Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Hepatocellular Carcinoma | Research

AMPKα2 promotes tumor immune escape by inducing CD8+ T-cell exhaustion and CD4+ Treg cell formation in liver hepatocellular carcinoma

Authors: Yan Ouyang, Yan Gu, Xinhai Zhang, Ya Huang, Xianpeng Wei, Fuzhou Tang, Shichao Zhang

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Background

Adenosine monophosphate-activated protein kinase (AMPK) is associated with the development of liver hepatocellular carcinoma (LIHC). AMPKα2, an α2 subunit of AMPK, is encoded by PRKAA2, and functions as the catalytic core of AMPK. However, the role of AMPKα2 in the LIHC tumor immune environment is unclear.

Methods

RNA-seq data were obtained from the Cancer Genome Atlas and Genotype-Tissue Expression databases. Using the single-cell RNA-sequencing dataset for LIHC obtained from the China National Genebank Database, the communication between malignant cells and T cells in response to different PRKAA2 expression patterns was evaluated. In addition, the association between PRKAA2 expression and T-cell evolution during tumor progression was explored using Pseudotime analysis, and the role of PRKAA2 in metabolic reprogramming was explored using the R “scMetabolis” package. Functional experiments were performed in LIHC HepG2 cells.

Results

AMPK subunits were expressed in tissue-specific and substrate-specific patterns. PRKAA2 was highly expressed in LIHC tissues and was associated with poor patient prognosis. Tumors with high PRKAA2 expression displayed an immune cold phenotype. High PRKAA2 expression significantly promoted LIHC immune escape. This result is supported by the following evidence: 1) the inhibition of major histocompatibility complex class I (MHC-I) expression through the regulation of interferon-gamma activity in malignant cells; 2) the promotion of CD8+ T-cell exhaustion and the formation of CD4+ Treg cells in T cells; 3) altered interactions between malignant cells and T cells in the tumor immune environment; and 4) induction of metabolic reprogramming in malignant cells.

Conclusions

Our study indicate that PRKAA2 may contribute to LIHC progression by promoting metabolic reprogramming and tumor immune escape through theoretical analysis, which offers a theoretical foundation for developing PRKAA2-based strategies for personalized LIHC treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Yang L, Peng X, Li Y, Zhang X, Ma Y, Wu C, et al. Long non-coding RNA HOTAIR promotes exosome secretion by regulating RAB35 and SNAP23 in hepatocellular carcinoma. Mol Cancer. 2019;18(1):78.CrossRefPubMedPubMedCentral Yang L, Peng X, Li Y, Zhang X, Ma Y, Wu C, et al. Long non-coding RNA HOTAIR promotes exosome secretion by regulating RAB35 and SNAP23 in hepatocellular carcinoma. Mol Cancer. 2019;18(1):78.CrossRefPubMedPubMedCentral
2.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefPubMed Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefPubMed
3.
go back to reference Zheng A, Chevalier N, Calderoni M, Dubuis G, Dormond O, Ziros PG, et al. CRISPR/Cas9 genome-wide screening identifies KEAP1 as a sorafenib, lenvatinib, and regorafenib sensitivity gene in hepatocellular carcinoma. Oncotarget. 2019;10(66):7058–70.CrossRefPubMedPubMedCentral Zheng A, Chevalier N, Calderoni M, Dubuis G, Dormond O, Ziros PG, et al. CRISPR/Cas9 genome-wide screening identifies KEAP1 as a sorafenib, lenvatinib, and regorafenib sensitivity gene in hepatocellular carcinoma. Oncotarget. 2019;10(66):7058–70.CrossRefPubMedPubMedCentral
4.
go back to reference Llovet JM, Castet F, Heikenwalder M, Maini MK, Mazzaferro V, Pinato DJ, et al. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol. 2022;19(3):151–72.CrossRefPubMed Llovet JM, Castet F, Heikenwalder M, Maini MK, Mazzaferro V, Pinato DJ, et al. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol. 2022;19(3):151–72.CrossRefPubMed
5.
go back to reference Llovet JM, Montal R, Sia D, Finn RS. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018;15(10):599–616.CrossRefPubMed Llovet JM, Montal R, Sia D, Finn RS. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018;15(10):599–616.CrossRefPubMed
6.
go back to reference Yang C, Zhang H, Zhang L, Zhu AX, Bernards R, Qin W, et al. Evolving therapeutic landscape of advanced hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2023;20(4):203–22.CrossRefPubMed Yang C, Zhang H, Zhang L, Zhu AX, Bernards R, Qin W, et al. Evolving therapeutic landscape of advanced hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2023;20(4):203–22.CrossRefPubMed
7.
go back to reference Nguyen PHD, Ma S, Phua CZJ, Kaya NA, Lai HLH, Lim CJ, et al. Intratumoural immune heterogeneity as a hallmark of tumour evolution and progression in hepatocellular carcinoma. Nat Commun. 2021;12(1):227.ADSCrossRefPubMedPubMedCentral Nguyen PHD, Ma S, Phua CZJ, Kaya NA, Lai HLH, Lim CJ, et al. Intratumoural immune heterogeneity as a hallmark of tumour evolution and progression in hepatocellular carcinoma. Nat Commun. 2021;12(1):227.ADSCrossRefPubMedPubMedCentral
8.
go back to reference Li X, Wang L, Zhou XE, Ke J, de Waal PW, Gu X, et al. Structural basis of AMPK regulation by adenine nucleotides and glycogen. Cell Res. 2015;25(1):50–66.CrossRefPubMed Li X, Wang L, Zhou XE, Ke J, de Waal PW, Gu X, et al. Structural basis of AMPK regulation by adenine nucleotides and glycogen. Cell Res. 2015;25(1):50–66.CrossRefPubMed
9.
go back to reference Wang Z, Wang N, Liu P, Xie X. AMPK and Cancer Exp Suppl 2016;107:203–226. Wang Z, Wang N, Liu P, Xie X. AMPK and Cancer Exp Suppl 2016;107:203–226.
10.
11.
go back to reference Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol. 2023;24(4):255–72.CrossRefPubMed Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol. 2023;24(4):255–72.CrossRefPubMed
12.
go back to reference Kosinsky RL, Zerche M, Saul D, Wang X, Wohn L, Wegwitz F, et al. USP22 exerts tumor-suppressive functions in colorectal cancer by decreasing mTOR activity. Cell Death Differ. 2020;27(4):1328–40.CrossRefPubMed Kosinsky RL, Zerche M, Saul D, Wang X, Wohn L, Wegwitz F, et al. USP22 exerts tumor-suppressive functions in colorectal cancer by decreasing mTOR activity. Cell Death Differ. 2020;27(4):1328–40.CrossRefPubMed
14.
go back to reference Fox MM, Phoenix KN, Kopsiaftis SG, Claffey KP. AMP-activated protein kinase α 2 isoform suppression in primary breast Cancer alters AMPK growth control and apoptotic signaling. Genes Cancer. 2013;4(1–2):3–14.CrossRefPubMedPubMedCentral Fox MM, Phoenix KN, Kopsiaftis SG, Claffey KP. AMP-activated protein kinase α 2 isoform suppression in primary breast Cancer alters AMPK growth control and apoptotic signaling. Genes Cancer. 2013;4(1–2):3–14.CrossRefPubMedPubMedCentral
15.
go back to reference Kim YH, Liang H, Liu X, Lee JS, Cho JY, Cheong JH, et al. AMPKα modulation in cancer progression: multilayer integrative analysis of the whole transcriptome in Asian gastric cancer. Cancer Res. 2012;72(10):2512–21.CrossRefPubMed Kim YH, Liang H, Liu X, Lee JS, Cho JY, Cheong JH, et al. AMPKα modulation in cancer progression: multilayer integrative analysis of the whole transcriptome in Asian gastric cancer. Cancer Res. 2012;72(10):2512–21.CrossRefPubMed
16.
go back to reference Tong WH, Sourbier C, Kovtunovych G, Jeong SY, Vira M, Ghosh M, et al. The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels. Cancer Cell. 2011;20(3):315–27.CrossRefPubMedPubMedCentral Tong WH, Sourbier C, Kovtunovych G, Jeong SY, Vira M, Ghosh M, et al. The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels. Cancer Cell. 2011;20(3):315–27.CrossRefPubMedPubMedCentral
17.
go back to reference Zhang C, Dang D, Wang H, Shi S, Dai J, Yang M. Acircadian rhythm-related gene signature for predicting survival and drug response in HNSC. Front Immunol. 2022;13:1029676.CrossRefPubMedPubMedCentral Zhang C, Dang D, Wang H, Shi S, Dai J, Yang M. Acircadian rhythm-related gene signature for predicting survival and drug response in HNSC. Front Immunol. 2022;13:1029676.CrossRefPubMedPubMedCentral
19.
go back to reference Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 2021;20(1):131.CrossRefPubMedPubMedCentral Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 2021;20(1):131.CrossRefPubMedPubMedCentral
20.
go back to reference Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc. 2020;15(4):1484–506.CrossRefPubMed Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc. 2020;15(4):1484–506.CrossRefPubMed
21.
go back to reference Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017;14(10):979–82.CrossRefPubMedPubMedCentral Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017;14(10):979–82.CrossRefPubMedPubMedCentral
22.
go back to reference Wu Y, Yang S, Ma J, Chen Z, Song G, Rao D, et al. Spatiotemporal immune landscape of colorectal Cancer liver metastasis at single-cell level. Cancer Discov. 2022;12(1):134–53.CrossRefPubMed Wu Y, Yang S, Ma J, Chen Z, Song G, Rao D, et al. Spatiotemporal immune landscape of colorectal Cancer liver metastasis at single-cell level. Cancer Discov. 2022;12(1):134–53.CrossRefPubMed
24.
go back to reference Wu J, Puppala D, Feng X, Monetti M, Lapworth AL, Geoghegan KF. Chemoproteomic analysis of intertissue and interspecies isoform diversity of AMP-activated protein kinase (AMPK). J Biol Chem. 2013;288(50):35904–12.CrossRefPubMedPubMedCentral Wu J, Puppala D, Feng X, Monetti M, Lapworth AL, Geoghegan KF. Chemoproteomic analysis of intertissue and interspecies isoform diversity of AMP-activated protein kinase (AMPK). J Biol Chem. 2013;288(50):35904–12.CrossRefPubMedPubMedCentral
25.
go back to reference Pokhrel RH, Acharya S, Ahn JH, Gu Y, Pandit M, Kim JO, et al. AMPK promotes antitumor immunity by downregulating PD-1 in regulatory T cells via the HMGCR/p38 signaling pathway. Mol Cancer. 2021;20(1):133.CrossRefPubMedPubMedCentral Pokhrel RH, Acharya S, Ahn JH, Gu Y, Pandit M, Kim JO, et al. AMPK promotes antitumor immunity by downregulating PD-1 in regulatory T cells via the HMGCR/p38 signaling pathway. Mol Cancer. 2021;20(1):133.CrossRefPubMedPubMedCentral
27.
28.
go back to reference Shen CH, Yuan P, Perez-Lorenzo R, Zhang Y, Lee SX, Ou Y, et al. Phosphorylation of BRAF by AMPK impairs BRAF-KSR1 association and cell proliferation. Mol Cell. 2013;52(2):161–72.CrossRefPubMedPubMedCentral Shen CH, Yuan P, Perez-Lorenzo R, Zhang Y, Lee SX, Ou Y, et al. Phosphorylation of BRAF by AMPK impairs BRAF-KSR1 association and cell proliferation. Mol Cell. 2013;52(2):161–72.CrossRefPubMedPubMedCentral
29.
go back to reference Chou CC, Lee KH, Lai IL, Wang D, Mo X, Kulp SK, et al. AMPK reverses the mesenchymal phenotype of cancer cells by targeting the Akt-MDM2-Foxo3a signaling axis. Cancer Res. 2014;74(17):4783–95.CrossRefPubMedPubMedCentral Chou CC, Lee KH, Lai IL, Wang D, Mo X, Kulp SK, et al. AMPK reverses the mesenchymal phenotype of cancer cells by targeting the Akt-MDM2-Foxo3a signaling axis. Cancer Res. 2014;74(17):4783–95.CrossRefPubMedPubMedCentral
30.
go back to reference Laderoute KR, Calaoagan JM, Chao WR, Dinh D, Denko N, Duellman S, et al. 5′-AMP-activated protein kinase (AMPK) supports the growth of aggressive experimental human breast cancer tumors. J Biol Chem. 2014;289(33):22850–64.CrossRefPubMedPubMedCentral Laderoute KR, Calaoagan JM, Chao WR, Dinh D, Denko N, Duellman S, et al. 5′-AMP-activated protein kinase (AMPK) supports the growth of aggressive experimental human breast cancer tumors. J Biol Chem. 2014;289(33):22850–64.CrossRefPubMedPubMedCentral
31.
go back to reference Ríos M, Foretz M, Viollet B, Prieto A, Fraga M, García-Caballero T, et al. Lipoprotein internalisation induced by oncogenic AMPK activation is essential to maintain glioblastoma cell growth. Eur J Cancer. 2014;50(18):3187–97.CrossRefPubMed Ríos M, Foretz M, Viollet B, Prieto A, Fraga M, García-Caballero T, et al. Lipoprotein internalisation induced by oncogenic AMPK activation is essential to maintain glioblastoma cell growth. Eur J Cancer. 2014;50(18):3187–97.CrossRefPubMed
32.
go back to reference Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544–8.ADSCrossRefPubMedPubMedCentral Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544–8.ADSCrossRefPubMedPubMedCentral
33.
35.
go back to reference Rodríguez T, Méndez R, Del Campo A, Jiménez P, Aptsiauri N, Garrido F, et al. Distinct mechanisms of loss of IFN-gamma mediated HLA class I inducibility in two melanoma cell lines. BMC Cancer. 2007;7:34.CrossRefPubMedPubMedCentral Rodríguez T, Méndez R, Del Campo A, Jiménez P, Aptsiauri N, Garrido F, et al. Distinct mechanisms of loss of IFN-gamma mediated HLA class I inducibility in two melanoma cell lines. BMC Cancer. 2007;7:34.CrossRefPubMedPubMedCentral
36.
go back to reference Massa C, Wang Y, Marr N, Seliger B. Interferons and resistance mechanisms in tumors and pathogen-driven diseases-focus on the major histocompatibility complex (MHC) antigen processing pathway. Int J Mol Sci. 2023;24(7):6736.CrossRefPubMedPubMedCentral Massa C, Wang Y, Marr N, Seliger B. Interferons and resistance mechanisms in tumors and pathogen-driven diseases-focus on the major histocompatibility complex (MHC) antigen processing pathway. Int J Mol Sci. 2023;24(7):6736.CrossRefPubMedPubMedCentral
37.
go back to reference Navarro C, Ortega Á, Santeliz R, Garrido B, Chacín M, Galban N, et al. Metabolic reprogramming in Cancer cells: emerging molecular mechanisms and novel therapeutic approaches. Pharmaceutics. 2022;14(6):1303.CrossRefPubMedPubMedCentral Navarro C, Ortega Á, Santeliz R, Garrido B, Chacín M, Galban N, et al. Metabolic reprogramming in Cancer cells: emerging molecular mechanisms and novel therapeutic approaches. Pharmaceutics. 2022;14(6):1303.CrossRefPubMedPubMedCentral
39.
go back to reference Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1(6):401–8.CrossRefPubMed Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1(6):401–8.CrossRefPubMed
Metadata
Title
AMPKα2 promotes tumor immune escape by inducing CD8+ T-cell exhaustion and CD4+ Treg cell formation in liver hepatocellular carcinoma
Authors
Yan Ouyang
Yan Gu
Xinhai Zhang
Ya Huang
Xianpeng Wei
Fuzhou Tang
Shichao Zhang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-024-12025-y

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine