Skip to main content
Top
Published in: Annals of Intensive Care 1/2020

Open Access 01-12-2020 | Haloperidol | Research

Recruitment pattern of the diaphragm and extradiaphragmatic inspiratory muscles in response to different levels of pressure support

Authors: L. H. Roesthuis, J. G. van der Hoeven, H. W. H. van Hees, W.-J. M. Schellekens, J. Doorduin, L. M. A. Heunks

Published in: Annals of Intensive Care | Issue 1/2020

Login to get access

Abstract

Background

Inappropriate ventilator assist plays an important role in the development of diaphragm dysfunction. Ventilator under-assist may lead to muscle injury, while over-assist may result in muscle atrophy. This provides a good rationale to monitor respiratory drive in ventilated patients. Respiratory drive can be monitored by a nasogastric catheter, either with esophageal balloon to determine muscular pressure (gold standard) or with electrodes to measure electrical activity of the diaphragm. A disadvantage is that both techniques are invasive. Therefore, it is interesting to investigate the role of surrogate markers for respiratory dive, such as extradiaphragmatic inspiratory muscle activity. The aim of the current study was to investigate the effect of different inspiratory support levels on the recruitment pattern of extradiaphragmatic inspiratory muscles with respect to the diaphragm and to evaluate agreement between activity of extradiaphragmatic inspiratory muscles and the diaphragm.

Methods

Activity from the alae nasi, genioglossus, scalene, sternocleidomastoid and parasternal intercostals was recorded using surface electrodes. Electrical activity of the diaphragm was measured using a multi-electrode nasogastric catheter. Pressure support (PS) levels were reduced from 15 to 3 cmH2O every 5 min with steps of 3 cmH2O. The magnitude and timing of respiratory muscle activity were assessed.

Results

We included 17 ventilated patients. Diaphragm and extradiaphragmatic inspiratory muscle activity increased in response to lower PS levels (36 ± 6% increase for the diaphragm, 30 ± 6% parasternal intercostals, 41 ± 6% scalene, 40 ± 8% sternocleidomastoid, 43 ± 6% alae nasi and 30 ± 6% genioglossus). Changes in diaphragm activity correlated best with changes in alae nasi activity (r2 = 0.49; P < 0.001), while there was no correlation between diaphragm and sternocleidomastoid activity. The agreement between diaphragm and extradiaphragmatic inspiratory muscle activity was low due to a high individual variability. Onset of alae nasi activity preceded the onset of all other muscles.

Conclusions

Extradiaphragmatic inspiratory muscle activity increases in response to lower inspiratory support levels. However, there is a poor correlation and agreement with the change in diaphragm activity, limiting the use of surface electromyography (EMG) recordings of extradiaphragmatic inspiratory muscles as a surrogate for electrical activity of the diaphragm.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dres M, Goligher EC, Heunks LMA, Brochard LJ. Critical illness-associated diaphragm weakness. Intensive Care Med. 2017;43(10):1441–52.PubMedCrossRef Dres M, Goligher EC, Heunks LMA, Brochard LJ. Critical illness-associated diaphragm weakness. Intensive Care Med. 2017;43(10):1441–52.PubMedCrossRef
2.
go back to reference Hooijman PE, Beishuizen A, Witt CC, de Waard MC, Girbes AR, Spoelstra-de Man AM, et al. Diaphragm muscle fiber weakness and ubiquitin-proteasome activation in critically ill patients. Am J Respir Crit Care Med. 2015;191(10):1126–38.PubMedPubMedCentralCrossRef Hooijman PE, Beishuizen A, Witt CC, de Waard MC, Girbes AR, Spoelstra-de Man AM, et al. Diaphragm muscle fiber weakness and ubiquitin-proteasome activation in critically ill patients. Am J Respir Crit Care Med. 2015;191(10):1126–38.PubMedPubMedCentralCrossRef
3.
go back to reference Jaber S, Petrof BJ, Jung B, Chanques G, Berthet JP, Rabuel C, et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med. 2011;183(3):364–71.PubMedCrossRef Jaber S, Petrof BJ, Jung B, Chanques G, Berthet JP, Rabuel C, et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med. 2011;183(3):364–71.PubMedCrossRef
4.
go back to reference Hudson MBSAJ, Nelson WB, Bruells CS, Levine S, Powers SK. Both high level pressure support ventilation and controlled mechanical ventilation induce diaphragm dysfunction and atrophy. Crit Care Med. 2012;40:1254–60.PubMedPubMedCentralCrossRef Hudson MBSAJ, Nelson WB, Bruells CS, Levine S, Powers SK. Both high level pressure support ventilation and controlled mechanical ventilation induce diaphragm dysfunction and atrophy. Crit Care Med. 2012;40:1254–60.PubMedPubMedCentralCrossRef
5.
go back to reference Ebihara SHSNA, Danialou G, Cho W, Gottfried SB, Petrof BJ. Mechanical ventilation protects against diaphragm injury in sepsis. Am J Respir Crit Care Med. 2002;165:221–8.PubMedCrossRef Ebihara SHSNA, Danialou G, Cho W, Gottfried SB, Petrof BJ. Mechanical ventilation protects against diaphragm injury in sepsis. Am J Respir Crit Care Med. 2002;165:221–8.PubMedCrossRef
6.
go back to reference Goligher ECFE, Herridge MS, Murray A, Vorona S, Brace D, Rittayamai N, Lanys A, Tomlinson G, Singh JM, Bolz S, Rubenfeld GD, Kavanagh BP, Brochard LJ, Ferguson ND. Evolution of diaphragm thickness during mechanical ventilation: impact of inspiratory effort. Am J Respir Crit Care Med. 2015;192:1080–8.PubMedCrossRef Goligher ECFE, Herridge MS, Murray A, Vorona S, Brace D, Rittayamai N, Lanys A, Tomlinson G, Singh JM, Bolz S, Rubenfeld GD, Kavanagh BP, Brochard LJ, Ferguson ND. Evolution of diaphragm thickness during mechanical ventilation: impact of inspiratory effort. Am J Respir Crit Care Med. 2015;192:1080–8.PubMedCrossRef
7.
go back to reference Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu BAJ, Sachdeva R, Sonnad S, Kaiser LR, Rubinstein NA, Powers SK, Shrager JB. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–35.PubMedCrossRef Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu BAJ, Sachdeva R, Sonnad S, Kaiser LR, Rubinstein NA, Powers SK, Shrager JB. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–35.PubMedCrossRef
8.
go back to reference Reid WDHJ, Bryson S, Walker DC, Belcastro AN. Diaphragm injury and myofibrillar structure induced by resistive loading. J Appl Physiol. 1994;76:176–84.PubMedCrossRef Reid WDHJ, Bryson S, Walker DC, Belcastro AN. Diaphragm injury and myofibrillar structure induced by resistive loading. J Appl Physiol. 1994;76:176–84.PubMedCrossRef
9.
go back to reference Jiang TRWD, Road JD. Delayed diaphragm injury and diaphragm force production. Am J Respir Crit Care Med. 1998;157:736–42.PubMedCrossRef Jiang TRWD, Road JD. Delayed diaphragm injury and diaphragm force production. Am J Respir Crit Care Med. 1998;157:736–42.PubMedCrossRef
10.
go back to reference Bellani G, Pesenti A. Assessing effort and work of breathing. Curr Opin Crit Care. 2014;20(3):352–8.PubMedCrossRef Bellani G, Pesenti A. Assessing effort and work of breathing. Curr Opin Crit Care. 2014;20(3):352–8.PubMedCrossRef
11.
go back to reference Doorduin J, van Hees HW, van der Hoeven JG, Heunks LM. Monitoring of the respiratory muscles in the critically ill. Am J Respir Crit Care Med. 2013;187(1):20–7.PubMedCrossRef Doorduin J, van Hees HW, van der Hoeven JG, Heunks LM. Monitoring of the respiratory muscles in the critically ill. Am J Respir Crit Care Med. 2013;187(1):20–7.PubMedCrossRef
12.
go back to reference Heunks LM, Doorduin J, van der Hoeven JG. Monitoring and preventing diaphragm injury. Curr Opin Crit Care. 2015;21(1):34–41.PubMedCrossRef Heunks LM, Doorduin J, van der Hoeven JG. Monitoring and preventing diaphragm injury. Curr Opin Crit Care. 2015;21(1):34–41.PubMedCrossRef
13.
go back to reference Goligher EC, Brochard LJ, Reid WD, Fan E, Saarela O, Slutsky AS, et al. Diaphragmatic myotrauma: a mediator of prolonged ventilation and poor patient outcomes in acute respiratory failure. Lancet Respir Med. 2019;7(1):90–8.PubMedCrossRef Goligher EC, Brochard LJ, Reid WD, Fan E, Saarela O, Slutsky AS, et al. Diaphragmatic myotrauma: a mediator of prolonged ventilation and poor patient outcomes in acute respiratory failure. Lancet Respir Med. 2019;7(1):90–8.PubMedCrossRef
14.
go back to reference Akoumianaki E, Maggiore SM, Valenza F, Bellani G, Jubran A, Loring SH, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014;189(5):520–31.PubMedCrossRef Akoumianaki E, Maggiore SM, Valenza F, Bellani G, Jubran A, Loring SH, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014;189(5):520–31.PubMedCrossRef
15.
go back to reference Mauri T, Yoshida T, Bellani G, Goligher EC, Carteaux G, Rittayamai N, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med. 2016;42(9):1360–73.PubMedCrossRef Mauri T, Yoshida T, Bellani G, Goligher EC, Carteaux G, Rittayamai N, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med. 2016;42(9):1360–73.PubMedCrossRef
16.
go back to reference Bellani G, Mauri T, Coppadoro A, Grasselli G, Patroniti N, Spadaro S, et al. Estimation of patient’s inspiratory effort from the electrical activity of the diaphragm. Crit Care Med. 2013;41(6):1483–91.PubMedCrossRef Bellani G, Mauri T, Coppadoro A, Grasselli G, Patroniti N, Spadaro S, et al. Estimation of patient’s inspiratory effort from the electrical activity of the diaphragm. Crit Care Med. 2013;41(6):1483–91.PubMedCrossRef
17.
go back to reference Bellani G, Bronco A, Arrigoni Marocco S, Pozzi M, Sala V, Eronia N, et al. Measurement of diaphragmatic electrical activity by surface electromyography in intubated subjects and its relationship with inspiratory effort. Respir Care. 2018;63(11):1341–9.PubMedCrossRef Bellani G, Bronco A, Arrigoni Marocco S, Pozzi M, Sala V, Eronia N, et al. Measurement of diaphragmatic electrical activity by surface electromyography in intubated subjects and its relationship with inspiratory effort. Respir Care. 2018;63(11):1341–9.PubMedCrossRef
18.
go back to reference Lin L, Guan L, Wu W, Chen R. Correlation of surface respiratory electromyography with esophageal diaphragm electromyography. Respir Physiol Neurobiol. 2019;259:45–52.PubMedCrossRef Lin L, Guan L, Wu W, Chen R. Correlation of surface respiratory electromyography with esophageal diaphragm electromyography. Respir Physiol Neurobiol. 2019;259:45–52.PubMedCrossRef
19.
go back to reference Dres M, Dube BP, Goligher EC, Vorona S, Demiri S, Brochard LJ, Similowsky T, Demoule A. Intercostal muscle ultrasound: a feasibility and physiological study in mechanically ventilated patients [abstract]. Am J Respir Crit Care Med. 2018;197:A5863. Dres M, Dube BP, Goligher EC, Vorona S, Demiri S, Brochard LJ, Similowsky T, Demoule A. Intercostal muscle ultrasound: a feasibility and physiological study in mechanically ventilated patients [abstract]. Am J Respir Crit Care Med. 2018;197:A5863.
20.
go back to reference Oppersma E, Doorduin J, van der Heijden EHRM, van der Hoeven JG, Heunks LMA. Noninvasive ventilation and the upper airway: should we pay more attention? Crit Care. 2013;17(245):1–7. Oppersma E, Doorduin J, van der Heijden EHRM, van der Hoeven JG, Heunks LMA. Noninvasive ventilation and the upper airway: should we pay more attention? Crit Care. 2013;17(245):1–7.
21.
go back to reference Strohl KPHMJ, Hallett M, Saunders NA, Ingram RH Jr. Activation of upper airway muscles before onset of inspiration in normal humans. J Appl Physiol. 1980;49:638–42.PubMedCrossRef Strohl KPHMJ, Hallett M, Saunders NA, Ingram RH Jr. Activation of upper airway muscles before onset of inspiration in normal humans. J Appl Physiol. 1980;49:638–42.PubMedCrossRef
22.
go back to reference Saboisky JP, Jordan AS, Eckert DJ, White DP, Trinder JA, Nicholas CL, et al. Recruitment and rate-coding strategies of the human genioglossus muscle. J Appl Physiol. 2010;109(6):1939–49.PubMedPubMedCentralCrossRef Saboisky JP, Jordan AS, Eckert DJ, White DP, Trinder JA, Nicholas CL, et al. Recruitment and rate-coding strategies of the human genioglossus muscle. J Appl Physiol. 2010;109(6):1939–49.PubMedPubMedCentralCrossRef
23.
go back to reference Hudson AL, Butler JE, Gandevia SC, De Troyer A. Interplay between the inspiratory and postural functions of the human parasternal intercostal muscles. J Neurophysiol. 2010;103(3):1622–9.PubMedCrossRef Hudson AL, Butler JE, Gandevia SC, De Troyer A. Interplay between the inspiratory and postural functions of the human parasternal intercostal muscles. J Neurophysiol. 2010;103(3):1622–9.PubMedCrossRef
25.
go back to reference Moore KL, Dalley AF, Agur AM. Chapter 8 Neck. Clinically oriented anatomy. 5th ed. 2006. p. 1052–78. Moore KL, Dalley AF, Agur AM. Chapter 8 Neck. Clinically oriented anatomy. 5th ed. 2006. p. 1052–78.
26.
go back to reference Schmidt M, Kindler F, Gottfried SB, Raux M, Hug F, Similowski T, et al. Dyspnea and surface inspiratory electromyograms in mechanically ventilated patients. Intensive Care Med. 2013;39(8):1368–76.PubMedCrossRef Schmidt M, Kindler F, Gottfried SB, Raux M, Hug F, Similowski T, et al. Dyspnea and surface inspiratory electromyograms in mechanically ventilated patients. Intensive Care Med. 2013;39(8):1368–76.PubMedCrossRef
27.
go back to reference Schmidt MCL, Hug F, Demoule A, Similowski T. Surface electromyogram of inspiratory muscles: a possible routine monitoring tool in the intensive care unit. Br J Anaesth. 2011;106:913–4.PubMedCrossRef Schmidt MCL, Hug F, Demoule A, Similowski T. Surface electromyogram of inspiratory muscles: a possible routine monitoring tool in the intensive care unit. Br J Anaesth. 2011;106:913–4.PubMedCrossRef
28.
go back to reference Cecchini JSM, Demoule A, Similowski T. Increased diaphragmatic contribution to inspiratory effort during neurally adjusted ventilatory assistance versus pressure support. Anesthesiology. 2014;121:1028–36.PubMedCrossRef Cecchini JSM, Demoule A, Similowski T. Increased diaphragmatic contribution to inspiratory effort during neurally adjusted ventilatory assistance versus pressure support. Anesthesiology. 2014;121:1028–36.PubMedCrossRef
29.
go back to reference Doorduin J, Nollet JL, Roesthuis LH, van Hees HW, Brochard LJ, Sinderby CA, et al. Partial neuromuscular blockade during partial ventilatory support in sedated patients with high tidal volumes. Am J Respir Crit Care Med. 2017;195(8):1033–42.PubMedCrossRef Doorduin J, Nollet JL, Roesthuis LH, van Hees HW, Brochard LJ, Sinderby CA, et al. Partial neuromuscular blockade during partial ventilatory support in sedated patients with high tidal volumes. Am J Respir Crit Care Med. 2017;195(8):1033–42.PubMedCrossRef
30.
go back to reference Doorduin J, Roesthuis LH, Jansen D, van der Hoeven JG, van Hees HWH, Heunks LMA. Respiratory muscle effort during expiration in successful and failed weaning from mechanical ventilation. Anesthesiology. 2018;129(3):490–501.PubMedCrossRef Doorduin J, Roesthuis LH, Jansen D, van der Hoeven JG, van Hees HWH, Heunks LMA. Respiratory muscle effort during expiration in successful and failed weaning from mechanical ventilation. Anesthesiology. 2018;129(3):490–501.PubMedCrossRef
31.
go back to reference Doorduin J, Sinderby CA, Beck J, van der Hoeven JG, Heunks LM. Assisted ventilation in patients with acute respiratory distress syndrome: lung-distending pressure and patient–ventilator interaction. Anesthesiology. 2015;123(1):181–90.PubMedCrossRef Doorduin J, Sinderby CA, Beck J, van der Hoeven JG, Heunks LM. Assisted ventilation in patients with acute respiratory distress syndrome: lung-distending pressure and patient–ventilator interaction. Anesthesiology. 2015;123(1):181–90.PubMedCrossRef
32.
go back to reference Doorduin J, Sinderby CA, Beck J, van der Hoeven JG, Heunks LMA. Automated patient–ventilator interaction analysis during neurally adjusted non-invasive ventilation and pressure support ventilation in chronic obstructive pulmonary disease. Crit Care. 2014;18(5):550–7.PubMedPubMedCentralCrossRef Doorduin J, Sinderby CA, Beck J, van der Hoeven JG, Heunks LMA. Automated patient–ventilator interaction analysis during neurally adjusted non-invasive ventilation and pressure support ventilation in chronic obstructive pulmonary disease. Crit Care. 2014;18(5):550–7.PubMedPubMedCentralCrossRef
33.
go back to reference Beck J, Gottfried SB, Navalesi P, Skrobik Y, Comtois N, Rossini M, et al. Electrical activity of the diaphragm during pressure support ventilation in acute respiratory failure. Am J Respir Crit Care Med. 2001;164(3):419–24.PubMedCrossRef Beck J, Gottfried SB, Navalesi P, Skrobik Y, Comtois N, Rossini M, et al. Electrical activity of the diaphragm during pressure support ventilation in acute respiratory failure. Am J Respir Crit Care Med. 2001;164(3):419–24.PubMedCrossRef
34.
go back to reference Parthasarathy S, Jubran A, Laghi F, Tobin MJ. Sternomastoid, rib cage, and expiratory muscle activity during weaning failure. J Appl Physiol. 2007;103(1):140–7.PubMedCrossRef Parthasarathy S, Jubran A, Laghi F, Tobin MJ. Sternomastoid, rib cage, and expiratory muscle activity during weaning failure. J Appl Physiol. 2007;103(1):140–7.PubMedCrossRef
35.
go back to reference Falla DDAP, Rainoldi A, Merletti R, Jull G. Location of innervation zones of sternocleidomastoid and scalene muscles—a basis for clinical and research electromyography applications. Clin Neurophysiol. 2002;113:57–63.PubMedCrossRef Falla DDAP, Rainoldi A, Merletti R, Jull G. Location of innervation zones of sternocleidomastoid and scalene muscles—a basis for clinical and research electromyography applications. Clin Neurophysiol. 2002;113:57–63.PubMedCrossRef
36.
go back to reference Zhan C, Yeung LF, Yang Z. A wavelet-based adaptive filter for removing ECG interference in EMGdi signals. J Electromyogr Kinesiol. 2010;20(3):542–9.PubMedCrossRef Zhan C, Yeung LF, Yang Z. A wavelet-based adaptive filter for removing ECG interference in EMGdi signals. J Electromyogr Kinesiol. 2010;20(3):542–9.PubMedCrossRef
37.
go back to reference Chiti L, Biondi G, Morelot-Panzini C, Raux M, Similowski T, Hug F. Scalene muscle activity during progressive inspiratory loading under pressure support ventilation in normal humans. Respir Physiol Neurobiol. 2008;164(3):441–8.PubMedCrossRef Chiti L, Biondi G, Morelot-Panzini C, Raux M, Similowski T, Hug F. Scalene muscle activity during progressive inspiratory loading under pressure support ventilation in normal humans. Respir Physiol Neurobiol. 2008;164(3):441–8.PubMedCrossRef
39.
go back to reference Brochard LHA, Lorino H, Lemaire F. Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation. Am Rev Respir Dis. 1989;139:513–21.PubMedCrossRef Brochard LHA, Lorino H, Lemaire F. Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation. Am Rev Respir Dis. 1989;139:513–21.PubMedCrossRef
40.
go back to reference Vaporidi K, Akoumianaki E, Telias I, Goligher EC, Brochard L, Georgopoulos D. Respiratory drive in critically ill patients: pathophysiology and clinical implications. Am J Respir Crit Care Med. 2019. Vaporidi K, Akoumianaki E, Telias I, Goligher EC, Brochard L, Georgopoulos D. Respiratory drive in critically ill patients: pathophysiology and clinical implications. Am J Respir Crit Care Med. 2019.
41.
go back to reference Hug F, Raux M, Morelot-Panzini C, Similowski T. Surface EMG to assess and quantify upper airway dilators activity during non-invasive ventilation. Respir Physiol Neurobiol. 2011;178(2):341–5.PubMedCrossRef Hug F, Raux M, Morelot-Panzini C, Similowski T. Surface EMG to assess and quantify upper airway dilators activity during non-invasive ventilation. Respir Physiol Neurobiol. 2011;178(2):341–5.PubMedCrossRef
42.
go back to reference McKenzie DK, Butler JE, Gandevia SC. Respiratory muscle function and activation in chronic obstructive pulmonary disease. J Appl Physiol. 2009;107(2):621–9.PubMedCrossRef McKenzie DK, Butler JE, Gandevia SC. Respiratory muscle function and activation in chronic obstructive pulmonary disease. J Appl Physiol. 2009;107(2):621–9.PubMedCrossRef
43.
44.
go back to reference Hudson AL, Gandevia SC, Butler JE. The effect of lung volume on the co-ordinated recruitment of scalene and sternomastoid muscles in humans. J Physiol. 2007;584(Pt 1):261–70.PubMedPubMedCentralCrossRef Hudson AL, Gandevia SC, Butler JE. The effect of lung volume on the co-ordinated recruitment of scalene and sternomastoid muscles in humans. J Physiol. 2007;584(Pt 1):261–70.PubMedPubMedCentralCrossRef
45.
go back to reference De Troyer AKPA, Wilson TA. Respiratory action of the intercostal muscles. Physiol Rev. 2005;85:717–56.PubMedCrossRef De Troyer AKPA, Wilson TA. Respiratory action of the intercostal muscles. Physiol Rev. 2005;85:717–56.PubMedCrossRef
46.
go back to reference Saboisky JP, Gorman RB, De Troyer A, Gandevia SC, Butler JE. Differential activation among five human inspiratory motoneuron pools during tidal breathing. J Appl Physiol. 2007;102(2):772–80.PubMedCrossRef Saboisky JP, Gorman RB, De Troyer A, Gandevia SC, Butler JE. Differential activation among five human inspiratory motoneuron pools during tidal breathing. J Appl Physiol. 2007;102(2):772–80.PubMedCrossRef
47.
go back to reference Hug F. Can muscle coordination be precisely studied by surface electromyography? J Electromyogr Kinesiol. 2011;21(1):1–12.PubMedCrossRef Hug F. Can muscle coordination be precisely studied by surface electromyography? J Electromyogr Kinesiol. 2011;21(1):1–12.PubMedCrossRef
Metadata
Title
Recruitment pattern of the diaphragm and extradiaphragmatic inspiratory muscles in response to different levels of pressure support
Authors
L. H. Roesthuis
J. G. van der Hoeven
H. W. H. van Hees
W.-J. M. Schellekens
J. Doorduin
L. M. A. Heunks
Publication date
01-12-2020
Publisher
Springer International Publishing
Keyword
Haloperidol
Published in
Annals of Intensive Care / Issue 1/2020
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-020-00684-6

Other articles of this Issue 1/2020

Annals of Intensive Care 1/2020 Go to the issue