Skip to main content
Top
Published in: Insights into Imaging 1/2023

Open Access 01-12-2023 | Hamartoma | Original Article

Best imaging signs identified by radiomics could outperform the model: application to differentiating lung carcinoid tumors from atypical hamartomas

Authors: Paul Habert, Antoine Decoux, Lilia Chermati, Laure Gibault, Pascal Thomas, Arthur Varoquaux, Françoise Le Pimpec-Barthes, Armelle Arnoux, Loïc Juquel, Kathia Chaumoitre, Stéphane Garcia, Jean-Yves Gaubert, Loïc Duron, Laure Fournier

Published in: Insights into Imaging | Issue 1/2023

Login to get access

Abstract

Objectives

Lung carcinoids and atypical hamartomas may be difficult to differentiate but require different treatment. The aim was to differentiate these tumors using contrast-enhanced CT semantic and radiomics criteria.

Methods

Between November 2009 and June 2020, consecutives patient operated for hamartomas or carcinoids with contrast-enhanced chest-CT were retrospectively reviewed. Semantic criteria were recorded and radiomics features were extracted from 3D segmentations using Pyradiomics. Reproducible and non-redundant radiomics features were used to training a random forest algorithm with cross-validation. A validation-set from another institution was used to evaluate of the radiomics signature, the 3D ‘median’ attenuation feature (3D-median) alone and the mean value from 2D-ROIs.

Results

Seventy-three patients (median 58 years [43‒70]) were analyzed (16 hamartomas; 57 carcinoids). The radiomics signature predicted hamartomas vs carcinoids on the external dataset (22 hamartomas; 32 carcinoids) with an AUC = 0.76. The 3D-median was the most important in the model. Density thresholds < 10 HU to predict hamartoma and > 60 HU to predict carcinoids were chosen for their high specificity > 0.90. On the external dataset, sensitivity and specificity of the 3D-median and 2D-ROIs were, respectively, 0.23, 1.00 and 0.13, 1.00 < 10 HU; 0.63, 0.95 and 0.69, 0.91 > 60 HU. The 3D-median was more reproducible than 2D-ROIs (ICC = 0.97 95% CI [0.95‒0.99]; bias: 3 ± 7 HU limits of agreement (LoA) [− 10‒16] vs. ICC = 0.90 95% CI [0.85‒0.94]; bias: − 0.7 ± 21 HU LoA [− 4‒40], respectively).

Conclusions

A radiomics signature can distinguish hamartomas from carcinoids with an AUC = 0.76. Median density < 10 HU and > 60 HU on 3D or 2D-ROIs may be useful in clinical practice to diagnose these tumors with confidence, but 3D is more reproducible.

Critical relevance statement

Radiomic features help to identify the most discriminating imaging signs using random forest. ‘Median’ attenuation value (Hounsfield units), extracted from 3D-segmentations on contrast-enhanced chest-CTs, could distinguish carcinoids from atypical hamartomas (AUC = 0.85), was reproducible (ICC = 0.97), and generalized to an external dataset.

Key points

• 3D-‘Median’ was the best feature to differentiate carcinoids from atypical hamartomas (AUC = 0.85).
• 3D-‘Median’ feature is reproducible (ICC = 0.97) and was generalized to an external dataset.
• Radiomics signature from 3D-segmentations differentiated carcinoids from atypical hamartomas with an AUC = 0.76.
• 2D-ROI value reached similar performance to 3D-‘median’ but was less reproducible (ICC = 0.90).

Graphical Abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference Gustafsson BI, Kidd M, Chan A, Malfertheiner MV, Modlin IM (2008) Bronchopulmonary neuroendocrine tumors. Cancer 113(1):5–21CrossRefPubMed Gustafsson BI, Kidd M, Chan A, Malfertheiner MV, Modlin IM (2008) Bronchopulmonary neuroendocrine tumors. Cancer 113(1):5–21CrossRefPubMed
2.
go back to reference García-Yuste M, Matilla JM, Cueto A et al (2007) Typical and atypical carcinoid tumours: analysis of the experience of the Spanish Multi-centric Study of Neuroendocrine Tumours of the Lung. Eur J Cardio-Thorac Surg 31(2):192–197CrossRef García-Yuste M, Matilla JM, Cueto A et al (2007) Typical and atypical carcinoid tumours: analysis of the experience of the Spanish Multi-centric Study of Neuroendocrine Tumours of the Lung. Eur J Cardio-Thorac Surg 31(2):192–197CrossRef
3.
go back to reference Yellin A, Benfield JR (1985) The pulmonary Kulchitsky cell (neuroendocrine) cancers: from carcinoid to small cell carcinomas. Curr Probl Cancer 9(7):1–38CrossRefPubMed Yellin A, Benfield JR (1985) The pulmonary Kulchitsky cell (neuroendocrine) cancers: from carcinoid to small cell carcinomas. Curr Probl Cancer 9(7):1–38CrossRefPubMed
4.
go back to reference Modlin IM, Lye KD, Kidd M (2003) A 5-decade analysis of 13,715 carcinoid tumors. Cancer 97(4):934–959CrossRefPubMed Modlin IM, Lye KD, Kidd M (2003) A 5-decade analysis of 13,715 carcinoid tumors. Cancer 97(4):934–959CrossRefPubMed
5.
go back to reference Caplin ME, Baudin E, Ferolla P et al (2015) Pulmonary neuroendocrine (carcinoid) tumors: European Neuroendocrine Tumor Society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids. Ann Oncol 26(8):1604–1620CrossRefPubMed Caplin ME, Baudin E, Ferolla P et al (2015) Pulmonary neuroendocrine (carcinoid) tumors: European Neuroendocrine Tumor Society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids. Ann Oncol 26(8):1604–1620CrossRefPubMed
6.
go back to reference De Cicco C, Bellomi M, Bartolomei M et al (2008) Imaging of lung hamartomas by multidetector computed tomography and positron emission tomography. Ann Thorac Surg 86(6):1769–1772CrossRefPubMed De Cicco C, Bellomi M, Bartolomei M et al (2008) Imaging of lung hamartomas by multidetector computed tomography and positron emission tomography. Ann Thorac Surg 86(6):1769–1772CrossRefPubMed
7.
go back to reference Gleeson T, Thiessen R, Hannigan A, Murphy D, English JC, Mayo JR (2013) Pulmonary hamartomas: CT pixel analysis for fat attenuation using radiologic-pathologic correlation. J Med Imaging Radiat Oncol 57(5):534–543CrossRefPubMed Gleeson T, Thiessen R, Hannigan A, Murphy D, English JC, Mayo JR (2013) Pulmonary hamartomas: CT pixel analysis for fat attenuation using radiologic-pathologic correlation. J Med Imaging Radiat Oncol 57(5):534–543CrossRefPubMed
8.
go back to reference Cozzi D, Bicci E, Cavigli E et al (2022) Radiomics in pulmonary neuroendocrine tumours (NETs). Radiol Med (Torino) 127(6):609–615CrossRefPubMed Cozzi D, Bicci E, Cavigli E et al (2022) Radiomics in pulmonary neuroendocrine tumours (NETs). Radiol Med (Torino) 127(6):609–615CrossRefPubMed
9.
go back to reference Cardoso CG, Martins M, Souto-Moura C, Fernandes G (2023) Endobronchial hamartoma—a 10-year retrospective analyses of bronchoscopy treatment. Pulmonology 29(1):89–91CrossRefPubMed Cardoso CG, Martins M, Souto-Moura C, Fernandes G (2023) Endobronchial hamartoma—a 10-year retrospective analyses of bronchoscopy treatment. Pulmonology 29(1):89–91CrossRefPubMed
10.
go back to reference Cardillo G, Sera F, Di Martino M et al (2004) Bronchial carcinoid tumors: nodal status and long-term survival after resection. Ann Thorac Surg 77(5):1781–1785CrossRefPubMed Cardillo G, Sera F, Di Martino M et al (2004) Bronchial carcinoid tumors: nodal status and long-term survival after resection. Ann Thorac Surg 77(5):1781–1785CrossRefPubMed
11.
go back to reference Fournier L, Costaridou L, Bidaut L et al (2021) Incorporating radiomics into clinical trials: expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers. Eur Radiol 31(8):6001–6012CrossRefPubMedPubMedCentral Fournier L, Costaridou L, Bidaut L et al (2021) Incorporating radiomics into clinical trials: expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers. Eur Radiol 31(8):6001–6012CrossRefPubMedPubMedCentral
12.
go back to reference El Naqa I, Ten Haken RK (2018) Can radiomics personalise immunotherapy? Lancet Oncol 19(9):1138–1139CrossRefPubMed El Naqa I, Ten Haken RK (2018) Can radiomics personalise immunotherapy? Lancet Oncol 19(9):1138–1139CrossRefPubMed
13.
14.
go back to reference Orlhac F, Nioche C, Klyuzhin I, Rahmim A, Buvat I (2021) Radiomics in PET Imaging. PET Clin 16(4):597–612CrossRefPubMed Orlhac F, Nioche C, Klyuzhin I, Rahmim A, Buvat I (2021) Radiomics in PET Imaging. PET Clin 16(4):597–612CrossRefPubMed
15.
go back to reference Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30(9):1323–1341CrossRefPubMedPubMedCentral Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30(9):1323–1341CrossRefPubMedPubMedCentral
16.
go back to reference Yip SSF, Parmar C, Blezek D, Estepar RSJ, Pieper S, Kim J et al (2017) Application of the 3D slicer chest imaging platform segmentation algorithm for large lung nodule delineation. van Ooijen PMA, editor. PLoS One 12(6):e0178944 Yip SSF, Parmar C, Blezek D, Estepar RSJ, Pieper S, Kim J et al (2017) Application of the 3D slicer chest imaging platform segmentation algorithm for large lung nodule delineation. van Ooijen PMA, editor. PLoS One 12(6):e0178944
17.
go back to reference van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107CrossRefPubMedPubMedCentral van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107CrossRefPubMedPubMedCentral
18.
go back to reference Zwanenburg A, Vallières M, Abdalah MA et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2):328–338CrossRefPubMed Zwanenburg A, Vallières M, Abdalah MA et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2):328–338CrossRefPubMed
19.
go back to reference Benchoufi M, Matzner-Lober E, Molinari N, Jannot AS, Soyer P (2020) Interobserver agreement issues in radiology. Diagn Interv Imaging 101(10):639–641CrossRefPubMed Benchoufi M, Matzner-Lober E, Molinari N, Jannot AS, Soyer P (2020) Interobserver agreement issues in radiology. Diagn Interv Imaging 101(10):639–641CrossRefPubMed
20.
go back to reference Jones SE, Wittram C (2005) The indeterminate CT pulmonary angiogram: imaging characteristics and patient clinical outcome. Radiology 237(1):329–337CrossRefPubMed Jones SE, Wittram C (2005) The indeterminate CT pulmonary angiogram: imaging characteristics and patient clinical outcome. Radiology 237(1):329–337CrossRefPubMed
21.
go back to reference Huang Y, Xu D ming, Jirapatnakul A, Reeves AP, Farooqi A, Zhang L juan, et al. CT- and computer-based features of small hamartomas. Clin Imaging. 2011;35(2):116–22. Huang Y, Xu D ming, Jirapatnakul A, Reeves AP, Farooqi A, Zhang L juan, et al. CT- and computer-based features of small hamartomas. Clin Imaging. 2011;35(2):116–22.
22.
go back to reference Himpe U, Deroose CM, Leyn PD, Verbeken E, Vansteenkiste J (2009) Unexpected slight fluorodeoxyglucose-uptake on positron emission tomography in a pulmonary hamartoma. J Thorac Oncol 4(1):107–108CrossRefPubMed Himpe U, Deroose CM, Leyn PD, Verbeken E, Vansteenkiste J (2009) Unexpected slight fluorodeoxyglucose-uptake on positron emission tomography in a pulmonary hamartoma. J Thorac Oncol 4(1):107–108CrossRefPubMed
23.
go back to reference Coruh AG, Kul M, Kuru Öz D et al (2020) Is it possible to discriminate pulmonary carcinoids from hamartomas based on CT features? Clin Imaging 62:49–56CrossRefPubMed Coruh AG, Kul M, Kuru Öz D et al (2020) Is it possible to discriminate pulmonary carcinoids from hamartomas based on CT features? Clin Imaging 62:49–56CrossRefPubMed
24.
go back to reference Meisinger QC, Klein JS, Butnor KJ, Gentchos G, Leavitt BJ (2011) CT features of peripheral pulmonary carcinoid tumors. AJR Am J Roentgenol 197(5):1073–1080CrossRefPubMed Meisinger QC, Klein JS, Butnor KJ, Gentchos G, Leavitt BJ (2011) CT features of peripheral pulmonary carcinoid tumors. AJR Am J Roentgenol 197(5):1073–1080CrossRefPubMed
25.
go back to reference Davila DG, Dunn WF, Tazelaar HD, Pairolero PC (1993) Bronchial carcinoid tumors. Mayo Clin Proc 68(8):795–803CrossRefPubMed Davila DG, Dunn WF, Tazelaar HD, Pairolero PC (1993) Bronchial carcinoid tumors. Mayo Clin Proc 68(8):795–803CrossRefPubMed
26.
go back to reference Lococo F, Rapicetta C, Mengoli MC et al (2019) Diagnostic performances of 68Ga-DOTATOC versus 18Fluorodeoxyglucose positron emission tomography in pulmonary carcinoid tumours and interrelationship with histological features. Interact Cardiovasc Thorac Surg 28(6):957–960CrossRefPubMed Lococo F, Rapicetta C, Mengoli MC et al (2019) Diagnostic performances of 68Ga-DOTATOC versus 18Fluorodeoxyglucose positron emission tomography in pulmonary carcinoid tumours and interrelationship with histological features. Interact Cardiovasc Thorac Surg 28(6):957–960CrossRefPubMed
27.
go back to reference Binczyk F, Prazuch W, Bozek P, Polanska J (2021) Radiomics and artificial intelligence in lung cancer screening. Transl Lung Cancer Res 10(2):1186–1199CrossRefPubMedPubMedCentral Binczyk F, Prazuch W, Bozek P, Polanska J (2021) Radiomics and artificial intelligence in lung cancer screening. Transl Lung Cancer Res 10(2):1186–1199CrossRefPubMedPubMedCentral
28.
go back to reference Mu W, Schabath MB, Gillies RJ (2022) Images are data: challenges and opportunities in the clinical translation of radiomics. Cancer Res 82(11):2066–2068CrossRefPubMed Mu W, Schabath MB, Gillies RJ (2022) Images are data: challenges and opportunities in the clinical translation of radiomics. Cancer Res 82(11):2066–2068CrossRefPubMed
29.
go back to reference Roblot V, Giret Y, Mezghani S et al (2022) Validation of a deep learning segmentation algorithm to quantify the skeletal muscle index and sarcopenia in metastatic renal carcinoma. Eur Radiol 32(7):4728–4737CrossRefPubMed Roblot V, Giret Y, Mezghani S et al (2022) Validation of a deep learning segmentation algorithm to quantify the skeletal muscle index and sarcopenia in metastatic renal carcinoma. Eur Radiol 32(7):4728–4737CrossRefPubMed
30.
go back to reference Erdal BS, Demirer M, Little KJ et al (2020) Are quantitative features of lung nodules reproducible at different CT acquisition and reconstruction parameters? Hatt M, editor. PLoS One 15(10):e0240184CrossRefPubMedPubMedCentral Erdal BS, Demirer M, Little KJ et al (2020) Are quantitative features of lung nodules reproducible at different CT acquisition and reconstruction parameters? Hatt M, editor. PLoS One 15(10):e0240184CrossRefPubMedPubMedCentral
31.
go back to reference O’Connor JPB, Aboagye EO, Adams JE et al (2017) Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 14(3):169–186CrossRefPubMed O’Connor JPB, Aboagye EO, Adams JE et al (2017) Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 14(3):169–186CrossRefPubMed
32.
go back to reference Sullivan DC, Obuchowski NA, Kessler LG et al (2015) Metrology standards for quantitative imaging biomarkers. Radiology 277(3):813–825CrossRefPubMed Sullivan DC, Obuchowski NA, Kessler LG et al (2015) Metrology standards for quantitative imaging biomarkers. Radiology 277(3):813–825CrossRefPubMed
Metadata
Title
Best imaging signs identified by radiomics could outperform the model: application to differentiating lung carcinoid tumors from atypical hamartomas
Authors
Paul Habert
Antoine Decoux
Lilia Chermati
Laure Gibault
Pascal Thomas
Arthur Varoquaux
Françoise Le Pimpec-Barthes
Armelle Arnoux
Loïc Juquel
Kathia Chaumoitre
Stéphane Garcia
Jean-Yves Gaubert
Loïc Duron
Laure Fournier
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Insights into Imaging / Issue 1/2023
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-023-01484-9

Other articles of this Issue 1/2023

Insights into Imaging 1/2023 Go to the issue