Skip to main content
Top
Published in: BMC Medicine 1/2022

Open Access 01-12-2022 | Hepatitis B | Research article

Cell-free DNA methylation markers for differential diagnosis of hepatocellular carcinoma

Authors: Biyuan Luo, Fang Ma, Hao Liu, Jixiong Hu, Le Rao, Chun Liu, Yongfang Jiang, Shuyu Kuangzeng, Xuan Lin, Chenyang Wang, Yiyu Lei, Zhongzhou Si, Guangshun Chen, Ning Zhou, Chengbai Liang, Fangqing Jiang, Fenge Liu, Weidong Dai, Wei Liu, Yawen Gao, Zhihong Li, Xi Li, Guangyu Zhou, Bingsi Li, Zhihong Zhang, Weiqi Nian, Lihua Luo, Xianling Liu

Published in: BMC Medicine | Issue 1/2022

Login to get access

Abstract

Background

Aberrant DNA methylation may offer opportunities in revolutionizing cancer screening and diagnosis. We sought to identify a non-invasive DNA methylation-based screening approach using cell-free DNA (cfDNA) for early detection of hepatocellular carcinoma (HCC).

Methods

Differentially, DNA methylation blocks were determined by comparing methylation profiles of biopsy-proven HCC, liver cirrhosis, and normal tissue samples with high throughput DNA bisulfite sequencing. A multi-layer HCC screening model was subsequently constructed based on tissue-derived differentially methylated blocks (DMBs). This model was tested in a cohort consisting of 120 HCC, 92 liver cirrhotic, and 290 healthy plasma samples including 65 hepatitis B surface antigen-seropositive (HBsAg+) samples, independently validated in a cohort consisting of 67 HCC, 111 liver cirrhotic, and 242 healthy plasma samples including 56 HBsAg+ samples.

Results

Based on methylation profiling of tissue samples, 2321 DMBs were identified, which were subsequently used to construct a cfDNA-based HCC screening model, achieved a sensitivity of 86% and specificity of 98% in the training cohort and a sensitivity of 84% and specificity of 96% in the independent validation cohort. This model obtained a sensitivity of 76% in 37 early-stage HCC (Barcelona clinical liver cancer [BCLC] stage 0-A) patients. The screening model can effectively discriminate HCC patients from non-HCC controls, including liver cirrhotic patients, asymptomatic HBsAg+ and healthy individuals, achieving an AUC of 0.957(95% CI 0.939–0.975), whereas serum α-fetoprotein (AFP) only achieved an AUC of 0.803 (95% CI 0.758–0.847). Besides detecting patients with early-stage HCC from non-HCC controls, this model showed high capacity for distinguishing early-stage HCC from a high risk population (AUC=0.934; 95% CI 0.905–0.963), also significantly outperforming AFP. Furthermore, our model also showed superior performance in distinguishing HCC with normal AFP (< 20ng ml−1) from high risk population (AUC=0.93; 95% CI 0.892–0.969).

Conclusions

We have developed a sensitive blood-based non-invasive HCC screening model which can effectively distinguish early-stage HCC patients from high risk population and demonstrated its performance through an independent validation cohort.

Trial registration

The study was approved by the ethic committee of The Second Xiangya Hospital of Central South University (KYLL2018072) and Chongqing University Cancer Hospital (2019167). The study is registered at ClinicalTrials.gov(#NCT04383353).
Appendix
Available only for authorised users
Literature
1.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA: Cancer J Clin. 2015;65(2):87–108. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA: Cancer J Clin. 2015;65(2):87–108.
2.
go back to reference Fuchs BC, Hoshida Y, Fujii T, Wei L, Yamada S, Lauwers GY, et al. Epidermal growth factor receptor inhibition attenuates liver fibrosis and development of hepatocellular carcinoma. Hepatology. 2014;59(4):1577–90.CrossRef Fuchs BC, Hoshida Y, Fujii T, Wei L, Yamada S, Lauwers GY, et al. Epidermal growth factor receptor inhibition attenuates liver fibrosis and development of hepatocellular carcinoma. Hepatology. 2014;59(4):1577–90.CrossRef
3.
go back to reference Zhang DY, Friedman SL. Fibrosis-dependent mechanisms of hepatocarcinogenesis. Hepatology. 2012;56(2):769–75.CrossRef Zhang DY, Friedman SL. Fibrosis-dependent mechanisms of hepatocarcinogenesis. Hepatology. 2012;56(2):769–75.CrossRef
4.
go back to reference Bruix J, Sherman M. AASLD practice guideline: management of hepatocellular carcinoma: an update. Hepatol (Baltimore, Md). 2011;53:1020–2.CrossRef Bruix J, Sherman M. AASLD practice guideline: management of hepatocellular carcinoma: an update. Hepatol (Baltimore, Md). 2011;53:1020–2.CrossRef
5.
go back to reference Marrero J, Feng Z, Wang Y, Nguyen M, Befeler A, Roberts L, et al. Alpha-fetoprotein, des-gamma carboxyprothrombin, and lectin-bound alpha-fetoprotein in early hepatocellular carcinoma. Gastroenterology. 2009;137(1):110–8.CrossRef Marrero J, Feng Z, Wang Y, Nguyen M, Befeler A, Roberts L, et al. Alpha-fetoprotein, des-gamma carboxyprothrombin, and lectin-bound alpha-fetoprotein in early hepatocellular carcinoma. Gastroenterology. 2009;137(1):110–8.CrossRef
6.
go back to reference The Origin and Mechanism of Circulating DNA. Annals of the New York Academy of Sciences. 2000;906(CIRCULATING NUCLEIC ACIDS IN PLASMA OR SERUM):161-8. The Origin and Mechanism of Circulating DNA. Annals of the New York Academy of Sciences. 2000;906(CIRCULATING NUCLEIC ACIDS IN PLASMA OR SERUM):161-8.
7.
go back to reference Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–2.CrossRef Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–2.CrossRef
8.
go back to reference Yu NC, Chaudhari V, Raman SS, Lassman C, Tong MJ, Busuttil RW, et al. CT and MRI improve detection of hepatocellular carcinoma, compared with ultrasound alone, in patients with cirrhosis. Clin Gastroenterol Hepatol. 2011;9(2):161–7.CrossRef Yu NC, Chaudhari V, Raman SS, Lassman C, Tong MJ, Busuttil RW, et al. CT and MRI improve detection of hepatocellular carcinoma, compared with ultrasound alone, in patients with cirrhosis. Clin Gastroenterol Hepatol. 2011;9(2):161–7.CrossRef
9.
go back to reference Luo P, Wu S, Yu Y, Ming X, Li S, Zuo X, et al. Current status and perspective biomarkers in AFP negative HCC: towards screening for and diagnosing hepatocellular carcinoma at an earlier stage. Pathol Oncol Res. 2019. Luo P, Wu S, Yu Y, Ming X, Li S, Zuo X, et al. Current status and perspective biomarkers in AFP negative HCC: towards screening for and diagnosing hepatocellular carcinoma at an earlier stage. Pathol Oncol Res. 2019.
10.
go back to reference Tsuchiya N, Sawada Y, Endo I, Saito K, Uemura Y, Nakatsura T. Biomarkers for the early diagnosis of hepatocellular carcinoma. World J Gastroenterol. 2015;37:10573–83.CrossRef Tsuchiya N, Sawada Y, Endo I, Saito K, Uemura Y, Nakatsura T. Biomarkers for the early diagnosis of hepatocellular carcinoma. World J Gastroenterol. 2015;37:10573–83.CrossRef
11.
go back to reference Kladney RD, Cui X, Bulla GA, Brunt EM, Fimmel CJ. Expression of GP73, a resident Golgi membrane protein, in viral and nonviral liver disease. Hepatology. 2002;35(6):1431–40.CrossRef Kladney RD, Cui X, Bulla GA, Brunt EM, Fimmel CJ. Expression of GP73, a resident Golgi membrane protein, in viral and nonviral liver disease. Hepatology. 2002;35(6):1431–40.CrossRef
12.
go back to reference Feng J, Zhu R, Chang C, Yu L, Sun L. CK19 and glypican 3 expression profiling in the prognostic indication for patients with HCC after surgical resection. Plos ONE. 2016;11(3):e0151501.CrossRef Feng J, Zhu R, Chang C, Yu L, Sun L. CK19 and glypican 3 expression profiling in the prognostic indication for patients with HCC after surgical resection. Plos ONE. 2016;11(3):e0151501.CrossRef
13.
go back to reference Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24.CrossRef Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24.CrossRef
14.
go back to reference Chaudhuri AA, Chabon JJ, Lovejoy AF, Newman AM, Stehr H, Azad TD, et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Disc. 2017;7(12):1394–403.CrossRef Chaudhuri AA, Chabon JJ, Lovejoy AF, Newman AM, Stehr H, Azad TD, et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Disc. 2017;7(12):1394–403.CrossRef
15.
go back to reference Cohen J, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Sci(New York, NY). 2018;359(6378):926–30.CrossRef Cohen J, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Sci(New York, NY). 2018;359(6378):926–30.CrossRef
16.
go back to reference Baylin SB, Jones PA. A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer. 2011;11(10):726–34.CrossRef Baylin SB, Jones PA. A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer. 2011;11(10):726–34.CrossRef
17.
go back to reference Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41(2):178–86.CrossRef Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41(2):178–86.CrossRef
18.
go back to reference Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A. 1999;96(15):8681–6.CrossRef Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A. 1999;96(15):8681–6.CrossRef
19.
go back to reference Chan KC, Jiang P, Chan CW, Sun K, Wong J, Hui EP, et al. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc Natl Acad Sci U S A. 2013;110(47):18761–8.CrossRef Chan KC, Jiang P, Chan CW, Sun K, Wong J, Hui EP, et al. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc Natl Acad Sci U S A. 2013;110(47):18761–8.CrossRef
20.
go back to reference Wen L, Li J, Guo H, Liu X, Zheng S, Zhang D, et al. Genome-scale detection of hypermethylated CpG islands in circulating cell-free DNA of hepatocellular carcinoma patients. Cell Res. 2015;25(11):1250–64.CrossRef Wen L, Li J, Guo H, Liu X, Zheng S, Zhang D, et al. Genome-scale detection of hypermethylated CpG islands in circulating cell-free DNA of hepatocellular carcinoma patients. Cell Res. 2015;25(11):1250–64.CrossRef
21.
go back to reference Liang N, Li B, Jia Z, Wang C, Wu P, Zheng T, et al. Ultrasensitive detection of circulating tumour DNA via deep methylation sequencing aided by machine learning. Nat Biomed Eng. 2021;5(6):586–99.CrossRef Liang N, Li B, Jia Z, Wang C, Wu P, Zheng T, et al. Ultrasensitive detection of circulating tumour DNA via deep methylation sequencing aided by machine learning. Nat Biomed Eng. 2021;5(6):586–99.CrossRef
22.
go back to reference Pedersen BS, Eyring K, De S, Yang IV, Schwartz DA. Fast Accurate Alignment Long Bisulfite-seq Reads. 2014;arXiv:14011129v2:[q-bioGN]. Pedersen BS, Eyring K, De S, Yang IV, Schwartz DA. Fast Accurate Alignment Long Bisulfite-seq Reads. 2014;arXiv:14011129v2:[q-bioGN].
23.
go back to reference Gao J, Wang H, Zang W, Li B, Rao G, Li L, et al. Circulating tumor DNA functions as an alternative for tissue to overcome tumor heterogeneity in advanced gastric cancer. Cancer Sci. 2017;108(9):1881–7.CrossRef Gao J, Wang H, Zang W, Li B, Rao G, Li L, et al. Circulating tumor DNA functions as an alternative for tissue to overcome tumor heterogeneity in advanced gastric cancer. Cancer Sci. 2017;108(9):1881–7.CrossRef
24.
go back to reference Mack P, Banks K, Espenschied C, Burich R, Zill O, Lee C, et al. Spectrum of driver mutations and clinical impact of circulating tumor DNA analysis in non-small cell lung cancer: Analysis of over 8000 cases. Cancer. 2020;126(14):3219–28.CrossRef Mack P, Banks K, Espenschied C, Burich R, Zill O, Lee C, et al. Spectrum of driver mutations and clinical impact of circulating tumor DNA analysis in non-small cell lung cancer: Analysis of over 8000 cases. Cancer. 2020;126(14):3219–28.CrossRef
25.
go back to reference Noguchi T, Iwahashi N, Sakai K, Matsuda K, Matsukawa H, Toujima S, et al. Comprehensive gene mutation profiling of circulating tumor DNA in ovarian cancer: its pathological and prognostic impact. Cancers. 2020;12(11). Noguchi T, Iwahashi N, Sakai K, Matsuda K, Matsukawa H, Toujima S, et al. Comprehensive gene mutation profiling of circulating tumor DNA in ovarian cancer: its pathological and prognostic impact. Cancers. 2020;12(11).
26.
go back to reference Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545(7655):446–51.CrossRef Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545(7655):446–51.CrossRef
27.
go back to reference Lennon AM, Buchanan AH, Kinde I, Warren A, Honushefsky A, Cohain AT, et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science. 2020;369(6499). Lennon AM, Buchanan AH, Kinde I, Warren A, Honushefsky A, Cohain AT, et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science. 2020;369(6499).
28.
go back to reference Baylin SB, Jones PA. Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol. 2016;8(9). Baylin SB, Jones PA. Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol. 2016;8(9).
29.
go back to reference Liu M, Oxnard G, Klein E, Swanton C, Seiden M. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann Oncol Off J Eur Soc Med Onco. 2020;31(6):745–59.CrossRef Liu M, Oxnard G, Klein E, Swanton C, Seiden M. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann Oncol Off J Eur Soc Med Onco. 2020;31(6):745–59.CrossRef
30.
go back to reference Kisiel JB, Dukek BA, V.S.R. Kanipakam R, Ghoz HM, Yab TC, Berger CK, et al. Hepatocellular carcinoma detection by plasma methylated DNA: Discovery, Phase I Pilot, and Phase II Clinical Validation. Hepatology. 2019;69(3):1180–92.PubMed Kisiel JB, Dukek BA, V.S.R. Kanipakam R, Ghoz HM, Yab TC, Berger CK, et al. Hepatocellular carcinoma detection by plasma methylated DNA: Discovery, Phase I Pilot, and Phase II Clinical Validation. Hepatology. 2019;69(3):1180–92.PubMed
31.
go back to reference Cai J, Chen L, Zhang Z, Zhang X, Lu X, Liu W, et al. Genome-wide mapping of 5-hydroxymethylcytosines in circulating cell-free DNA as a non-invasive approach for early detection of hepatocellular carcinoma. Gut. 2019;68(12):2195–205.CrossRef Cai J, Chen L, Zhang Z, Zhang X, Lu X, Liu W, et al. Genome-wide mapping of 5-hydroxymethylcytosines in circulating cell-free DNA as a non-invasive approach for early detection of hepatocellular carcinoma. Gut. 2019;68(12):2195–205.CrossRef
32.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.CrossRef
Metadata
Title
Cell-free DNA methylation markers for differential diagnosis of hepatocellular carcinoma
Authors
Biyuan Luo
Fang Ma
Hao Liu
Jixiong Hu
Le Rao
Chun Liu
Yongfang Jiang
Shuyu Kuangzeng
Xuan Lin
Chenyang Wang
Yiyu Lei
Zhongzhou Si
Guangshun Chen
Ning Zhou
Chengbai Liang
Fangqing Jiang
Fenge Liu
Weidong Dai
Wei Liu
Yawen Gao
Zhihong Li
Xi Li
Guangyu Zhou
Bingsi Li
Zhihong Zhang
Weiqi Nian
Lihua Luo
Xianling Liu
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2022
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-021-02201-3

Other articles of this Issue 1/2022

BMC Medicine 1/2022 Go to the issue