Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2024

Open Access 01-12-2024 | Heart Failure | Research

HAPLN1 knockdown inhibits heart failure development via activating the PKA signaling pathway

Authors: Tao Yan, Shushuai Song, Wendong Sun, Yiping Ge

Published in: BMC Cardiovascular Disorders | Issue 1/2024

Login to get access

Abstract

Background

Heart failure (HF) is a heterogeneous syndrome that affects millions worldwide, resulting in substantial health and economic burdens. However, the molecular mechanism of HF pathogenesis remains unclear.

Methods

HF-related key genes were screened by a bioinformatics approach.The impacts of HAPLN1 knockdown on Angiotensin II (Ang II)-induced AC16 cells were assessed through a series of cell function experiments. Enzyme-linked immunosorbent assay (ELISA) was used to measure levels of oxidative stress and apoptosis-related factors. The HF rat model was induced by subcutaneous injection isoprenaline and histopathologic changes in the cardiac tissue were assessed by hematoxylin and eosin (HE) staining and echocardiographic index. Downstream pathways regulated by HAPLN1 was predicted through bioinformatics and then confirmed in vivo and in vitro by western blot.

Results

Six hub genes were screened, of which HAPLN1, FMOD, NPPB, NPPA, and COMP were overexpressed, whereas NPPC was downregulated in HF. Further research found that silencing HAPLN1 promoted cell viability and reduced apoptosis in Ang II-induced AC16 cells. HAPLN1 knockdown promoted left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS), while decreasing left ventricular end-systolic volume (LVESV) in the HF rat model. HAPLN1 knockdown promoted the levels of GSH and suppressed the levels of MDA, LDH, TNF-α, and IL-6. Mechanistically, silencing HAPLN1 activated the PKA pathway, which were confirmed both in vivo and in vitro.

Conclusion

HAPLN1 knockdown inhibited the progression of HF by activating the PKA pathway, which may provide novel perspectives on the management of HF.
Appendix
Available only for authorised users
Literature
1.
go back to reference Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA Guideline for the management of Heart failure: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice guidelines. J Am Coll Cardiol. 2022;79(17):1757–80.PubMedCrossRef Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA Guideline for the management of Heart failure: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice guidelines. J Am Coll Cardiol. 2022;79(17):1757–80.PubMedCrossRef
2.
go back to reference Pieske B, Tschope C, de Boer RA, Fraser AG, Anker SD, Donal E, et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail. 2020;22(3):391–412.PubMedCrossRef Pieske B, Tschope C, de Boer RA, Fraser AG, Anker SD, Donal E, et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail. 2020;22(3):391–412.PubMedCrossRef
3.
go back to reference Guder G, Stork S. COPD and heart failure: differential diagnosis and comorbidity. Herz. 2019;44(6):502–8.PubMedCrossRef Guder G, Stork S. COPD and heart failure: differential diagnosis and comorbidity. Herz. 2019;44(6):502–8.PubMedCrossRef
4.
go back to reference Pistelli L, Parisi F, Correale M, Cocuzza F, Campanella F, de Ferrari T et al. Gliflozins: from antidiabetic drugs to cornerstone in heart failure Therapy-A Boost to their utilization and Multidisciplinary Approach in the management of heart failure. J Clin Med. 2023;12(1). Pistelli L, Parisi F, Correale M, Cocuzza F, Campanella F, de Ferrari T et al. Gliflozins: from antidiabetic drugs to cornerstone in heart failure Therapy-A Boost to their utilization and Multidisciplinary Approach in the management of heart failure. J Clin Med. 2023;12(1).
5.
go back to reference Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, et al. Heart Disease and Stroke Statistics-2022 update: a Report from the American Heart Association. Circulation. 2022;145(8):e153–639.PubMedCrossRef Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, et al. Heart Disease and Stroke Statistics-2022 update: a Report from the American Heart Association. Circulation. 2022;145(8):e153–639.PubMedCrossRef
6.
go back to reference Rizzi MA, Sarasola AG, Arbe AA, Mateo SH, Gil V, Llorens P, et al. Factors associated with in-hospital mortality and adverse outcomes during the vulnerable post-discharge phase after the first episode of acute heart failure: results of the NOVICA-2 study. Clin Res Cardiol. 2021;110(7):993–1005.PubMedCrossRef Rizzi MA, Sarasola AG, Arbe AA, Mateo SH, Gil V, Llorens P, et al. Factors associated with in-hospital mortality and adverse outcomes during the vulnerable post-discharge phase after the first episode of acute heart failure: results of the NOVICA-2 study. Clin Res Cardiol. 2021;110(7):993–1005.PubMedCrossRef
7.
go back to reference Kim GH, Uriel N, Burkhoff D. Reverse remodelling and myocardial recovery in heart failure. Nat Rev Cardiol. 2018;15(2):83–96.PubMedCrossRef Kim GH, Uriel N, Burkhoff D. Reverse remodelling and myocardial recovery in heart failure. Nat Rev Cardiol. 2018;15(2):83–96.PubMedCrossRef
8.
go back to reference Thandavarayan RA, Chitturi KR, Guha A. Pathophysiology of Acute and Chronic Right Heart failure. Cardiol Clin. 2020;38(2):149–60.PubMedCrossRef Thandavarayan RA, Chitturi KR, Guha A. Pathophysiology of Acute and Chronic Right Heart failure. Cardiol Clin. 2020;38(2):149–60.PubMedCrossRef
9.
go back to reference Aimo A, Castiglione V, Borrelli C, Saccaro LF, Franzini M, Masi S, et al. Oxidative stress and inflammation in the evolution of heart failure: from pathophysiology to therapeutic strategies. Eur J Prev Cardiol. 2020;27(5):494–510.PubMedCrossRef Aimo A, Castiglione V, Borrelli C, Saccaro LF, Franzini M, Masi S, et al. Oxidative stress and inflammation in the evolution of heart failure: from pathophysiology to therapeutic strategies. Eur J Prev Cardiol. 2020;27(5):494–510.PubMedCrossRef
10.
go back to reference Tan L, Xiong D, Zhang H, Xiao S, Yi R, Wu J. ETS2 promotes cardiomyocyte apoptosis and autophagy in heart failure by regulating lncRNA TUG1/miR-129-5p/ATG7 axis. FASEB J. 2023;37(6):e22937.PubMedCrossRef Tan L, Xiong D, Zhang H, Xiao S, Yi R, Wu J. ETS2 promotes cardiomyocyte apoptosis and autophagy in heart failure by regulating lncRNA TUG1/miR-129-5p/ATG7 axis. FASEB J. 2023;37(6):e22937.PubMedCrossRef
11.
go back to reference Yan F, Chen Z, Cui W. H3K9me2 regulation of BDNF expression via G9a partakes in the progression of heart failure. BMC Cardiovasc Disord. 2022;22(1):182.PubMedPubMedCentralCrossRef Yan F, Chen Z, Cui W. H3K9me2 regulation of BDNF expression via G9a partakes in the progression of heart failure. BMC Cardiovasc Disord. 2022;22(1):182.PubMedPubMedCentralCrossRef
12.
go back to reference Ingles J, Goldstein J, Thaxton C, Caleshu C, Corty EW, Crowley SB, et al. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ Genom Precis Med. 2019;12(2):e002460.PubMedPubMedCentralCrossRef Ingles J, Goldstein J, Thaxton C, Caleshu C, Corty EW, Crowley SB, et al. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ Genom Precis Med. 2019;12(2):e002460.PubMedPubMedCentralCrossRef
13.
go back to reference Daniels MJ, Fusi L, Semsarian C, Naidu SS. Myosin modulation in hypertrophic cardiomyopathy and systolic heart failure: getting inside the Engine. Circulation. 2021;144(10):759–62.PubMedPubMedCentralCrossRef Daniels MJ, Fusi L, Semsarian C, Naidu SS. Myosin modulation in hypertrophic cardiomyopathy and systolic heart failure: getting inside the Engine. Circulation. 2021;144(10):759–62.PubMedPubMedCentralCrossRef
14.
go back to reference Swann D, Powell S, Broadhurst J, Sordillo E, Sotman SJTB. The formation of a stable complex between dissociated proteoglycan and hyaluronic acid in the absence of a link protein. 1976;157(2):503–6. Swann D, Powell S, Broadhurst J, Sordillo E, Sotman SJTB. The formation of a stable complex between dissociated proteoglycan and hyaluronic acid in the absence of a link protein. 1976;157(2):503–6.
15.
go back to reference Zhang T, Li X, He Y, Wang Y, Shen J, Wang S, et al. Cancer-associated fibroblasts-derived HAPLN1 promotes tumour invasion through extracellular matrix remodeling in gastric cancer. Gastric Cancer. 2022;25(2):346–59.PubMedCrossRef Zhang T, Li X, He Y, Wang Y, Shen J, Wang S, et al. Cancer-associated fibroblasts-derived HAPLN1 promotes tumour invasion through extracellular matrix remodeling in gastric cancer. Gastric Cancer. 2022;25(2):346–59.PubMedCrossRef
16.
go back to reference Wiedmann L, De Angelis Rigotti F, Vaquero-Siguero N, Donato E, Espinet E, Moll I, et al. HAPLN1 potentiates peritoneal metastasis in pancreatic cancer. Nat Commun. 2023;14(1):2353.PubMedPubMedCentralCrossRef Wiedmann L, De Angelis Rigotti F, Vaquero-Siguero N, Donato E, Espinet E, Moll I, et al. HAPLN1 potentiates peritoneal metastasis in pancreatic cancer. Nat Commun. 2023;14(1):2353.PubMedPubMedCentralCrossRef
17.
go back to reference De Bakshi D, Chen YC, Wuerzberger-Davis SM, Ma M, Waters BJ, Li L et al. Ectopic CH60 mediates HAPLN1-induced cell survival signaling in multiple myeloma. Life Sci Alliance. 2023;6(3). De Bakshi D, Chen YC, Wuerzberger-Davis SM, Ma M, Waters BJ, Li L et al. Ectopic CH60 mediates HAPLN1-induced cell survival signaling in multiple myeloma. Life Sci Alliance. 2023;6(3).
18.
go back to reference Wirrig EE, Snarr BS, Chintalapudi MR, O’Neal JL, Phelps AL, Barth JL, et al. Cartilage link protein 1 (Crtl1), an extracellular matrix component playing an important role in heart development. Dev Biol. 2007;310(2):291–303.PubMedPubMedCentralCrossRef Wirrig EE, Snarr BS, Chintalapudi MR, O’Neal JL, Phelps AL, Barth JL, et al. Cartilage link protein 1 (Crtl1), an extracellular matrix component playing an important role in heart development. Dev Biol. 2007;310(2):291–303.PubMedPubMedCentralCrossRef
19.
go back to reference Spicer AP, Joo A, Bowling RA. Jr. A hyaluronan binding link protein gene family whose members are physically linked adjacent to chondroitin sulfate proteoglycan core protein genes: the missing links. J Biol Chem. 2003;278(23):21083–91.PubMedCrossRef Spicer AP, Joo A, Bowling RA. Jr. A hyaluronan binding link protein gene family whose members are physically linked adjacent to chondroitin sulfate proteoglycan core protein genes: the missing links. J Biol Chem. 2003;278(23):21083–91.PubMedCrossRef
20.
go back to reference Wei L, Zhou Q, Tian H, Su Y, Fu GH, Sun T. Integrin beta3 promotes cardiomyocyte proliferation and attenuates hypoxia-induced apoptosis via regulating the PTEN/Akt/mTOR and ERK1/2 pathways. Int J Biol Sci. 2020;16(4):644–54.PubMedPubMedCentralCrossRef Wei L, Zhou Q, Tian H, Su Y, Fu GH, Sun T. Integrin beta3 promotes cardiomyocyte proliferation and attenuates hypoxia-induced apoptosis via regulating the PTEN/Akt/mTOR and ERK1/2 pathways. Int J Biol Sci. 2020;16(4):644–54.PubMedPubMedCentralCrossRef
21.
go back to reference Chen Y, Wang B, Chen Y, Wu Q, Lai WF, Wei L, et al. HAPLN1 affects cell viability and promotes the pro-inflammatory phenotype of Fibroblast-Like synoviocytes. Front Immunol. 2022;13:888612.PubMedPubMedCentralCrossRef Chen Y, Wang B, Chen Y, Wu Q, Lai WF, Wei L, et al. HAPLN1 affects cell viability and promotes the pro-inflammatory phenotype of Fibroblast-Like synoviocytes. Front Immunol. 2022;13:888612.PubMedPubMedCentralCrossRef
23.
go back to reference Zhu C, Wang M, Yu X, Shui X, Tang L, Chen Z et al. lncRNA NBR2 attenuates angiotensin II-induced myocardial hypertrophy through repressing ER stress via activating LKB1/AMPK/Sirt1 pathway. 2022;13(5):13667–79. Zhu C, Wang M, Yu X, Shui X, Tang L, Chen Z et al. lncRNA NBR2 attenuates angiotensin II-induced myocardial hypertrophy through repressing ER stress via activating LKB1/AMPK/Sirt1 pathway. 2022;13(5):13667–79.
24.
go back to reference Zhong Z, Tian Y, Luo X, Zou J, Wu L, Tian, JJFib et al. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells protect against DOX-Induced Heart failure through the miR-100-5p/NOX4 pathway. 2021;9:703241. Zhong Z, Tian Y, Luo X, Zou J, Wu L, Tian, JJFib et al. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells protect against DOX-Induced Heart failure through the miR-100-5p/NOX4 pathway. 2021;9:703241.
25.
go back to reference Shen T, Liu Y, Dong S, Xu X, Wang X, Li Y, et al. Alarin moderated myocardial hypertrophy via inhibiting cyclic adenosine monophosphate/protein kinase A signaling pathway to attenuate autophagy. Peptides. 2021;146:170669.PubMedCrossRef Shen T, Liu Y, Dong S, Xu X, Wang X, Li Y, et al. Alarin moderated myocardial hypertrophy via inhibiting cyclic adenosine monophosphate/protein kinase A signaling pathway to attenuate autophagy. Peptides. 2021;146:170669.PubMedCrossRef
26.
go back to reference Tomasoni D, Adamo M, Lombardi CM, Metra M. Highlights in heart failure. ESC Heart Fail. 2019;6(6):1105–27.PubMedCrossRef Tomasoni D, Adamo M, Lombardi CM, Metra M. Highlights in heart failure. ESC Heart Fail. 2019;6(6):1105–27.PubMedCrossRef
28.
go back to reference Zhuang Y, Qiao Z, Bi X, Han D, Jiang Q, Zhang Y et al. Screening and Bioinformatics Analysis of Crucial Gene of Heart failure and Atrial Fibrillation based on GEO Database. Med (Kaunas). 2022;58(10). Zhuang Y, Qiao Z, Bi X, Han D, Jiang Q, Zhang Y et al. Screening and Bioinformatics Analysis of Crucial Gene of Heart failure and Atrial Fibrillation based on GEO Database. Med (Kaunas). 2022;58(10).
30.
go back to reference McKinney C, Fattah C, Loughrey C, Milligan G, Nicklin SJC. Angiotensin-(1–7) and angiotensin-(1–9): function in cardiac and vascular remodelling. 2014;126(12):815–27. McKinney C, Fattah C, Loughrey C, Milligan G, Nicklin SJC. Angiotensin-(1–7) and angiotensin-(1–9): function in cardiac and vascular remodelling. 2014;126(12):815–27.
31.
go back to reference Bhullar SK, Dhalla NS. Angiotensin II-Induced Signal Transduction mechanisms for Cardiac Hypertrophy. Cells. 2022;11(21). Bhullar SK, Dhalla NS. Angiotensin II-Induced Signal Transduction mechanisms for Cardiac Hypertrophy. Cells. 2022;11(21).
32.
go back to reference Ye Y, Zhang J, Guo Y, Zhu J, Tang B, Fan P. PON2 ameliorates Ang II-induced cardiomyocyte injury by targeting the CANX/NOX4 signaling pathway. Immun Inflamm Dis. 2023;11(2):e765.PubMedPubMedCentralCrossRef Ye Y, Zhang J, Guo Y, Zhu J, Tang B, Fan P. PON2 ameliorates Ang II-induced cardiomyocyte injury by targeting the CANX/NOX4 signaling pathway. Immun Inflamm Dis. 2023;11(2):e765.PubMedPubMedCentralCrossRef
33.
go back to reference Yue L, Sheng S, Yuan M, Lu J, Li T, Shi Y et al. HypERlnc attenuates angiotensin II-induced cardiomyocyte hypertrophy via promoting SIRT1 SUMOylation-mediated activation of PGC-1α/PPARα pathway in AC16 cells. 2023;47(6):1068–80. Yue L, Sheng S, Yuan M, Lu J, Li T, Shi Y et al. HypERlnc attenuates angiotensin II-induced cardiomyocyte hypertrophy via promoting SIRT1 SUMOylation-mediated activation of PGC-1α/PPARα pathway in AC16 cells. 2023;47(6):1068–80.
34.
go back to reference Tu D, Ma C, Zeng Z, Xu Q, Guo Z, Song X, et al. Identification of hub genes and transcription factor regulatory network for heart failure using RNA-seq data and robust rank aggregation analysis. Front Cardiovasc Med. 2022;9:916429.PubMedPubMedCentralCrossRef Tu D, Ma C, Zeng Z, Xu Q, Guo Z, Song X, et al. Identification of hub genes and transcription factor regulatory network for heart failure using RNA-seq data and robust rank aggregation analysis. Front Cardiovasc Med. 2022;9:916429.PubMedPubMedCentralCrossRef
35.
go back to reference Zhang K, Qin X, Wen P, Wu Y, Zhuang J. Systematic analysis of molecular mechanisms of heart failure through the pathway and network-based approach. Life Sci. 2021;265:118830.PubMedCrossRef Zhang K, Qin X, Wen P, Wu Y, Zhuang J. Systematic analysis of molecular mechanisms of heart failure through the pathway and network-based approach. Life Sci. 2021;265:118830.PubMedCrossRef
36.
go back to reference Andenaes K, Lunde IG, Mohammadzadeh N, Dahl CP, Aronsen JM, Strand ME, et al. The extracellular matrix proteoglycan fibromodulin is upregulated in clinical and experimental heart failure and affects cardiac remodeling. PLoS ONE. 2018;13(7):e0201422.PubMedPubMedCentralCrossRef Andenaes K, Lunde IG, Mohammadzadeh N, Dahl CP, Aronsen JM, Strand ME, et al. The extracellular matrix proteoglycan fibromodulin is upregulated in clinical and experimental heart failure and affects cardiac remodeling. PLoS ONE. 2018;13(7):e0201422.PubMedPubMedCentralCrossRef
37.
go back to reference Fu S, Ping P, Wang F, Luo L. Synthesis, secretion, function, metabolism and application of natriuretic peptides in heart failure. J Biol Eng. 2018;12:2.PubMedPubMedCentralCrossRef Fu S, Ping P, Wang F, Luo L. Synthesis, secretion, function, metabolism and application of natriuretic peptides in heart failure. J Biol Eng. 2018;12:2.PubMedPubMedCentralCrossRef
38.
go back to reference Sarzani R, Allevi M, Di Pentima C, Schiavi P, Spannella F, Giulietti F. Role of Cardiac natriuretic peptides in Heart structure and function. Int J Mol Sci. 2022;23(22). Sarzani R, Allevi M, Di Pentima C, Schiavi P, Spannella F, Giulietti F. Role of Cardiac natriuretic peptides in Heart structure and function. Int J Mol Sci. 2022;23(22).
39.
go back to reference Sandefur CC, Jialal I. Atrial Natriuretic Peptide. StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Ishwarlal Jialal declares no relevant financial relationships with ineligible companies.2023. Sandefur CC, Jialal I. Atrial Natriuretic Peptide. StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Ishwarlal Jialal declares no relevant financial relationships with ineligible companies.2023.
40.
go back to reference Engeli S, Birkenfeld AL, Badin PM, Bourlier V, Louche K, Viguerie N, et al. Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. J Clin Invest. 2012;122(12):4675–9.PubMedPubMedCentralCrossRef Engeli S, Birkenfeld AL, Badin PM, Bourlier V, Louche K, Viguerie N, et al. Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. J Clin Invest. 2012;122(12):4675–9.PubMedPubMedCentralCrossRef
41.
go back to reference Kuwahara K. The natriuretic peptide system in heart failure: diagnostic and therapeutic implications. Pharmacol Ther. 2021;227:107863.PubMedCrossRef Kuwahara K. The natriuretic peptide system in heart failure: diagnostic and therapeutic implications. Pharmacol Ther. 2021;227:107863.PubMedCrossRef
42.
go back to reference Sangaralingham SJ, Huntley BK, Martin FL, McKie PM, Bellavia D, Ichiki T, et al. The aging heart, myocardial fibrosis, and its relationship to circulating C-type natriuretic peptide. Hypertension. 2011;57(2):201–7.PubMedCrossRef Sangaralingham SJ, Huntley BK, Martin FL, McKie PM, Bellavia D, Ichiki T, et al. The aging heart, myocardial fibrosis, and its relationship to circulating C-type natriuretic peptide. Hypertension. 2011;57(2):201–7.PubMedCrossRef
43.
go back to reference Soeki T, Kishimoto I, Okumura H, Tokudome T, Horio T, Mori K, et al. C-type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. J Am Coll Cardiol. 2005;45(4):608–16.PubMedCrossRef Soeki T, Kishimoto I, Okumura H, Tokudome T, Horio T, Mori K, et al. C-type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. J Am Coll Cardiol. 2005;45(4):608–16.PubMedCrossRef
44.
go back to reference Rosenberg K, Olsson H, Morgelin M, Heinegard D. Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J Biol Chem. 1998;273(32):20397–403.PubMedCrossRef Rosenberg K, Olsson H, Morgelin M, Heinegard D. Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J Biol Chem. 1998;273(32):20397–403.PubMedCrossRef
45.
go back to reference Huang Y, Xia J, Zheng J, Geng B, Liu P, Yu F, et al. Deficiency of cartilage oligomeric matrix protein causes dilated cardiomyopathy. Basic Res Cardiol. 2013;108(5):374.PubMedCrossRef Huang Y, Xia J, Zheng J, Geng B, Liu P, Yu F, et al. Deficiency of cartilage oligomeric matrix protein causes dilated cardiomyopathy. Basic Res Cardiol. 2013;108(5):374.PubMedCrossRef
46.
go back to reference Park S, Ranjbarvaziri S, Zhao P, Ardehali R. Cardiac Fibrosis is Associated with decreased circulating levels of full-length CILP in Heart failure. JACC Basic Transl Sci. 2020;5(5):432–43.PubMedPubMedCentralCrossRef Park S, Ranjbarvaziri S, Zhao P, Ardehali R. Cardiac Fibrosis is Associated with decreased circulating levels of full-length CILP in Heart failure. JACC Basic Transl Sci. 2020;5(5):432–43.PubMedPubMedCentralCrossRef
48.
go back to reference Baudino TA, Carver W, Giles W, Borg TK. Cardiac fibroblasts: friend or foe? Am J Physiol Heart Circ Physiol. 2006;291(3):H1015–26.PubMedCrossRef Baudino TA, Carver W, Giles W, Borg TK. Cardiac fibroblasts: friend or foe? Am J Physiol Heart Circ Physiol. 2006;291(3):H1015–26.PubMedCrossRef
49.
go back to reference Aoki T, Fukumoto Y, Sugimura K, Oikawa M, Satoh K, Nakano M, et al. Prognostic impact of myocardial interstitial fibrosis in non-ischemic heart failure. -Comparison between Preserved Reduc Ejection Fraction Heart Fail. 2011;75(11):2605–13. Aoki T, Fukumoto Y, Sugimura K, Oikawa M, Satoh K, Nakano M, et al. Prognostic impact of myocardial interstitial fibrosis in non-ischemic heart failure. -Comparison between Preserved Reduc Ejection Fraction Heart Fail. 2011;75(11):2605–13.
50.
go back to reference Liu M, Lopez de Juan Abad B, Cheng K. Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies. Adv Drug Deliv Rev. 2021;173:504–19.PubMedPubMedCentralCrossRef Liu M, Lopez de Juan Abad B, Cheng K. Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies. Adv Drug Deliv Rev. 2021;173:504–19.PubMedPubMedCentralCrossRef
51.
go back to reference MacLean J. Pasumarthi KJIjob, biophysics. Signaling mechanisms regulating fibroblast activation. Phenoconversion Fibros Heart. 2014;51(6):476–82. MacLean J. Pasumarthi KJIjob, biophysics. Signaling mechanisms regulating fibroblast activation. Phenoconversion Fibros Heart. 2014;51(6):476–82.
52.
go back to reference Wojdasiewicz P, Poniatowski LA, Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014;2014:561459.PubMedPubMedCentralCrossRef Wojdasiewicz P, Poniatowski LA, Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014;2014:561459.PubMedPubMedCentralCrossRef
53.
go back to reference Shah AK, Bhullar SK, Elimban V, Dhalla NS. Oxidative stress as a mechanism for functional alterations in Cardiac Hypertrophy and Heart failure. Antioxid (Basel). 2021;10(6). Shah AK, Bhullar SK, Elimban V, Dhalla NS. Oxidative stress as a mechanism for functional alterations in Cardiac Hypertrophy and Heart failure. Antioxid (Basel). 2021;10(6).
54.
go back to reference Han D, Wang F, Wang B, Qiao Z, Cui X, Zhang Y, et al. A novel compound, Tanshinol Borneol Ester, ameliorates pressure overload-Induced Cardiac Hypertrophy by inhibiting oxidative stress via the mTOR/beta-TrCP/NRF2 pathway. Front Pharmacol. 2022;13:830763.PubMedPubMedCentralCrossRef Han D, Wang F, Wang B, Qiao Z, Cui X, Zhang Y, et al. A novel compound, Tanshinol Borneol Ester, ameliorates pressure overload-Induced Cardiac Hypertrophy by inhibiting oxidative stress via the mTOR/beta-TrCP/NRF2 pathway. Front Pharmacol. 2022;13:830763.PubMedPubMedCentralCrossRef
55.
go back to reference Ramachandra C, Cong S, Chan X, Yap E, Yu F, Hausenloy DJF et al. Oxidative stress in cardiac hypertrophy: from molecular mechanisms to novel therapeutic targets. 2021;166:297–312. Ramachandra C, Cong S, Chan X, Yap E, Yu F, Hausenloy DJF et al. Oxidative stress in cardiac hypertrophy: from molecular mechanisms to novel therapeutic targets. 2021;166:297–312.
56.
go back to reference Shi Y, Li F, Shen M, Sun C, Hao W, Wu C, et al. Luteolin prevents Cardiac Dysfunction and improves the chemotherapeutic efficacy of doxorubicin in breast Cancer. Front Cardiovasc Med. 2021;8:750186.PubMedPubMedCentralCrossRef Shi Y, Li F, Shen M, Sun C, Hao W, Wu C, et al. Luteolin prevents Cardiac Dysfunction and improves the chemotherapeutic efficacy of doxorubicin in breast Cancer. Front Cardiovasc Med. 2021;8:750186.PubMedPubMedCentralCrossRef
57.
go back to reference Hu C, Zhang X, Song P, Yuan YP, Kong CY, Wu HM, et al. Meteorin-like protein attenuates doxorubicin-induced cardiotoxicity via activating cAMP/PKA/SIRT1 pathway. Redox Biol. 2020;37:101747.PubMedPubMedCentralCrossRef Hu C, Zhang X, Song P, Yuan YP, Kong CY, Wu HM, et al. Meteorin-like protein attenuates doxorubicin-induced cardiotoxicity via activating cAMP/PKA/SIRT1 pathway. Redox Biol. 2020;37:101747.PubMedPubMedCentralCrossRef
58.
go back to reference Kobashigawa LC, Xu YC, Padbury JF, Tseng YT, Yano N. Metformin protects cardiomyocyte from doxorubicin induced cytotoxicity through an AMP-activated protein kinase dependent signaling pathway: an in vitro study. PLoS ONE. 2014;9(8):e104888.PubMedPubMedCentralCrossRef Kobashigawa LC, Xu YC, Padbury JF, Tseng YT, Yano N. Metformin protects cardiomyocyte from doxorubicin induced cytotoxicity through an AMP-activated protein kinase dependent signaling pathway: an in vitro study. PLoS ONE. 2014;9(8):e104888.PubMedPubMedCentralCrossRef
59.
go back to reference Wang C, Taskinen JH, Segersvard H, Immonen K, Kosonen R, Tolva JM, et al. Alterations of Cardiac protein kinases in cyclic nucleotide-dependent signaling pathways in human ischemic heart failure. Front Cardiovasc Med. 2022;9:919355.PubMedPubMedCentralCrossRef Wang C, Taskinen JH, Segersvard H, Immonen K, Kosonen R, Tolva JM, et al. Alterations of Cardiac protein kinases in cyclic nucleotide-dependent signaling pathways in human ischemic heart failure. Front Cardiovasc Med. 2022;9:919355.PubMedPubMedCentralCrossRef
60.
go back to reference Wang Y, Shi Q, Li M, Zhao M, Reddy Gopireddy R, Teoh JP, et al. Intracellular beta(1)-Adrenergic receptors and Organic Cation Transporter 3 Mediate Phospholamban Phosphorylation to Enhance Cardiac Contractility. Circ Res. 2021;128(2):246–61.PubMedCrossRef Wang Y, Shi Q, Li M, Zhao M, Reddy Gopireddy R, Teoh JP, et al. Intracellular beta(1)-Adrenergic receptors and Organic Cation Transporter 3 Mediate Phospholamban Phosphorylation to Enhance Cardiac Contractility. Circ Res. 2021;128(2):246–61.PubMedCrossRef
61.
go back to reference Vinogradova TM, Lyashkov AE, Zhu W, Ruknudin AM, Sirenko S, Yang D, et al. High basal protein kinase A-dependent phosphorylation drives rhythmic internal Ca2 + store oscillations and spontaneous beating of cardiac pacemaker cells. Circ Res. 2006;98(4):505–14.PubMedCrossRef Vinogradova TM, Lyashkov AE, Zhu W, Ruknudin AM, Sirenko S, Yang D, et al. High basal protein kinase A-dependent phosphorylation drives rhythmic internal Ca2 + store oscillations and spontaneous beating of cardiac pacemaker cells. Circ Res. 2006;98(4):505–14.PubMedCrossRef
62.
go back to reference Xu B, Wang Y, Bahriz S, Zhao M, Zhu C, Xiang YJC et al. Probing spatiotemporal PKA activity at the ryanodine receptor and SERCA2a nanodomains in cardomyocytes. 2022;20(1):143. Xu B, Wang Y, Bahriz S, Zhao M, Zhu C, Xiang YJC et al. Probing spatiotemporal PKA activity at the ryanodine receptor and SERCA2a nanodomains in cardomyocytes. 2022;20(1):143.
63.
go back to reference Xue JB, Val-Blasco A, Davoodi M, Gomez S, Yaniv Y, Benitah JP et al. Heart failure in mice induces a dysfunction of the sinus node associated with reduced CaMKII signaling. J Gen Physiol. 2022;154(9). Xue JB, Val-Blasco A, Davoodi M, Gomez S, Yaniv Y, Benitah JP et al. Heart failure in mice induces a dysfunction of the sinus node associated with reduced CaMKII signaling. J Gen Physiol. 2022;154(9).
Metadata
Title
HAPLN1 knockdown inhibits heart failure development via activating the PKA signaling pathway
Authors
Tao Yan
Shushuai Song
Wendong Sun
Yiping Ge
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Heart Failure
Published in
BMC Cardiovascular Disorders / Issue 1/2024
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-024-03861-8

Other articles of this Issue 1/2024

BMC Cardiovascular Disorders 1/2024 Go to the issue