Skip to main content
Top
Published in: Journal of Translational Medicine 1/2024

Open Access 01-12-2024 | Heart Failure | Research

Plasma fibroblast activation protein is decreased in acute heart failure despite cardiac tissue upregulation

Authors: Marta Delgado-Arija, Patricia Genovés, Lorena Pérez-Carrillo, Irene González-Torrent, Isaac Giménez-Escamilla, Luis Martínez-Dolz, Manuel Portolés, Estefanía Tarazón, Esther Roselló-Lletí

Published in: Journal of Translational Medicine | Issue 1/2024

Login to get access

Abstract

Background

Cardiac fibroblast activation protein (FAP) has an emerging role in heart failure (HF). A paradoxical reduction in its levels in pathological conditions associated with acute processes has been observed. We aimed to identify FAP cardiac tissue expression and its relationship with the main cardiac fibrosis-related signaling pathways, and to compare plasma FAP levels in acute and chronic HF patients.

Methods

Transcriptomic changes were assessed via mRNA/ncRNA-seq in left ventricle tissue from HF patients (n = 57) and controls (n = 10). Western blotting and immunohistochemistry were used to explore FAP protein levels and localization in cardiac tissue. ELISA was performed to examine plasma FAP levels in acute HF (n = 48), chronic HF (n = 15) and control samples (n = 7).

Results

FAP overexpression in cardiac tissue is related to the expression of molecules directly involved in cardiac fibrosis, such as POSTN, THBS4, MFAP5, COL1A2 and COL3A1 (P < 0.001), and is directly and inversely related to pro- and antifibrotic microRNAs, respectively. The observed FAP overexpression is not reflected in plasma. Circulating FAP levels were lower in acute HF patients than in controls (P < 0.05), while chronic HF patients did not show significant changes. The clinical variables analyzed, such as functional class or etiology, do not affect plasma FAP concentrations.

Conclusions

We determined that in HF cardiac tissue, FAP is related to the main cardiac fibrosis signaling pathways as well as to pro- and antifibrotic microRNAs. Additionally, an acute phase of HF decreases plasma FAP levels despite the upregulation observed in cardiac tissue and regardless of other clinical conditions.

Graphical abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats AJS. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2023;118(17):3272–87.PubMedCrossRef Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats AJS. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2023;118(17):3272–87.PubMedCrossRef
2.
go back to reference Norhammar A, Bodegard J, Vanderheyden M, Tangri N, Karasik A, Pietro MA, et al. Prevalence, outcomes and costs of a contemporary, multinational population with heart failure. Heart. 2023;109(7):548–56.PubMed Norhammar A, Bodegard J, Vanderheyden M, Tangri N, Karasik A, Pietro MA, et al. Prevalence, outcomes and costs of a contemporary, multinational population with heart failure. Heart. 2023;109(7):548–56.PubMed
3.
go back to reference Miranda AMA, Janbandhu V, Maatz H, Kanemaru K, Cranley J, Teichmann SA, et al. Single-cell transcriptomics for the assessment of cardiac disease. Nat Rev Cardiol. 2023;20(5):289–308.PubMedCrossRef Miranda AMA, Janbandhu V, Maatz H, Kanemaru K, Cranley J, Teichmann SA, et al. Single-cell transcriptomics for the assessment of cardiac disease. Nat Rev Cardiol. 2023;20(5):289–308.PubMedCrossRef
4.
go back to reference Park S, Ranjbarvaziri S, Zhao P, Ardehali R. Cardiac fibrosis is associated with decreased circulating levels of full-length CILP in heart failure. JACC Basic Transl Sci. 2020;5(5):432–43.PubMedPubMedCentralCrossRef Park S, Ranjbarvaziri S, Zhao P, Ardehali R. Cardiac fibrosis is associated with decreased circulating levels of full-length CILP in heart failure. JACC Basic Transl Sci. 2020;5(5):432–43.PubMedPubMedCentralCrossRef
8.
go back to reference Stein S, Weber J, Nusser-Stein S, Pahla J, Zhang HE, Mohammed SA, et al. Deletion of fibroblast activation protein provides atheroprotection. Cardiovasc Res. 2021;117(4):1060–9.PubMedCrossRef Stein S, Weber J, Nusser-Stein S, Pahla J, Zhang HE, Mohammed SA, et al. Deletion of fibroblast activation protein provides atheroprotection. Cardiovasc Res. 2021;117(4):1060–9.PubMedCrossRef
9.
go back to reference Ping Q, Wang C, Cheng X, Zhong Y, Yan R, Yang M, et al. TGF-β1 dominates stromal fibroblast-mediated EMT via the FAP/VCAN axis in bladder cancer cells. J Transl Med. 2023;21(1):475.PubMedPubMedCentralCrossRef Ping Q, Wang C, Cheng X, Zhong Y, Yan R, Yang M, et al. TGF-β1 dominates stromal fibroblast-mediated EMT via the FAP/VCAN axis in bladder cancer cells. J Transl Med. 2023;21(1):475.PubMedPubMedCentralCrossRef
10.
go back to reference Li YR, Fang Y, Lyu Z, Zhu Y, Yang L. Exploring the dynamic interplay between cancer stem cells and the tumor microenvironment: implications for novel therapeutic strategies. J Transl Med. 2023;21(1):686.PubMedPubMedCentralCrossRef Li YR, Fang Y, Lyu Z, Zhu Y, Yang L. Exploring the dynamic interplay between cancer stem cells and the tumor microenvironment: implications for novel therapeutic strategies. J Transl Med. 2023;21(1):686.PubMedPubMedCentralCrossRef
11.
go back to reference Aghajanian H, Kimura T, Rurik JG, Hancock AS, Leibowitz MS, Li L, et al. Targeting cardiac fibrosis with engineered T cells. Nature. 2019;573(7774):430–3.PubMedPubMedCentralCrossRef Aghajanian H, Kimura T, Rurik JG, Hancock AS, Leibowitz MS, Li L, et al. Targeting cardiac fibrosis with engineered T cells. Nature. 2019;573(7774):430–3.PubMedPubMedCentralCrossRef
12.
go back to reference Guo YT, Xiao YC, Xu YL, Fan JF, Niu LY, Tan X, et al. The effects of MicroRNAs in the development of heart failure. Curr Cardiol Rep. 2023;25(7):747–59.PubMedCrossRef Guo YT, Xiao YC, Xu YL, Fan JF, Niu LY, Tan X, et al. The effects of MicroRNAs in the development of heart failure. Curr Cardiol Rep. 2023;25(7):747–59.PubMedCrossRef
13.
go back to reference Sun Y, Ma M, Cao D, Zheng A, Zhang Y, Su Y, et al. Inhibition of fap promotes cardiac repair by stabilizing BNP. Circ Res. 2023;132(5):586–600.PubMedCrossRef Sun Y, Ma M, Cao D, Zheng A, Zhang Y, Su Y, et al. Inhibition of fap promotes cardiac repair by stabilizing BNP. Circ Res. 2023;132(5):586–600.PubMedCrossRef
14.
go back to reference Ritchie RF, Palomaki GE, Neveux LM, Navolotskaia O, Ledue TB, Craig WY. Reference distributions for the negative acute-phase serum proteins, albumin, transferrin and transthyretin: a practical, simple and clinically relevant approach in a large cohort. J Clin Lab Anal. 1999;13(6):273–9.PubMedPubMedCentralCrossRef Ritchie RF, Palomaki GE, Neveux LM, Navolotskaia O, Ledue TB, Craig WY. Reference distributions for the negative acute-phase serum proteins, albumin, transferrin and transthyretin: a practical, simple and clinically relevant approach in a large cohort. J Clin Lab Anal. 1999;13(6):273–9.PubMedPubMedCentralCrossRef
15.
go back to reference Reina-Couto M, Pereira-Terra P, Quelhas-Santos J, Silva-Pereira C, Albino-Teixeira A, Sousa T. Inflammation in human heart failure: major mediators and therapeutic targets. Front Physiol. 2021;12: 746494.PubMedPubMedCentralCrossRef Reina-Couto M, Pereira-Terra P, Quelhas-Santos J, Silva-Pereira C, Albino-Teixeira A, Sousa T. Inflammation in human heart failure: major mediators and therapeutic targets. Front Physiol. 2021;12: 746494.PubMedPubMedCentralCrossRef
16.
go back to reference Pérez-Carrillo L, Giménez-Escamilla I, Martínez-Dolz L, Sánchez-Lázaro IJ, Portolés M, Roselló-Lletí E, et al. Implication of sphingolipid metabolism gene dysregulation and cardiac sphingosine-1-phosphate accumulation in heart failure. Biomedicines. 2022;10(1):135.PubMedPubMedCentralCrossRef Pérez-Carrillo L, Giménez-Escamilla I, Martínez-Dolz L, Sánchez-Lázaro IJ, Portolés M, Roselló-Lletí E, et al. Implication of sphingolipid metabolism gene dysregulation and cardiac sphingosine-1-phosphate accumulation in heart failure. Biomedicines. 2022;10(1):135.PubMedPubMedCentralCrossRef
17.
go back to reference Gil-Cayuela C, Rivera M, Ortega A, Tarazón E, Triviño JC, Lago F, et al. RNA sequencing analysis identifies new human collagen genes involved in cardiac remodeling. J Am Coll Cardiol. 2015;65(12):1265–7.PubMedCrossRef Gil-Cayuela C, Rivera M, Ortega A, Tarazón E, Triviño JC, Lago F, et al. RNA sequencing analysis identifies new human collagen genes involved in cardiac remodeling. J Am Coll Cardiol. 2015;65(12):1265–7.PubMedCrossRef
18.
go back to reference Cortes R, Rosello-Lleti E, Rivera M, Martinez-Dolz L, Salvador A, Azorin I, et al. Influence of heart failure on nucleocytoplasmic transport in human cardiomyocytes. Cardiovasc Res. 2010;85(3):464–72.PubMedCrossRef Cortes R, Rosello-Lleti E, Rivera M, Martinez-Dolz L, Salvador A, Azorin I, et al. Influence of heart failure on nucleocytoplasmic transport in human cardiomyocytes. Cardiovasc Res. 2010;85(3):464–72.PubMedCrossRef
20.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B (Methodol). 1995;57(1):289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B (Methodol). 1995;57(1):289–300.
21.
go back to reference Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.PubMedPubMedCentralCrossRef Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.PubMedPubMedCentralCrossRef
22.
go back to reference Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.PubMedCrossRef Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.PubMedCrossRef
23.
go back to reference McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. Corrigendum to: 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2021;42(48):4901–4901.PubMedCrossRef McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. Corrigendum to: 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2021;42(48):4901–4901.PubMedCrossRef
24.
go back to reference Gyöngyösi M, Winkler J, Ramos I, Do Q, Firat H, McDonald K, et al. Myocardial fibrosis: biomedical research from bench to bedside. Eur J Heart Fail. 2017;19(2):177–91.PubMedCrossRef Gyöngyösi M, Winkler J, Ramos I, Do Q, Firat H, McDonald K, et al. Myocardial fibrosis: biomedical research from bench to bedside. Eur J Heart Fail. 2017;19(2):177–91.PubMedCrossRef
26.
go back to reference Mayola MF, Thackeray JT. The potential of fibroblast activation protein-targeted imaging as a biomarker of cardiac remodeling and injury. Curr Cardiol Rep. 2023;25(6):515–23.PubMedPubMedCentralCrossRef Mayola MF, Thackeray JT. The potential of fibroblast activation protein-targeted imaging as a biomarker of cardiac remodeling and injury. Curr Cardiol Rep. 2023;25(6):515–23.PubMedPubMedCentralCrossRef
27.
go back to reference Rurik JG, Tombácz I, Yadegari A, Méndez Fernández PO, Shewale SV, Li L, et al. CAR T cells produced in vivo to treat cardiac injury. Science (1979). 2022;375(6576):91–6. Rurik JG, Tombácz I, Yadegari A, Méndez Fernández PO, Shewale SV, Li L, et al. CAR T cells produced in vivo to treat cardiac injury. Science (1979). 2022;375(6576):91–6.
28.
go back to reference Koenig AL, Shchukina I, Amrute J, Andhey PS, Zaitsev K, Lai L, et al. Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. Nat Cardiovasc Res. 2022;1(3):263–80.PubMedPubMedCentralCrossRef Koenig AL, Shchukina I, Amrute J, Andhey PS, Zaitsev K, Lai L, et al. Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. Nat Cardiovasc Res. 2022;1(3):263–80.PubMedPubMedCentralCrossRef
29.
go back to reference Rao M, Wang X, Guo G, Wang L, Chen S, Yin P, et al. Resolving the intertwining of inflammation and fibrosis in human heart failure at single-cell level. Basic Res Cardiol. 2021;116(1):55.PubMedCrossRef Rao M, Wang X, Guo G, Wang L, Chen S, Yin P, et al. Resolving the intertwining of inflammation and fibrosis in human heart failure at single-cell level. Basic Res Cardiol. 2021;116(1):55.PubMedCrossRef
30.
go back to reference Kattih B, Boeckling F, Shumliakivska M, Tombor L, Rasper T, Schmitz K, et al. Single-nuclear transcriptome profiling identifies persistent fibroblast activation in hypertrophic and failing human hearts of patients with longstanding disease. Cardiovasc Res. 2023;119:2550.PubMedCrossRef Kattih B, Boeckling F, Shumliakivska M, Tombor L, Rasper T, Schmitz K, et al. Single-nuclear transcriptome profiling identifies persistent fibroblast activation in hypertrophic and failing human hearts of patients with longstanding disease. Cardiovasc Res. 2023;119:2550.PubMedCrossRef
31.
go back to reference Sun F, Wang C, Feng H, Yu F, Zhang X, Zhang P, et al. Visualization of activated fibroblasts in heart failure with preserved ejection fraction with [18 F]AlF-NOTA-FAPI-04 PET/CT imaging. Mol Pharm. 2023;20(5):2634–41.PubMedPubMedCentralCrossRef Sun F, Wang C, Feng H, Yu F, Zhang X, Zhang P, et al. Visualization of activated fibroblasts in heart failure with preserved ejection fraction with [18 F]AlF-NOTA-FAPI-04 PET/CT imaging. Mol Pharm. 2023;20(5):2634–41.PubMedPubMedCentralCrossRef
33.
go back to reference González A, Schelbert EB, Díez J, Butler J. Myocardial interstitial fibrosis in heart failure. J Am Coll Cardiol. 2018;71(15):1696–706.PubMedCrossRef González A, Schelbert EB, Díez J, Butler J. Myocardial interstitial fibrosis in heart failure. J Am Coll Cardiol. 2018;71(15):1696–706.PubMedCrossRef
34.
go back to reference Gong L, Wang S, Shen L, Liu C, Shenouda M, Li B, et al. SLIT3 deficiency attenuates pressure overload-induced cardiac fibrosis and remodeling. JCI Insight. 2020;5(12): e136852.PubMedPubMedCentralCrossRef Gong L, Wang S, Shen L, Liu C, Shenouda M, Li B, et al. SLIT3 deficiency attenuates pressure overload-induced cardiac fibrosis and remodeling. JCI Insight. 2020;5(12): e136852.PubMedPubMedCentralCrossRef
35.
go back to reference Yokota T, McCourt J, Ma F, Ren S, Li S, Kim TH, et al. Type V collagen in scar tissue regulates the size of scar after heart injury. Cell. 2020;182(3):545-562.e23.PubMedPubMedCentralCrossRef Yokota T, McCourt J, Ma F, Ren S, Li S, Kim TH, et al. Type V collagen in scar tissue regulates the size of scar after heart injury. Cell. 2020;182(3):545-562.e23.PubMedPubMedCentralCrossRef
36.
go back to reference Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol. 2011;51(4):600–6.PubMedCrossRef Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol. 2011;51(4):600–6.PubMedCrossRef
37.
go back to reference Sun T, Huang Z, Liang WC, Yin J, Lin WY, Wu J, et al. TGFβ2 and TGFβ3 isoforms drive fibrotic disease pathogenesis. Sci Transl Med. 2021;13(605):eabe0407.PubMedCrossRef Sun T, Huang Z, Liang WC, Yin J, Lin WY, Wu J, et al. TGFβ2 and TGFβ3 isoforms drive fibrotic disease pathogenesis. Sci Transl Med. 2021;13(605):eabe0407.PubMedCrossRef
38.
go back to reference González A, López B, Ravassa S, San José G, Díez J. The complex dynamics of myocardial interstitial fibrosis in heart failure. Focus on collagen cross-linking. Biochim Biophys Acta (BBA) Mol Cell Res. 2019;1866(9):1421–32.CrossRef González A, López B, Ravassa S, San José G, Díez J. The complex dynamics of myocardial interstitial fibrosis in heart failure. Focus on collagen cross-linking. Biochim Biophys Acta (BBA) Mol Cell Res. 2019;1866(9):1421–32.CrossRef
39.
go back to reference Gil-Cayuela C, Roselló-LLetí E, Ortega A, Tarazón E, Triviño JC, Martínez-Dolz L, et al. New altered non-fibrillar collagens in human dilated cardiomyopathy: role in the remodeling process. PLoS ONE. 2016;11(12): e0168130.PubMedPubMedCentralCrossRef Gil-Cayuela C, Roselló-LLetí E, Ortega A, Tarazón E, Triviño JC, Martínez-Dolz L, et al. New altered non-fibrillar collagens in human dilated cardiomyopathy: role in the remodeling process. PLoS ONE. 2016;11(12): e0168130.PubMedPubMedCentralCrossRef
40.
go back to reference Wu C, Liu B, Wang R, Li G. The regulation mechanisms and clinical application of MicroRNAs in myocardial infarction: a review of the recent 5 years. Front Cardiovasc Med. 2022;8: 809580.PubMedPubMedCentralCrossRef Wu C, Liu B, Wang R, Li G. The regulation mechanisms and clinical application of MicroRNAs in myocardial infarction: a review of the recent 5 years. Front Cardiovasc Med. 2022;8: 809580.PubMedPubMedCentralCrossRef
41.
go back to reference Zhao Y, Du D, Chen S, Chen Z, Zhao J. New insights into the functions of MicroRNAs in cardiac fibrosis: from mechanisms to therapeutic strategies. Genes (Basel). 2022;13(8):1390.PubMedCrossRef Zhao Y, Du D, Chen S, Chen Z, Zhao J. New insights into the functions of MicroRNAs in cardiac fibrosis: from mechanisms to therapeutic strategies. Genes (Basel). 2022;13(8):1390.PubMedCrossRef
42.
43.
go back to reference Sieweke JT, Grosse GM, Weissenborn K, Derda AA, Biber S, Bauersachs J, et al. Circulating fibroblast activation protein α is reduced in acute ischemic stroke. Front Cardiovasc Med. 2022;9:1064157.PubMedPubMedCentralCrossRef Sieweke JT, Grosse GM, Weissenborn K, Derda AA, Biber S, Bauersachs J, et al. Circulating fibroblast activation protein α is reduced in acute ischemic stroke. Front Cardiovasc Med. 2022;9:1064157.PubMedPubMedCentralCrossRef
44.
go back to reference El-Adili F, Lui JK, Najem M, Farina G, Trojanowska M, Sam F, Bujor AM. Periostin overexpression in scleroderma cardiac tissue and its utility as a marker for disease complications. Arthritis Res Ther. 2022;24(1):251.PubMedPubMedCentralCrossRef El-Adili F, Lui JK, Najem M, Farina G, Trojanowska M, Sam F, Bujor AM. Periostin overexpression in scleroderma cardiac tissue and its utility as a marker for disease complications. Arthritis Res Ther. 2022;24(1):251.PubMedPubMedCentralCrossRef
45.
go back to reference López B, González A, Querejeta R, Larman M, Rábago G, Díez J. Association of cardotrophin-1 with myocardial fibrosis in hypertensive patients with heart failure. Hypertension. 2014;63(3):483–9.PubMedCrossRef López B, González A, Querejeta R, Larman M, Rábago G, Díez J. Association of cardotrophin-1 with myocardial fibrosis in hypertensive patients with heart failure. Hypertension. 2014;63(3):483–9.PubMedCrossRef
46.
go back to reference Rivera M, Taléns-Visconti R, Jordán A, Sirera R, Sevilla B, Climent V, et al. Myocardial remodeling and immunologic activation in patients with heart failure. Rev Esp Cardiol. 2006;59(9):911–8.PubMedCrossRef Rivera M, Taléns-Visconti R, Jordán A, Sirera R, Sevilla B, Climent V, et al. Myocardial remodeling and immunologic activation in patients with heart failure. Rev Esp Cardiol. 2006;59(9):911–8.PubMedCrossRef
47.
go back to reference Tillmanns J, Widera C, Habbaba Y, Galuppo P, Kempf T, Wollert KC, et al. Circulating concentrations of fibroblast activation protein α in apparently healthy individuals and patients with acute coronary syndrome as assessed by sandwich ELISA. Int J Cardiol. 2013;168(4):3926–31.PubMedCrossRef Tillmanns J, Widera C, Habbaba Y, Galuppo P, Kempf T, Wollert KC, et al. Circulating concentrations of fibroblast activation protein α in apparently healthy individuals and patients with acute coronary syndrome as assessed by sandwich ELISA. Int J Cardiol. 2013;168(4):3926–31.PubMedCrossRef
48.
go back to reference Uitte De Willige S, Malfliet JJMC, Deckers JW, Dippel DWJ, Leebeek FWG, Rijken DC. Plasma levels of soluble fibroblast activation protein in arterial thrombosis; determinants and cleavage of its substrate alpha-2-antiplasmin. Int J Cardiol. 2015;178:105–10.PubMedCrossRef Uitte De Willige S, Malfliet JJMC, Deckers JW, Dippel DWJ, Leebeek FWG, Rijken DC. Plasma levels of soluble fibroblast activation protein in arterial thrombosis; determinants and cleavage of its substrate alpha-2-antiplasmin. Int J Cardiol. 2015;178:105–10.PubMedCrossRef
51.
go back to reference Tillmanns J, Fraccarollo D, Galuppo P, Wollert KC, Bauersachs J. Changes in concentrations of circulating fibroblast activation protein alpha are associated with myocardial damage in patients with acute ST-elevation MI. Int J Cardiol. 2017;232:155–9.PubMedCrossRef Tillmanns J, Fraccarollo D, Galuppo P, Wollert KC, Bauersachs J. Changes in concentrations of circulating fibroblast activation protein alpha are associated with myocardial damage in patients with acute ST-elevation MI. Int J Cardiol. 2017;232:155–9.PubMedCrossRef
53.
go back to reference Macrae DJ. The Council for International Organizations and Medical Sciences (CIOMS) Guidelines on Ethics of Clinical Trials. Proc Am Thorac Soc. 2007;4(2):176–9.PubMedCrossRef Macrae DJ. The Council for International Organizations and Medical Sciences (CIOMS) Guidelines on Ethics of Clinical Trials. Proc Am Thorac Soc. 2007;4(2):176–9.PubMedCrossRef
Metadata
Title
Plasma fibroblast activation protein is decreased in acute heart failure despite cardiac tissue upregulation
Authors
Marta Delgado-Arija
Patricia Genovés
Lorena Pérez-Carrillo
Irene González-Torrent
Isaac Giménez-Escamilla
Luis Martínez-Dolz
Manuel Portolés
Estefanía Tarazón
Esther Roselló-Lletí
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2024
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-024-04900-w

Other articles of this Issue 1/2024

Journal of Translational Medicine 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.