRef
35.
go back to reference Aggarwal BB, Surh Y-J, Shishodia S. The molecular targets and therapeutic uses of curcumin in health and disease. Springer Science & Business Media; 2007. Aggarwal BB, Surh Y-J, Shishodia S. The molecular targets and therapeutic uses of curcumin in health and disease. Springer Science & Business Media; 2007.
37.
go back to reference Mimeault M, Batra SK. Potential applications of curcumin and its novel synthetic analogs and nanotechnology-based formulations in cancer prevention and therapy. Chin Med. 2011;6(1):1–19.CrossRef Mimeault M, Batra SK. Potential applications of curcumin and its novel synthetic analogs and nanotechnology-based formulations in cancer prevention and therapy. Chin Med. 2011;6(1):1–19.CrossRef
38.
go back to reference Duan W, Chang Y, Li R, Xu Q, Lei J, Yin C, et al. Curcumin inhibits hypoxia inducible factor–1α–induced epithelial–mesenchymal transition in HepG2 hepatocellular carcinoma cells. Mol Med Rep. 2014;10(5):2505–10.PubMedCrossRef Duan W, Chang Y, Li R, Xu Q, Lei J, Yin C, et al. Curcumin inhibits hypoxia inducible factor–1α–induced epithelial–mesenchymal transition in HepG2 hepatocellular carcinoma cells. Mol Med Rep. 2014;10(5):2505–10.PubMedCrossRef
39.
go back to reference Li Y, Shi X, Zhang J, Zhang X, Martin RC. Hepatic protection and anticancer activity of curcuma: a potential chemopreventive strategy against hepatocellular carcinoma. Int J Oncol. 2014;44(2):505–13.PubMedCrossRef Li Y, Shi X, Zhang J, Zhang X, Martin RC. Hepatic protection and anticancer activity of curcuma: a potential chemopreventive strategy against hepatocellular carcinoma. Int J Oncol. 2014;44(2):505–13.PubMedCrossRef
40.
go back to reference Xu MX, Zhao L, Deng C, Yang L, Wang Y, Guo T, et al. Curcumin suppresses proliferation and induces apoptosis of human hepatocellular carcinoma cells via the wnt signaling pathway. Int J Oncol. 2013;43(6):1951–9.PubMedCrossRef Xu MX, Zhao L, Deng C, Yang L, Wang Y, Guo T, et al. Curcumin suppresses proliferation and induces apoptosis of human hepatocellular carcinoma cells via the wnt signaling pathway. Int J Oncol. 2013;43(6):1951–9.PubMedCrossRef
41.
go back to reference Huang L-Z, Wang J, Lu F-T, Yang F-C, Chen X, Hong X, et al. Mechanism study on anti-proliferative effects of curcumol in human hepatocarcinoma HepG2 cells. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China. J Chin materia Med. 2013;38(11):1812–5. Huang L-Z, Wang J, Lu F-T, Yang F-C, Chen X, Hong X, et al. Mechanism study on anti-proliferative effects of curcumol in human hepatocarcinoma HepG2 cells. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China. J Chin materia Med. 2013;38(11):1812–5.
42.
go back to reference Chen J, Wang F-L, Chen W-D. Modulation of apoptosis-related cell signalling pathways by curcumin as a strategy to inhibit tumor progression. Mol Biol Rep. 2014;41:4583–94.PubMedCrossRef Chen J, Wang F-L, Chen W-D. Modulation of apoptosis-related cell signalling pathways by curcumin as a strategy to inhibit tumor progression. Mol Biol Rep. 2014;41:4583–94.PubMedCrossRef
43.
go back to reference Itokawa H, Shi Q, Akiyama T, Morris-Natschke SL, Lee K-H. Recent advances in the investigation of curcuminoids. Chin Med. 2008;3:1–13.CrossRef Itokawa H, Shi Q, Akiyama T, Morris-Natschke SL, Lee K-H. Recent advances in the investigation of curcuminoids. Chin Med. 2008;3:1–13.CrossRef
44.
go back to reference Yallapu MM, Maher DM, Sundram V, Bell MC, Jaggi M, Chauhan SC. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J ovarian Res. 2010;3:1–12.CrossRef Yallapu MM, Maher DM, Sundram V, Bell MC, Jaggi M, Chauhan SC. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J ovarian Res. 2010;3:1–12.CrossRef
45.
go back to reference Mulik RS, Mönkkönen J, Juvonen RO, Mahadik KR, Paradkar AR. Transferrin mediated solid lipid nanoparticles containing curcumin: enhanced in vitro anticancer activity by induction of apoptosis. Int J Pharm. 2010;398(1–2):190–203.PubMedCrossRef Mulik RS, Mönkkönen J, Juvonen RO, Mahadik KR, Paradkar AR. Transferrin mediated solid lipid nanoparticles containing curcumin: enhanced in vitro anticancer activity by induction of apoptosis. Int J Pharm. 2010;398(1–2):190–203.PubMedCrossRef
46.
go back to reference Bredsdorff L, Nielsen ILF, Rasmussen SE, Cornett C, Barron D, Bouisset F, et al. Absorption, conjugation and excretion of the flavanones, naringenin and hesperetin from α-rhamnosidase-treated orange juice in human subjects. Br J Nutr. 2010;103(11):1602–9.PubMedCrossRef Bredsdorff L, Nielsen ILF, Rasmussen SE, Cornett C, Barron D, Bouisset F, et al. Absorption, conjugation and excretion of the flavanones, naringenin and hesperetin from α-rhamnosidase-treated orange juice in human subjects. Br J Nutr. 2010;103(11):1602–9.PubMedCrossRef
47.
go back to reference Chabane MN, Ahmad AA, Peluso J, Muller CD, Ubeaud-Séquier G. Quercetin and naringenin transport across human intestinal Caco-2 cells. J Pharm Pharmacol. 2009;61(11):1473–83.CrossRef Chabane MN, Ahmad AA, Peluso J, Muller CD, Ubeaud-Séquier G. Quercetin and naringenin transport across human intestinal Caco-2 cells. J Pharm Pharmacol. 2009;61(11):1473–83.CrossRef
48.
go back to reference Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem. 2002;13(10):572–84.PubMedCrossRef Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem. 2002;13(10):572–84.PubMedCrossRef
49.
go back to reference Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20(7):933–56.PubMedCrossRef Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20(7):933–56.PubMedCrossRef
50.
go back to reference Subramanian P, Arul D. Expression of concern: attenuation of NDEA-induced hepatocarcinogenesis by naringenin in rats. Cell Biochem Funct. 2013;31(6):511–7.PubMedCrossRef Subramanian P, Arul D. Expression of concern: attenuation of NDEA-induced hepatocarcinogenesis by naringenin in rats. Cell Biochem Funct. 2013;31(6):511–7.PubMedCrossRef
51.
go back to reference Arul D, Subramanian P. Inhibitory effect of naringenin (citrus flavonone) on N-nitrosodiethylamine induced hepatocarcinogenesis in rats. Biochem Biophys Res Commun. 2013;434(2):203–9.PubMedCrossRef Arul D, Subramanian P. Inhibitory effect of naringenin (citrus flavonone) on N-nitrosodiethylamine induced hepatocarcinogenesis in rats. Biochem Biophys Res Commun. 2013;434(2):203–9.PubMedCrossRef
52.
go back to reference Arul D, Subramanian P. Naringenin (citrus flavonone) induces growth inhibition, cell cycle arrest and apoptosis in human hepatocellular carcinoma cells. Pathol Oncol Res. 2013;19:763–70.PubMedCrossRef Arul D, Subramanian P. Naringenin (citrus flavonone) induces growth inhibition, cell cycle arrest and apoptosis in human hepatocellular carcinoma cells. Pathol Oncol Res. 2013;19:763–70.PubMedCrossRef
53.
go back to reference Pafumi I, Festa M, Papacci F, Lagostena L, Giunta C, Gutla V, et al. Naringenin impairs two-pore channel 2 activity and inhibits VEGF-induced angiogenesis. Sci Rep. 2017;7(1):1–11.CrossRef Pafumi I, Festa M, Papacci F, Lagostena L, Giunta C, Gutla V, et al. Naringenin impairs two-pore channel 2 activity and inhibits VEGF-induced angiogenesis. Sci Rep. 2017;7(1):1–11.CrossRef
54.
go back to reference Yen H-R, Liu C-J, Yeh C-C. Naringenin suppresses TPA-induced tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Chemico-Biol Interact. 2015;235:1–9.CrossRef Yen H-R, Liu C-J, Yeh C-C. Naringenin suppresses TPA-induced tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Chemico-Biol Interact. 2015;235:1–9.CrossRef
55.
go back to reference Haggag Y, Elshikh M, El-Tanani M, Bannat IM, McCarron P, Tambuwala MM. Nanoencapsulation of sophorolipids in PEGylated poly (lactide-co-glycolide) as a novel approach to target colon carcinoma in the murine model. Drug Delivery and Translational Research. 2020;10:1353–66.PubMedPubMedCentralCrossRef Haggag Y, Elshikh M, El-Tanani M, Bannat IM, McCarron P, Tambuwala MM. Nanoencapsulation of sophorolipids in PEGylated poly (lactide-co-glycolide) as a novel approach to target colon carcinoma in the murine model. Drug Delivery and Translational Research. 2020;10:1353–66.PubMedPubMedCentralCrossRef
56.
go back to reference Zewail MB, El-Gizawy SA, Osman MA, Haggag YA. Preparation and in vitro characterization of a novel self-nano emulsifying drug delivery system for a fixed-dose combination of candesartan cilexetil and hydrochlorothiazide. J Drug Deliv Sci Technol. 2021;61:102320.CrossRef Zewail MB, El-Gizawy SA, Osman MA, Haggag YA. Preparation and in vitro characterization of a novel self-nano emulsifying drug delivery system for a fixed-dose combination of candesartan cilexetil and hydrochlorothiazide. J Drug Deliv Sci Technol. 2021;61:102320.CrossRef
57.
go back to reference Ibrahim B, Mady OY, Tambuwala MM, Haggag YA. pH-sensitive nanoparticles containing 5-fluorouracil and leucovorin as an improved anti-cancer option for colon cancer. Nanomedicine. 2022;17(6):367–81.PubMedCrossRef Ibrahim B, Mady OY, Tambuwala MM, Haggag YA. pH-sensitive nanoparticles containing 5-fluorouracil and leucovorin as an improved anti-cancer option for colon cancer. Nanomedicine. 2022;17(6):367–81.PubMedCrossRef
58.
go back to reference Salem MA, Manaa EG, Osama N, Aborehab NM, Ragab MF, Haggag YA, et al. Coriander (Coriandrum sativum L.) essential oil and oil-loaded nano-formulations as an anti-aging potentiality via TGFβ/SMAD pathway. Sci Rep. 2022;12(1):6578.PubMedPubMedCentralCrossRef Salem MA, Manaa EG, Osama N, Aborehab NM, Ragab MF, Haggag YA, et al. Coriander (Coriandrum sativum L.) essential oil and oil-loaded nano-formulations as an anti-aging potentiality via TGFβ/SMAD pathway. Sci Rep. 2022;12(1):6578.PubMedPubMedCentralCrossRef
59.
go back to reference Nakhaei K, Bagheri-Hosseini S, Sabbaghzade N, Behmadi J, Boozari M. Boswellic Acid Nanoparticles: promising strategies for increasing Therapeutic Effects. Revista Brasileira de Farmacognosia; 2023. Nakhaei K, Bagheri-Hosseini S, Sabbaghzade N, Behmadi J, Boozari M. Boswellic Acid Nanoparticles: promising strategies for increasing Therapeutic Effects. Revista Brasileira de Farmacognosia; 2023.
60.
go back to reference Dos Santos PDF, Francisco CRL, Coqueiro A, Leimann FV, Pinela J, Calhelha RC, et al. The nanoencapsulation of curcuminoids extracted from Curcuma longa L. and an evaluation of their cytotoxic, enzymatic, antioxidant and anti-inflammatory activities. Food Funct. 2019;10(2):573–82.PubMedCrossRef Dos Santos PDF, Francisco CRL, Coqueiro A, Leimann FV, Pinela J, Calhelha RC, et al. The nanoencapsulation of curcuminoids extracted from Curcuma longa L. and an evaluation of their cytotoxic, enzymatic, antioxidant and anti-inflammatory activities. Food Funct. 2019;10(2):573–82.PubMedCrossRef
61.
go back to reference Wang W, Liu Q, Liang X, Kang Q, Wang Z. Protective role of naringin loaded solid nanoparticles against aflatoxin B1 induced hepatocellular carcinoma. Chemico-Biol Interact. 2022;351:109711.CrossRef Wang W, Liu Q, Liang X, Kang Q, Wang Z. Protective role of naringin loaded solid nanoparticles against aflatoxin B1 induced hepatocellular carcinoma. Chemico-Biol Interact. 2022;351:109711.CrossRef
62.
go back to reference Houssen ME, Ragab A, Mesbah A, El-Samanoudy AZ, Othman G, Moustafa AF, et al. Natural anti-inflammatory products and leukotriene inhibitors as complementary therapy for bronchial asthma. Clin Biochem. 2010;43(10–11):887–90.PubMedCrossRef Houssen ME, Ragab A, Mesbah A, El-Samanoudy AZ, Othman G, Moustafa AF, et al. Natural anti-inflammatory products and leukotriene inhibitors as complementary therapy for bronchial asthma. Clin Biochem. 2010;43(10–11):887–90.PubMedCrossRef
63.
go back to reference Badria FA, Mohammed EA, El-Badrawy MK, El-Desouky M. Natural leukotriene inhibitor from Boswellia: a potential new alternative for treating bronchial asthma. Altern Complement Ther. 2004;10(5):257–65.CrossRef Badria FA, Mohammed EA, El-Badrawy MK, El-Desouky M. Natural leukotriene inhibitor from Boswellia: a potential new alternative for treating bronchial asthma. Altern Complement Ther. 2004;10(5):257–65.CrossRef
64.
go back to reference Badria FA, El-Farahaty T, Shabana AA, Hawas SA, El-Batoty MF. Boswellia–curcumin preparation for treating knee osteoarthritis: a clinical evaluation. Altern Complement Ther. 2002;8(6):341–8.CrossRef Badria FA, El-Farahaty T, Shabana AA, Hawas SA, El-Batoty MF. Boswellia–curcumin preparation for treating knee osteoarthritis: a clinical evaluation. Altern Complement Ther. 2002;8(6):341–8.CrossRef
65.
go back to reference Badria FA. A potent hepatoprotective agent from group fruit. Alexandria J Pharm Sci. 1994;8(3):165–9. Badria FA. A potent hepatoprotective agent from group fruit. Alexandria J Pharm Sci. 1994;8(3):165–9.
66.
go back to reference Khan MN, Haggag YA, Lane ME, McCarron PA, Tambuwala MM. Polymeric nano-encapsulation of curcumin enhances its anti-cancer activity in breast (MDA-MB231) and lung (A549) cancer cells through reduction in expression of HIF-1α and nuclear p65 (REL A). Curr Drug Deliv. 2018;15(2):286–95.PubMedCrossRef Khan MN, Haggag YA, Lane ME, McCarron PA, Tambuwala MM. Polymeric nano-encapsulation of curcumin enhances its anti-cancer activity in breast (MDA-MB231) and lung (A549) cancer cells through reduction in expression of HIF-1α and nuclear p65 (REL A). Curr Drug Deliv. 2018;15(2):286–95.PubMedCrossRef
67.
go back to reference Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55(1):R1–R4.CrossRef Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55(1):R1–R4.CrossRef
68.
go back to reference Fonseca-Santos B, Gremião MPD, Chorilli M. A simple reversed phase high-performance liquid chromatography (HPLC) method for determination of in situ gelling curcumin-loaded liquid crystals in in vitro performance tests. Arab J Chem. 2017;10(7):1029–37.CrossRef Fonseca-Santos B, Gremião MPD, Chorilli M. A simple reversed phase high-performance liquid chromatography (HPLC) method for determination of in situ gelling curcumin-loaded liquid crystals in in vitro performance tests. Arab J Chem. 2017;10(7):1029–37.CrossRef
69.
go back to reference Bhandari R, Kuhad A, Paliwal JK, Kuhad A. Development of a new, sensitive, and robust analytical and bio-analytical RP-HPLC method for in-vitro and in-vivo quantification of naringenin in polymeric nanocarriers. J Anal Sci Technol. 2019;10(1):1–14.CrossRef Bhandari R, Kuhad A, Paliwal JK, Kuhad A. Development of a new, sensitive, and robust analytical and bio-analytical RP-HPLC method for in-vitro and in-vivo quantification of naringenin in polymeric nanocarriers. J Anal Sci Technol. 2019;10(1):1–14.CrossRef
70.
go back to reference Bairwa K, Jachak SM. Nanoparticle formulation of 11-keto-β-boswellic acid (KBA): anti-inflammatory activity and in vivo pharmacokinetics. Pharm Biol. 2016;54(12):2909–16.PubMedCrossRef Bairwa K, Jachak SM. Nanoparticle formulation of 11-keto-β-boswellic acid (KBA): anti-inflammatory activity and in vivo pharmacokinetics. Pharm Biol. 2016;54(12):2909–16.PubMedCrossRef
71.
go back to reference Haggag YA, Ibrahim RR, Hafiz AA. Design, formulation and in vivo evaluation of novel honokiol-loaded PEGylated PLGA nanocapsules for treatment of breast cancer. Int J Nanomed. 2020:1625–42. Haggag YA, Ibrahim RR, Hafiz AA. Design, formulation and in vivo evaluation of novel honokiol-loaded PEGylated PLGA nanocapsules for treatment of breast cancer. Int J Nanomed. 2020:1625–42.
72.
go back to reference Zhang K, Zhang L, Liu W, Ma X, Cen J, Sun Z, et al. In vitro expansion of primary human hepatocytes with efficient liver repopulation capacity. Cell Stem Cell. 2018;23(6):806–19. e4.PubMedCrossRef Zhang K, Zhang L, Liu W, Ma X, Cen J, Sun Z, et al. In vitro expansion of primary human hepatocytes with efficient liver repopulation capacity. Cell Stem Cell. 2018;23(6):806–19. e4.PubMedCrossRef
73.
go back to reference Ahmad N, Ahmad R, Alrasheed RA, Almatar HMA, Al-Ramadan AS, Buheazah TM, et al. A Chitosan-PLGA based catechin hydrate nanoparticles used in targeting of lungs and cancer treatment. Saudi J Biol Sci. 2020;27(9):2344–57.PubMedPubMedCentralCrossRef Ahmad N, Ahmad R, Alrasheed RA, Almatar HMA, Al-Ramadan AS, Buheazah TM, et al. A Chitosan-PLGA based catechin hydrate nanoparticles used in targeting of lungs and cancer treatment. Saudi J Biol Sci. 2020;27(9):2344–57.PubMedPubMedCentralCrossRef
74.
go back to reference Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006;6(9):674–87.PubMedCrossRef Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006;6(9):674–87.PubMedCrossRef
75.
go back to reference Ullah MF, Khan MW. Food as medicine: potential therapeutic tendencies of plant derived polyphenolic compounds. Asian Pac J Cancer Prev. 2008;9(2):187–96.PubMed Ullah MF, Khan MW. Food as medicine: potential therapeutic tendencies of plant derived polyphenolic compounds. Asian Pac J Cancer Prev. 2008;9(2):187–96.PubMed
76.
go back to reference Moiseeva EP, Manson MM. Dietary chemopreventive phytochemicals: too little or too much? Cancer Prev Res. 2009;2(7):611–6.CrossRef Moiseeva EP, Manson MM. Dietary chemopreventive phytochemicals: too little or too much? Cancer Prev Res. 2009;2(7):611–6.CrossRef
77.
go back to reference Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. J Ethnopharmacol. 2005;100(1–2):72–9.PubMedCrossRef Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. J Ethnopharmacol. 2005;100(1–2):72–9.PubMedCrossRef
78.
go back to reference Zulkipli IN, David SR, Rajabalaya R, Idris A. Medicinal plants: a potential source of compounds for targeting cell division. Drug target insights. 2015;9:DTI.CrossRef Zulkipli IN, David SR, Rajabalaya R, Idris A. Medicinal plants: a potential source of compounds for targeting cell division. Drug target insights. 2015;9:DTI.CrossRef
79.
go back to reference Haggag YA, Faheem AM. Evaluation of nano spray drying as a method for drying and formulation of therapeutic peptides and proteins. Frontiers Media SA; 2015. p. 140. Haggag YA, Faheem AM. Evaluation of nano spray drying as a method for drying and formulation of therapeutic peptides and proteins. Frontiers Media SA; 2015. p. 140.
80.
go back to reference Haggag YA, Matchett KB, Dakir E-H, Buchanan P, Osman MA, Elgizawy SA, et al. Nano-encapsulation of a novel anti-Ran-GTPase peptide for blockade of regulator of chromosome condensation 1 (RCC1) function in MDA-MB-231 breast cancer cells. Int J Pharm. 2017;521(1–2):40–53.PubMedCrossRef Haggag YA, Matchett KB, Dakir E-H, Buchanan P, Osman MA, Elgizawy SA, et al. Nano-encapsulation of a novel anti-Ran-GTPase peptide for blockade of regulator of chromosome condensation 1 (RCC1) function in MDA-MB-231 breast cancer cells. Int J Pharm. 2017;521(1–2):40–53.PubMedCrossRef
81.
go back to reference Haggag Y, Abdel-Wahab Y, Ojo O, Osman M, El-Gizawy S, El-Tanani M, et al. Preparation and in vivo evaluation of insulin-loaded biodegradable nanoparticles prepared from diblock copolymers of PLGA and PEG. Int J Pharm. 2016;499(1–2):236–46.PubMedCrossRef Haggag Y, Abdel-Wahab Y, Ojo O, Osman M, El-Gizawy S, El-Tanani M, et al. Preparation and in vivo evaluation of insulin-loaded biodegradable nanoparticles prepared from diblock copolymers of PLGA and PEG. Int J Pharm. 2016;499(1–2):236–46.PubMedCrossRef
82.
go back to reference Haggag YA, Faheem AM, Tambuwala MM, Osman MA, El-Gizawy SA, O’Hagan B, et al. Effect of poly (ethylene glycol) content and formulation parameters on particulate properties and intraperitoneal delivery of insulin from PLGA nanoparticles prepared using the double-emulsion evaporation procedure. Pharm Dev Technol. 2018;23(4):370–81.PubMedCrossRef Haggag YA, Faheem AM, Tambuwala MM, Osman MA, El-Gizawy SA, O’Hagan B, et al. Effect of poly (ethylene glycol) content and formulation parameters on particulate properties and intraperitoneal delivery of insulin from PLGA nanoparticles prepared using the double-emulsion evaporation procedure. Pharm Dev Technol. 2018;23(4):370–81.PubMedCrossRef
83.
go back to reference Alshamsan A. Nanoprecipitation is more efficient than emulsion solvent evaporation method to encapsulate cucurbitacin I in PLGA nanoparticles. Saudi Pharm J. 2014;22(3):219–22.PubMedCrossRef Alshamsan A. Nanoprecipitation is more efficient than emulsion solvent evaporation method to encapsulate cucurbitacin I in PLGA nanoparticles. Saudi Pharm J. 2014;22(3):219–22.PubMedCrossRef
84.
go back to reference Park YS, Lee JH, Bondar J, Harwalkar JA, Safayhi H, Golubic M. Cytotoxic action of acetyl-11-keto-β-boswellic acid (AKBA) on meningioma cells. Planta Med. 2002;68(05):397–401.PubMedCrossRef Park YS, Lee JH, Bondar J, Harwalkar JA, Safayhi H, Golubic M. Cytotoxic action of acetyl-11-keto-β-boswellic acid (AKBA) on meningioma cells. Planta Med. 2002;68(05):397–401.PubMedCrossRef
85.
go back to reference Shanmugam MK, Nguyen AH, Kumar AP, Tan BK, Sethi G. Targeted inhibition of tumor proliferation, survival, and metastasis by pentacyclic triterpenoids: potential role in prevention and therapy of cancer. Cancer Lett. 2012;320(2):158–70.PubMedCrossRef Shanmugam MK, Nguyen AH, Kumar AP, Tan BK, Sethi G. Targeted inhibition of tumor proliferation, survival, and metastasis by pentacyclic triterpenoids: potential role in prevention and therapy of cancer. Cancer Lett. 2012;320(2):158–70.PubMedCrossRef
86.
go back to reference Liu J-J, Nilsson Ã, Oredsson S, Badmaev V, Zhao W-Z, Duan R-D. Boswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation but independent on Fas/Fas ligand interaction in colon cancer HT-29 cells. Carcinogenesis. 2002;23(12):2087–93.PubMedCrossRef Liu J-J, Nilsson Ã, Oredsson S, Badmaev V, Zhao W-Z, Duan R-D. Boswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation but independent on Fas/Fas ligand interaction in colon cancer HT-29 cells. Carcinogenesis. 2002;23(12):2087–93.PubMedCrossRef
87.
go back to reference Ahmed HH, Abd-Rabou AA, Hassan AZ, Kotob SE. Phytochemical analysis and anti-cancer investigation of Boswellia serrata bioactive constituents in vitro. Asian Pac J Cancer Prev. 2015;16(16):7179–88.PubMedCrossRef Ahmed HH, Abd-Rabou AA, Hassan AZ, Kotob SE. Phytochemical analysis and anti-cancer investigation of Boswellia serrata bioactive constituents in vitro. Asian Pac J Cancer Prev. 2015;16(16):7179–88.PubMedCrossRef
88.
go back to reference Khan MA, Singh M, Khan MS, Najmi AK, Ahmad S. Caspase mediated synergistic effect of Boswellia serrata extract in combination with doxorubicin against human hepatocellular carcinoma. BioMed research international. 2014;2014. Khan MA, Singh M, Khan MS, Najmi AK, Ahmad S. Caspase mediated synergistic effect of Boswellia serrata extract in combination with doxorubicin against human hepatocellular carcinoma. BioMed research international. 2014;2014.
89.
go back to reference Song X, Zhang M, Dai E, Luo Y. Molecular targets of curcumin in breast cancer. Mol Med Rep. 2019;19(1):23–9.PubMed Song X, Zhang M, Dai E, Luo Y. Molecular targets of curcumin in breast cancer. Mol Med Rep. 2019;19(1):23–9.PubMed
90.
go back to reference Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003;23(1/A):363–98.PubMed Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003;23(1/A):363–98.PubMed
91.
go back to reference Syng-Ai C, Kumari AL, Khar A. Effect of curcumin on normal and tumor cells: role of glutathione and bcl-2. Mol Cancer Ther. 2004;3(9):1101–8.PubMedCrossRef Syng-Ai C, Kumari AL, Khar A. Effect of curcumin on normal and tumor cells: role of glutathione and bcl-2. Mol Cancer Ther. 2004;3(9):1101–8.PubMedCrossRef
92.
go back to reference Kunwar A, Barik A, Mishra B, Rathinasamy K, Pandey R, Priyadarsini K. Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim et Biophys Acta (BBA)-General Subj. 2008;1780(4):673–9.CrossRef Kunwar A, Barik A, Mishra B, Rathinasamy K, Pandey R, Priyadarsini K. Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim et Biophys Acta (BBA)-General Subj. 2008;1780(4):673–9.CrossRef
93.
go back to reference Wang M, Ruan Y, Chen Q, Li S, Wang Q, Cai J. Curcumin induced HepG2 cell apoptosis-associated mitochondrial membrane potential and intracellular free Ca2 + concentration. Eur J Pharmacol. 2011;650(1):41–7.PubMedCrossRef Wang M, Ruan Y, Chen Q, Li S, Wang Q, Cai J. Curcumin induced HepG2 cell apoptosis-associated mitochondrial membrane potential and intracellular free Ca2 + concentration. Eur J Pharmacol. 2011;650(1):41–7.PubMedCrossRef
94.
go back to reference Hassan SK, Mousa AM, Eshak MG, Farrag A, Badawi A. Therapeutic and chemopreventive effects of nano curcumin against diethylnitrosamine induced hepatocellular carcinoma in rats. Int J Pharm Pharm Sci. 2014;6(3):54–62. Hassan SK, Mousa AM, Eshak MG, Farrag A, Badawi A. Therapeutic and chemopreventive effects of nano curcumin against diethylnitrosamine induced hepatocellular carcinoma in rats. Int J Pharm Pharm Sci. 2014;6(3):54–62.
95.
go back to reference Banjerdpongchai R, Wudtiwai B, Khaw-On P, Rachakhom W, Duangnil N, Kongtawelert P. Hesperidin from Citrus seed induces human hepatocellular carcinoma HepG2 cell apoptosis via both mitochondrial and death receptor pathways. Tumor Biology. 2016;37:227–37.PubMedCrossRef Banjerdpongchai R, Wudtiwai B, Khaw-On P, Rachakhom W, Duangnil N, Kongtawelert P. Hesperidin from Citrus seed induces human hepatocellular carcinoma HepG2 cell apoptosis via both mitochondrial and death receptor pathways. Tumor Biology. 2016;37:227–37.PubMedCrossRef
96.
go back to reference Gad A, Kydd J, Piel B, Rai P. Targeting cancer using polymeric nanoparticle mediated combination chemotherapy. Int J Nanomed nanosurgery. 2016;2(3). Gad A, Kydd J, Piel B, Rai P. Targeting cancer using polymeric nanoparticle mediated combination chemotherapy. Int J Nanomed nanosurgery. 2016;2(3).
Metadata
Title
Anti-cancer effect of nano-encapsulated boswellic acids, curcumin and naringenin against HepG-2 cell line
Authors
Sally Elnawasany
Yusuf A. Haggag
Shahinaz M. Shalaby
Nema A. Soliman
Amira A. EL Saadany
Marwa A. A. Ibrahim
Farid Badria
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-04096-4

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue