Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2024

Open Access 01-12-2024 | Heart Failure | Research

Mycn ameliorates cardiac hypertrophy-induced heart failure in mice by mediating the USP2/JUP/Akt/β-catenin cascade

Authors: Weinian Gao, Na Guo, Hongjiang Yan, Shuguang Zhao, Yongquan Sun, Ziying Chen

Published in: BMC Cardiovascular Disorders | Issue 1/2024

Login to get access

Abstract

Background

Pathological cardiac hypertrophy is associated with cardiac dysfunction and is a key risk factor for heart failure and even sudden death. This study investigates the function of Mycn in cardiac hypertrophy and explores the interacting molecules.

Methods

A mouse model of cardiac hypertrophy was induced by isoproterenol (ISO). The cardiac dysfunction was assessed by the heart weight-to-body weight ratio (HW/BW), echocardiography assessment, pathological staining, biomarker detection, and cell apoptosis. Transcriptome alteration in cardiac hypertrophy was analyzed by bioinformatics analysis. Gain- or loss-of-function studies of MYCN proto-oncogene (Mycn), ubiquitin specific peptidase 2 (USP2), and junction plakoglobin (JUP) were performed. The biological functions of Mycn were further examined in ISO-treated cardiomyocytes. The molecular interactions were verified by luciferase assay or immunoprecipitation assays.

Results

Mycn was poorly expressed in ISO-treated mice, and its upregulation reduced HW/BW, cell surface area, oxidative stress, and inflammation while improving cardiac function of mice. It also reduced apoptosis of cardiomyocytes in mice and those in vitro induced by ISO. Mycn bound to the USP2 promoter to activate its transcription. USP2 overexpression exerted similar myocardial protective functions. It stabilized JUP protein by deubiquitination modification, which blocked the Akt/β-catenin pathway. Knockdown of JUP restored phosphorylation of Akt and β-catenin protein level, which negated the protective effects of USP2.

Conclusion

This study demonstrates that Mycn activates USP2 transcription, which mediates ubiquitination and protein stabilization of JUP, thus inactivating the Akt/β-catenin axis and alleviating cardiac hypertrophy-induced heart failure.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol. 2016;97:245–62.CrossRefPubMed Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol. 2016;97:245–62.CrossRefPubMed
3.
go back to reference Gallo S, Vitacolonna A, Bonzano A, Comoglio P, Crepaldi T. ERK: a key player in the pathophysiology of Cardiac Hypertrophy. Int J Mol Sci 2019;20(9). Gallo S, Vitacolonna A, Bonzano A, Comoglio P, Crepaldi T. ERK: a key player in the pathophysiology of Cardiac Hypertrophy. Int J Mol Sci 2019;20(9).
4.
go back to reference Samak M, Fatullayev J, Sabashnikov A, Zeriouh M, Schmack B, Farag M, et al. Cardiac hypertrophy: an introduction to Molecular and Cellular basis. Med Sci Monit Basic Res. 2016;22:75–9.CrossRefPubMedPubMedCentral Samak M, Fatullayev J, Sabashnikov A, Zeriouh M, Schmack B, Farag M, et al. Cardiac hypertrophy: an introduction to Molecular and Cellular basis. Med Sci Monit Basic Res. 2016;22:75–9.CrossRefPubMedPubMedCentral
5.
go back to reference Tham YK, Bernardo BC, Ooi JY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol. 2015;89(9):1401–38.CrossRefPubMed Tham YK, Bernardo BC, Ooi JY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol. 2015;89(9):1401–38.CrossRefPubMed
6.
go back to reference Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018;15(7):387–407.CrossRefPubMed Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018;15(7):387–407.CrossRefPubMed
7.
go back to reference Ruiz-Perez MV, Henley AB, Arsenian-Henriksson M. The MYCN protein in Health and Disease. Genes (Basel) 2017;8(4). Ruiz-Perez MV, Henley AB, Arsenian-Henriksson M. The MYCN protein in Health and Disease. Genes (Basel) 2017;8(4).
8.
go back to reference Harmelink C, Peng Y, DeBenedittis P, Chen H, Shou W, Jiao K. Myocardial mycn is essential for mouse ventricular wall morphogenesis. Dev Biol. 2013;373(1):53–63.CrossRefPubMed Harmelink C, Peng Y, DeBenedittis P, Chen H, Shou W, Jiao K. Myocardial mycn is essential for mouse ventricular wall morphogenesis. Dev Biol. 2013;373(1):53–63.CrossRefPubMed
9.
go back to reference Fu D, Luo J, Wu Y, Zhang L, Li L, Chen H, et al. Angiotensin II-induced calcium overload affects mitochondrial functions in cardiac hypertrophy by targeting the USP2/MFN2 axis. Mol Cell Endocrinol. 2023;571:111938.CrossRefPubMed Fu D, Luo J, Wu Y, Zhang L, Li L, Chen H, et al. Angiotensin II-induced calcium overload affects mitochondrial functions in cardiac hypertrophy by targeting the USP2/MFN2 axis. Mol Cell Endocrinol. 2023;571:111938.CrossRefPubMed
10.
go back to reference Kitamura H, Hashimoto M. USP2-Related Cellular Signaling and Consequent Pathophysiological outcomes. Int J Mol Sci 2021;22(3). Kitamura H, Hashimoto M. USP2-Related Cellular Signaling and Consequent Pathophysiological outcomes. Int J Mol Sci 2021;22(3).
11.
go back to reference Xiao W, Wang J, Wang X, Cai S, Guo Y, Ye L, et al. Therapeutic targeting of the USP2-E2F4 axis inhibits autophagic machinery essential for zinc homeostasis in cancer progression. Autophagy. 2022;18(11):2615–35.CrossRefPubMedPubMedCentral Xiao W, Wang J, Wang X, Cai S, Guo Y, Ye L, et al. Therapeutic targeting of the USP2-E2F4 axis inhibits autophagic machinery essential for zinc homeostasis in cancer progression. Autophagy. 2022;18(11):2615–35.CrossRefPubMedPubMedCentral
12.
go back to reference Li J, Swope D, Raess N, Cheng L, Muller EJ, Radice GL. Cardiac tissue-restricted deletion of plakoglobin results in progressive cardiomyopathy and activation of beta-catenin signaling. Mol Cell Biol. 2011;31(6):1134–44.CrossRefPubMedPubMedCentral Li J, Swope D, Raess N, Cheng L, Muller EJ, Radice GL. Cardiac tissue-restricted deletion of plakoglobin results in progressive cardiomyopathy and activation of beta-catenin signaling. Mol Cell Biol. 2011;31(6):1134–44.CrossRefPubMedPubMedCentral
13.
go back to reference Lin H, Li Y, Zhu H, Wang Q, Chen Z, Chen L, et al. Lansoprazole alleviates pressure overload-induced cardiac hypertrophy and heart failure in mice by blocking the activation of beta-catenin. Cardiovasc Res. 2020;116(1):101–13.CrossRefPubMed Lin H, Li Y, Zhu H, Wang Q, Chen Z, Chen L, et al. Lansoprazole alleviates pressure overload-induced cardiac hypertrophy and heart failure in mice by blocking the activation of beta-catenin. Cardiovasc Res. 2020;116(1):101–13.CrossRefPubMed
14.
go back to reference Laferriere CA, Pang DS. Review of Intraperitoneal Injection of Sodium Pentobarbital as a method of Euthanasia in Laboratory rodents. J Am Assoc Lab Anim Sci. 2020;59(3):254–63.CrossRefPubMedPubMedCentral Laferriere CA, Pang DS. Review of Intraperitoneal Injection of Sodium Pentobarbital as a method of Euthanasia in Laboratory rodents. J Am Assoc Lab Anim Sci. 2020;59(3):254–63.CrossRefPubMedPubMedCentral
15.
go back to reference Li T, Kuang T, Yang Z, Zhang Q, Zhang W, Fan Y. Co-treatment with Everolimus, an mTOR-Specific antagonist, or downregulation of ELK1 enhances the sensitivity of pancreatic Cancer cells to Genistein. Front Cell Dev Biol. 2021;9:633035.CrossRefPubMedPubMedCentral Li T, Kuang T, Yang Z, Zhang Q, Zhang W, Fan Y. Co-treatment with Everolimus, an mTOR-Specific antagonist, or downregulation of ELK1 enhances the sensitivity of pancreatic Cancer cells to Genistein. Front Cell Dev Biol. 2021;9:633035.CrossRefPubMedPubMedCentral
16.
go back to reference Guo Y, Shi DZ, Yin HJ, Chen KJ. Effects of Tribuli saponins on ventricular remodeling after myocardial infarction in hyperlipidemic rats. Am J Chin Med. 2007;35(2):309–16.CrossRefPubMed Guo Y, Shi DZ, Yin HJ, Chen KJ. Effects of Tribuli saponins on ventricular remodeling after myocardial infarction in hyperlipidemic rats. Am J Chin Med. 2007;35(2):309–16.CrossRefPubMed
17.
go back to reference Lal H, Ahmad F, Parikh S, Force T. Troponin I-interacting protein kinase: a novel cardiac-specific kinase, emerging as a molecular target for the treatment of cardiac disease. Circ J. 2014;78(7):1514–9.CrossRefPubMedPubMedCentral Lal H, Ahmad F, Parikh S, Force T. Troponin I-interacting protein kinase: a novel cardiac-specific kinase, emerging as a molecular target for the treatment of cardiac disease. Circ J. 2014;78(7):1514–9.CrossRefPubMedPubMedCentral
18.
go back to reference Mohanan P, Subramaniyam S, Mathiyalagan R, Yang DC. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J Ginseng Res. 2018;42(2):123–32.CrossRefPubMed Mohanan P, Subramaniyam S, Mathiyalagan R, Yang DC. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J Ginseng Res. 2018;42(2):123–32.CrossRefPubMed
19.
go back to reference Marian AJ, Braunwald E. Hypertrophic cardiomyopathy: Genetics, Pathogenesis, clinical manifestations, diagnosis, and Therapy. Circ Res. 2017;121(7):749–70.CrossRefPubMedPubMedCentral Marian AJ, Braunwald E. Hypertrophic cardiomyopathy: Genetics, Pathogenesis, clinical manifestations, diagnosis, and Therapy. Circ Res. 2017;121(7):749–70.CrossRefPubMedPubMedCentral
20.
go back to reference Ramachandra CJA, Cong S, Chan X, Yap EP, Yu F, Hausenloy DJ. Oxidative stress in cardiac hypertrophy: from molecular mechanisms to novel therapeutic targets. Free Radic Biol Med. 2021;166:297–312.CrossRefPubMed Ramachandra CJA, Cong S, Chan X, Yap EP, Yu F, Hausenloy DJ. Oxidative stress in cardiac hypertrophy: from molecular mechanisms to novel therapeutic targets. Free Radic Biol Med. 2021;166:297–312.CrossRefPubMed
21.
go back to reference Shah AK, Bhullar SK, Elimban V, Dhalla NS. Oxidative stress as a mechanism for functional alterations in Cardiac Hypertrophy and Heart failure. Antioxid (Basel) 2021;10(6). Shah AK, Bhullar SK, Elimban V, Dhalla NS. Oxidative stress as a mechanism for functional alterations in Cardiac Hypertrophy and Heart failure. Antioxid (Basel) 2021;10(6).
22.
go back to reference Guan XH, Hong X, Zhao N, Liu XH, Xiao YF, Chen TT, et al. CD38 promotes angiotensin II-induced cardiac hypertrophy. J Cell Mol Med. 2017;21(8):1492–502.CrossRefPubMedPubMedCentral Guan XH, Hong X, Zhao N, Liu XH, Xiao YF, Chen TT, et al. CD38 promotes angiotensin II-induced cardiac hypertrophy. J Cell Mol Med. 2017;21(8):1492–502.CrossRefPubMedPubMedCentral
23.
go back to reference Senger N, A CP, Marques BVD, Akamine EH, Diniz GP, Campagnole-Santos MJ, et al. Angiotensin-(1–7) prevents T3-induced cardiomyocyte hypertrophy by upregulating FOXO3/SOD1/catalase and downregulating NF-kB. J Cell Physiol. 2021;236(4):3059–72.CrossRefPubMed Senger N, A CP, Marques BVD, Akamine EH, Diniz GP, Campagnole-Santos MJ, et al. Angiotensin-(1–7) prevents T3-induced cardiomyocyte hypertrophy by upregulating FOXO3/SOD1/catalase and downregulating NF-kB. J Cell Physiol. 2021;236(4):3059–72.CrossRefPubMed
24.
go back to reference Song G, Zhu L, Ruan Z, Wang R, Shen Y. MicroRNA-122 promotes cardiomyocyte hypertrophy via targeting FoxO3. Biochem Biophys Res Commun. 2019;519(4):682–8.CrossRefPubMed Song G, Zhu L, Ruan Z, Wang R, Shen Y. MicroRNA-122 promotes cardiomyocyte hypertrophy via targeting FoxO3. Biochem Biophys Res Commun. 2019;519(4):682–8.CrossRefPubMed
25.
go back to reference He S, Mansour MR, Zimmerman MW, Ki DH, Layden HM, Akahane K et al. Synergy between loss of NF1 and overexpression of MYCN in neuroblastoma is mediated by the GAP-related domain. Elife 2016;5. He S, Mansour MR, Zimmerman MW, Ki DH, Layden HM, Akahane K et al. Synergy between loss of NF1 and overexpression of MYCN in neuroblastoma is mediated by the GAP-related domain. Elife 2016;5.
26.
go back to reference Genevieve D, de Pontual L, Amiel J, Sarnacki S, Lyonnet S. An overview of isolated and syndromic oesophageal atresia. Clin Genet. 2007;71(5):392–9.CrossRefPubMed Genevieve D, de Pontual L, Amiel J, Sarnacki S, Lyonnet S. An overview of isolated and syndromic oesophageal atresia. Clin Genet. 2007;71(5):392–9.CrossRefPubMed
27.
go back to reference Veas-Perez de Tudela M, Delgado-Esteban M, Cuende J, Bolanos JP, Almeida A. Human neuroblastoma cells with MYCN amplification are selectively resistant to oxidative stress by transcriptionally up-regulating glutamate cysteine ligase. J Neurochem. 2010;113(4):819–25.CrossRefPubMed Veas-Perez de Tudela M, Delgado-Esteban M, Cuende J, Bolanos JP, Almeida A. Human neuroblastoma cells with MYCN amplification are selectively resistant to oxidative stress by transcriptionally up-regulating glutamate cysteine ligase. J Neurochem. 2010;113(4):819–25.CrossRefPubMed
28.
go back to reference Zaytseva O, Kim NH, Quinn LM. MYC in Brain Development and Cancer. Int J Mol Sci 2020;21(20). Zaytseva O, Kim NH, Quinn LM. MYC in Brain Development and Cancer. Int J Mol Sci 2020;21(20).
29.
go back to reference Xing J, Li P, Hong J, Wang M, Liu Y, Gao Y, et al. Overexpression of ubiquitin-specific protease 2 (USP2) in the Heart suppressed pressure overload-Induced Cardiac Remodeling. Mediators Inflamm. 2020;2020:4121750.CrossRefPubMedPubMedCentral Xing J, Li P, Hong J, Wang M, Liu Y, Gao Y, et al. Overexpression of ubiquitin-specific protease 2 (USP2) in the Heart suppressed pressure overload-Induced Cardiac Remodeling. Mediators Inflamm. 2020;2020:4121750.CrossRefPubMedPubMedCentral
30.
go back to reference Zhang D, Liang C, Li P, Yang L, Hao Z, Kong L, et al. Runt-related transcription factor 1 (Runx1) aggravates pathological cardiac hypertrophy by promoting p53 expression. J Cell Mol Med. 2021;25(16):7867–77.CrossRefPubMedPubMedCentral Zhang D, Liang C, Li P, Yang L, Hao Z, Kong L, et al. Runt-related transcription factor 1 (Runx1) aggravates pathological cardiac hypertrophy by promoting p53 expression. J Cell Mol Med. 2021;25(16):7867–77.CrossRefPubMedPubMedCentral
31.
go back to reference Duran J, Lagos D, Pavez M, Troncoso MF, Ramos S, Barrientos G, et al. Ca(2+)/Calmodulin-Dependent protein kinase II and Androgen Signaling pathways modulate MEF2 activity in Testosterone-Induced Cardiac Myocyte Hypertrophy. Front Pharmacol. 2017;8:604.CrossRefPubMedPubMedCentral Duran J, Lagos D, Pavez M, Troncoso MF, Ramos S, Barrientos G, et al. Ca(2+)/Calmodulin-Dependent protein kinase II and Androgen Signaling pathways modulate MEF2 activity in Testosterone-Induced Cardiac Myocyte Hypertrophy. Front Pharmacol. 2017;8:604.CrossRefPubMedPubMedCentral
32.
go back to reference Song HK, Hong SE, Kim T, Kim DH. Deep RNA sequencing reveals novel cardiac transcriptomic signatures for physiological and pathological hypertrophy. PLoS ONE. 2012;7(4):e35552.CrossRefPubMedPubMedCentral Song HK, Hong SE, Kim T, Kim DH. Deep RNA sequencing reveals novel cardiac transcriptomic signatures for physiological and pathological hypertrophy. PLoS ONE. 2012;7(4):e35552.CrossRefPubMedPubMedCentral
33.
go back to reference Baumgarten A, Bang C, Tschirner A, Engelmann A, Adams V, von Haehling S, et al. TWIST1 regulates the activity of ubiquitin proteasome system via the miR-199/214 cluster in human end-stage dilated cardiomyopathy. Int J Cardiol. 2013;168(2):1447–52.CrossRefPubMed Baumgarten A, Bang C, Tschirner A, Engelmann A, Adams V, von Haehling S, et al. TWIST1 regulates the activity of ubiquitin proteasome system via the miR-199/214 cluster in human end-stage dilated cardiomyopathy. Int J Cardiol. 2013;168(2):1447–52.CrossRefPubMed
34.
go back to reference Wu G, Liu J, Ruan J, Yu S, Wang L, Zhao S, et al. Deleterious rare desmosomal variants contribute to hypertrophic cardiomyopathy and are Associated with distinctive clinical features. Can J Cardiol. 2022;38(1):41–8.CrossRefPubMed Wu G, Liu J, Ruan J, Yu S, Wang L, Zhao S, et al. Deleterious rare desmosomal variants contribute to hypertrophic cardiomyopathy and are Associated with distinctive clinical features. Can J Cardiol. 2022;38(1):41–8.CrossRefPubMed
35.
go back to reference Hsieh PL, Chu PM, Cheng HC, Huang YT, Chou WC, Tsai KL et al. Dapagliflozin mitigates doxorubicin-caused myocardium damage by regulating AKT-Mediated oxidative stress, Cardiac Remodeling, and inflammation. Int J Mol Sci 2022;23(17). Hsieh PL, Chu PM, Cheng HC, Huang YT, Chou WC, Tsai KL et al. Dapagliflozin mitigates doxorubicin-caused myocardium damage by regulating AKT-Mediated oxidative stress, Cardiac Remodeling, and inflammation. Int J Mol Sci 2022;23(17).
36.
go back to reference Liu P, Su J, Song X, Wang S. Activation of nuclear beta-catenin/c-Myc axis promotes oxidative stress injury in streptozotocin-induced diabetic cardiomyopathy. Biochem Biophys Res Commun. 2017;493(4):1573–80.CrossRefPubMed Liu P, Su J, Song X, Wang S. Activation of nuclear beta-catenin/c-Myc axis promotes oxidative stress injury in streptozotocin-induced diabetic cardiomyopathy. Biochem Biophys Res Commun. 2017;493(4):1573–80.CrossRefPubMed
37.
go back to reference Sen P, Gupta K, Kumari A, Singh G, Pandey S, Singh R. Wnt/beta-Catenin antagonist pyrvinium exerts cardioprotective effects in Polymicrobial Sepsis Model by attenuating Calcium Dyshomeostasis and mitochondrial dysfunction. Cardiovasc Toxicol. 2021;21(7):517–32.CrossRefPubMed Sen P, Gupta K, Kumari A, Singh G, Pandey S, Singh R. Wnt/beta-Catenin antagonist pyrvinium exerts cardioprotective effects in Polymicrobial Sepsis Model by attenuating Calcium Dyshomeostasis and mitochondrial dysfunction. Cardiovasc Toxicol. 2021;21(7):517–32.CrossRefPubMed
38.
go back to reference Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, et al. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol. 2009;7(6):e1000121.CrossRefPubMedPubMedCentral Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, et al. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol. 2009;7(6):e1000121.CrossRefPubMedPubMedCentral
Metadata
Title
Mycn ameliorates cardiac hypertrophy-induced heart failure in mice by mediating the USP2/JUP/Akt/β-catenin cascade
Authors
Weinian Gao
Na Guo
Hongjiang Yan
Shuguang Zhao
Yongquan Sun
Ziying Chen
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Heart Failure
Published in
BMC Cardiovascular Disorders / Issue 1/2024
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-024-03748-8

Other articles of this Issue 1/2024

BMC Cardiovascular Disorders 1/2024 Go to the issue