Skip to main content
Top
Published in: BMC Neurology 1/2022

Open Access 01-12-2022 | Gout | Research

Association between gout and the development of Parkinson’s disease: a systematic review and meta-analysis

Authors: Asra Fazlollahi, Mahdi Zahmatyar, Hossein Alizadeh, Maryam Noori, Nasrin Jafari, Seyed Aria Nejadghaderi, Mark J. M. Sullman, Koroush Gharagozli, Ali-Asghar Kolahi, Saeid Safiri

Published in: BMC Neurology | Issue 1/2022

Login to get access

Abstract

Background

As a natural antioxidant, uric acid plays a protective role against neurodegenerative disorders, including Parkinson’s disease (PD). Therefore, the risk of PD has been found to be lower in people with hyperuricemia. In this article, we conducted a systematic review and meta-analysis to investigate whether gout affects the future risk of developing PD.

Methods

We searched PubMed, Scopus, the Web of Science, and Google Scholar to find relevant studies, up to March 16, 2022. Studies investigating the risk of PD, following a gout diagnosis, were included if they were cross-sectional, case–control or cohort studies. The Newcastle Ottawa Scale (NOS) checklist was used to assess the quality of all included studies. The meta-analysis was performed using STATA 17.0.

Results

Ten studies were included, which were comprised of three case-controls, six cohort studies and one nested case–control study. We found no significant association between gout and the risk of PD among both sexes (RR = 0.94, 95% CI: 0.86–1.04), although the association was significant for females (RR = 1.09; 95% CI: 1.02–1.17). Subgroup analysis also showed no significant findings by age group, whether they were receiving treatment for gout, study design, quality assessment score, and method of gout ascertainment. In contrast, the studies that defined PD according to the use of drugs showed significant results (RR = 0.82; 95% CI: 0.76–0.89). There was a significant publication bias on the association between gout and PD.

Conclusions

The presence of gout had no significant effect on the risk of subsequently developing PD. Further analyses are recommended to investigate the effects of demographic and behavioral risk factors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Duarte-Jurado AP, Gopar-Cuevas Y, Saucedo-Cardenas O, Loera-Arias MD, Montes-de-Oca-Luna R, Garcia-Garcia A, et al. Antioxidant Therapeutics in Parkinson's Disease: Current Challenges and Opportunities. Antioxidants. 2021;10(3). Duarte-Jurado AP, Gopar-Cuevas Y, Saucedo-Cardenas O, Loera-Arias MD, Montes-de-Oca-Luna R, Garcia-Garcia A, et al. Antioxidant Therapeutics in Parkinson's Disease: Current Challenges and Opportunities. Antioxidants. 2021;10(3).
2.
go back to reference Eusebi P, Franchini D, De Giorgi M, Abraha I, Montedori A, Casucci P, et al. Incidence and prevalence of Parkinson’s disease in the Italian region of Umbria: a population-based study using healthcare administrative databases. Neurol Sci. 2019;40(8):1709–12.PubMedCrossRef Eusebi P, Franchini D, De Giorgi M, Abraha I, Montedori A, Casucci P, et al. Incidence and prevalence of Parkinson’s disease in the Italian region of Umbria: a population-based study using healthcare administrative databases. Neurol Sci. 2019;40(8):1709–12.PubMedCrossRef
3.
go back to reference Schapira AH, Chaudhuri K, Jenner P. Non-motor features of Parkinson disease. Nat Rev Neurosci. 2017;18(7):435–50.PubMedCrossRef Schapira AH, Chaudhuri K, Jenner P. Non-motor features of Parkinson disease. Nat Rev Neurosci. 2017;18(7):435–50.PubMedCrossRef
4.
go back to reference De Rijk Md, Launer L, Berger K, Breteler M, Dartigues J, Baldereschi M, et al. Prevalence of Parkinson's disease in Europe: A collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology. 2000;54(11 Suppl 5):S21–3. De Rijk Md, Launer L, Berger K, Breteler M, Dartigues J, Baldereschi M, et al. Prevalence of Parkinson's disease in Europe: A collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology. 2000;54(11 Suppl 5):S21–3.
5.
6.
go back to reference Abbas MM, Xu ZY, Tan LC. Epidemiology of Parkinson’s Disease-East Versus West. Movement Disorders Clinical Practice. 2018;5(1):14–28.PubMedCrossRef Abbas MM, Xu ZY, Tan LC. Epidemiology of Parkinson’s Disease-East Versus West. Movement Disorders Clinical Practice. 2018;5(1):14–28.PubMedCrossRef
7.
go back to reference Grażyńska A, Adamczewska K, Antoniuk S, Bień M, Toś M, Kufel J, et al. The Influence of Serum Uric Acid Level on Non-Motor Symptoms Occurrence and Severity in Patients with Idiopathic Parkinson's Disease and Atypical Parkinsonisms-A Systematic Review. Medicina (Kaunas). 2021;57(9). Grażyńska A, Adamczewska K, Antoniuk S, Bień M, Toś M, Kufel J, et al. The Influence of Serum Uric Acid Level on Non-Motor Symptoms Occurrence and Severity in Patients with Idiopathic Parkinson's Disease and Atypical Parkinsonisms-A Systematic Review. Medicina (Kaunas). 2021;57(9).
8.
go back to reference Wirdefeldt K, Adami H-O, Cole P, Trichopoulos D, Mandel J. Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol. 2011;26(1):1–58.CrossRef Wirdefeldt K, Adami H-O, Cole P, Trichopoulos D, Mandel J. Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol. 2011;26(1):1–58.CrossRef
9.
go back to reference Jenner P. Oxidative stress in Parkinson’s disease. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 2003;53(S3):S26–38.CrossRef Jenner P. Oxidative stress in Parkinson’s disease. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 2003;53(S3):S26–38.CrossRef
10.
go back to reference Chang KH, Chen CM. The Role of Oxidative Stress in Parkinson’s Disease. Antioxidants (Basel). 2020;9(7):597.CrossRef Chang KH, Chen CM. The Role of Oxidative Stress in Parkinson’s Disease. Antioxidants (Basel). 2020;9(7):597.CrossRef
11.
go back to reference Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, et al. Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 1994;36(3):348–55.CrossRef Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, et al. Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 1994;36(3):348–55.CrossRef
12.
go back to reference Braak H, Tredici KD, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging. 2003;24(2):197-211. Braak H, Tredici KD, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging. 2003;24(2):197-211.
13.
go back to reference Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nature Reviews Disease Primers. 2017;3(1):17013. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nature Reviews Disease Primers. 2017;3(1):17013.
14.
15.
go back to reference Dorsey Ea, Constantinescu R, Thompson J, Biglan K, Holloway R, Kieburtz K, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68(5):384-6. Dorsey Ea, Constantinescu R, Thompson J, Biglan K, Holloway R, Kieburtz K, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68(5):384-6.
16.
go back to reference Kalia L, Lang A. Parkinson’s disease. Lancet Lond Engl. 2015;386:896–912. Kalia L, Lang A. Parkinson’s disease. Lancet Lond Engl. 2015;386:896–912.
18.
go back to reference Kaur R, Mehan S, Singh S. Understanding multifactorial architecture of Parkinson’s disease: pathophysiology to management. Neurol Sci. 2019;40(1):13–23.PubMedCrossRef Kaur R, Mehan S, Singh S. Understanding multifactorial architecture of Parkinson’s disease: pathophysiology to management. Neurol Sci. 2019;40(1):13–23.PubMedCrossRef
19.
go back to reference Ari BC, Tur EK, Domac FM, Kenangil GO. Uric acid: The role in the pathophysiology and the prediction in the diagnosis of Parkinson’s disease: A Turkish-based study. Ideggyogy Sz. 2022;75(1–02):51–9.PubMedCrossRef Ari BC, Tur EK, Domac FM, Kenangil GO. Uric acid: The role in the pathophysiology and the prediction in the diagnosis of Parkinson’s disease: A Turkish-based study. Ideggyogy Sz. 2022;75(1–02):51–9.PubMedCrossRef
20.
go back to reference LANG AL A. Parkinson’s disease. First of two parts. N Engl J Med. 1998;339(15):1044–53. LANG AL A. Parkinson’s disease. First of two parts. N Engl J Med. 1998;339(15):1044–53.
21.
go back to reference Przedborski S. Pathogenesis of nigral cell death in Parkinson’s disease. Parkinsonism Relat Disord. 2005;11:S3–7.PubMedCrossRef Przedborski S. Pathogenesis of nigral cell death in Parkinson’s disease. Parkinsonism Relat Disord. 2005;11:S3–7.PubMedCrossRef
22.
go back to reference Ascherio A, Schwarzschild MA. The epidemiology of Parkinson’s disease: risk factors and prevention. The Lancet Neurology. 2016;15(12):1257–72.PubMedCrossRef Ascherio A, Schwarzschild MA. The epidemiology of Parkinson’s disease: risk factors and prevention. The Lancet Neurology. 2016;15(12):1257–72.PubMedCrossRef
23.
go back to reference Bakshi R, Logan R, Schwarzschild MA. Purines in Parkinson’s: Adenosine A 2A receptors and urate as targets for neuroprotection. The Adenosinergic System: Springer; 2015. p. 101–26. Bakshi R, Logan R, Schwarzschild MA. Purines in Parkinson’s: Adenosine A 2A receptors and urate as targets for neuroprotection. The Adenosinergic System: Springer; 2015. p. 101–26.
24.
go back to reference Fernandez IH, Jesus S, Lojo JA, Gomez FJG, Redondo MC, Ruiz JMO, et al. Lower levels of uric acid and striatal dopamine in non-tremor dominant Parkinson’s disease subtype. Mov Disord. 2016;31:S250–1. Fernandez IH, Jesus S, Lojo JA, Gomez FJG, Redondo MC, Ruiz JMO, et al. Lower levels of uric acid and striatal dopamine in non-tremor dominant Parkinson’s disease subtype. Mov Disord. 2016;31:S250–1.
25.
go back to reference Schwarzschild MA, Ascherio A, Beal MF, Cudkowicz ME, Curhan GC, Hare JM, et al. Inosine to increase serum and cerebrospinal fluid urate in Parkinson disease: a randomized clinical trial. JAMA Neurol. 2014;71(2):141–50.PubMedCrossRef Schwarzschild MA, Ascherio A, Beal MF, Cudkowicz ME, Curhan GC, Hare JM, et al. Inosine to increase serum and cerebrospinal fluid urate in Parkinson disease: a randomized clinical trial. JAMA Neurol. 2014;71(2):141–50.PubMedCrossRef
26.
go back to reference Bakshi R, Macklin EA, Logan R, Zorlu MM, Xia N, Crotty GF, et al. Higher urate in LRRK2 mutation carriers resistant to Parkinson disease. Ann Neurol. 2019;85(4):593–9.PubMedCrossRef Bakshi R, Macklin EA, Logan R, Zorlu MM, Xia N, Crotty GF, et al. Higher urate in LRRK2 mutation carriers resistant to Parkinson disease. Ann Neurol. 2019;85(4):593–9.PubMedCrossRef
27.
go back to reference Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.PubMedPubMedCentralCrossRef Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.PubMedPubMedCentralCrossRef
28.
go back to reference Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.PubMedCrossRef Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.PubMedCrossRef
29.
go back to reference Deeks JJ, Higgins JP, Altman DG, Group obotCSM. Analysing data and undertaking meta-analyses. Cochrane Handbook for Systematic Reviews of Interventions. 2019. p. 241–84. Deeks JJ, Higgins JP, Altman DG, Group obotCSM. Analysing data and undertaking meta-analyses. Cochrane Handbook for Systematic Reviews of Interventions. 2019. p. 241–84.
31.
go back to reference Symons M, Moore D. Hazard rate ratio and prospective epidemiological studies. J Clin Epidemiol. 2002;55(9):893–9.PubMedCrossRef Symons M, Moore D. Hazard rate ratio and prospective epidemiological studies. J Clin Epidemiol. 2002;55(9):893–9.PubMedCrossRef
32.
go back to reference Zhang J, Kai FY. What’s the relative risk?: A method of correcting the odds ratio in cohort studies of common outcomes. JAMA. 1998;280(19):1690–1.PubMedCrossRef Zhang J, Kai FY. What’s the relative risk?: A method of correcting the odds ratio in cohort studies of common outcomes. JAMA. 1998;280(19):1690–1.PubMedCrossRef
33.
go back to reference Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343:d4002.PubMedCrossRef Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343:d4002.PubMedCrossRef
35.
go back to reference Liu J, Dan X, Zhang H, Chan P. Serum uric acid and lifestyle factors associated with the risk of Parkinson’s disease. 2016;49:548–52. Liu J, Dan X, Zhang H, Chan P. Serum uric acid and lifestyle factors associated with the risk of Parkinson’s disease. 2016;49:548–52.
36.
go back to reference Alonso A, Garcia Rodriguez LA, Logroscino G, Hernan MA. Gout and risk of Parkinson disease - A prospective study. Neurology. 2007;69(17):1696–700.PubMedCrossRef Alonso A, Garcia Rodriguez LA, Logroscino G, Hernan MA. Gout and risk of Parkinson disease - A prospective study. Neurology. 2007;69(17):1696–700.PubMedCrossRef
37.
go back to reference De Vera M, Rahman MM, Rankin J, Kopec J, Gao X, Choi H. Gout and the risk of Parkinson’s disease: a cohort study. Arthritis Rheum. 2008;59(11):1549–54.PubMedCrossRef De Vera M, Rahman MM, Rankin J, Kopec J, Gao X, Choi H. Gout and the risk of Parkinson’s disease: a cohort study. Arthritis Rheum. 2008;59(11):1549–54.PubMedCrossRef
38.
go back to reference Schernhammer E, Qiu JH, Wermuth L, Lassen CF, Friis S, Ritz B. Gout and the risk of Parkinson’s disease in Denmark. Eur J Epidemiol. 2013;28(4):359–60.PubMedPubMedCentralCrossRef Schernhammer E, Qiu JH, Wermuth L, Lassen CF, Friis S, Ritz B. Gout and the risk of Parkinson’s disease in Denmark. Eur J Epidemiol. 2013;28(4):359–60.PubMedPubMedCentralCrossRef
39.
go back to reference Lai SW, Lin CH, Lin CL, Liao KF. Gout and Parkinson’s Disease in Older People: An Observation in Taiwan. Int J Gerontol. 2014;8(3):166–7.CrossRef Lai SW, Lin CH, Lin CL, Liao KF. Gout and Parkinson’s Disease in Older People: An Observation in Taiwan. Int J Gerontol. 2014;8(3):166–7.CrossRef
40.
go back to reference Pakpoor J, Seminog OO, Ramagopalan SV, Pakpoor J, Seminog Goldacre MJ. Clinical associations between gout and multiple sclerosis, Parkinson's disease and motor neuron disease: record-linkage studies. BMC Neurol. 2015;15:16. Pakpoor J, Seminog OO, Ramagopalan SV, Pakpoor J, Seminog Goldacre MJ. Clinical associations between gout and multiple sclerosis, Parkinson's disease and motor neuron disease: record-linkage studies. BMC Neurol. 2015;15:16.
41.
go back to reference Cortese M, Riise T, Engeland A, Ascherio A, Bjørnevik K. Urate and the risk of Parkinson’s disease in men and women. Parkinsonism Relat Disord. 2018;52:76–82.PubMedCrossRef Cortese M, Riise T, Engeland A, Ascherio A, Bjørnevik K. Urate and the risk of Parkinson’s disease in men and women. Parkinsonism Relat Disord. 2018;52:76–82.PubMedCrossRef
42.
go back to reference Singh JA, Cleveland JD. Gout and the risk of Parkinson's disease in older adults: a study of U.S. Medicare data. BMC Neurol. 2019;19(1):4. Singh JA, Cleveland JD. Gout and the risk of Parkinson's disease in older adults: a study of U.S. Medicare data. BMC Neurol. 2019;19(1):4.
43.
go back to reference Hu LY, Yang AC, Lee SC, You ZH, Tsai SJ, Hu CK, et al. Risk of Parkinson’s disease following gout: a population-based retrospective cohort study in Taiwan. BMC Neurol. 2020;20(1):338.PubMedPubMedCentralCrossRef Hu LY, Yang AC, Lee SC, You ZH, Tsai SJ, Hu CK, et al. Risk of Parkinson’s disease following gout: a population-based retrospective cohort study in Taiwan. BMC Neurol. 2020;20(1):338.PubMedPubMedCentralCrossRef
44.
go back to reference Kim JH, Choi IA, Kim A, Kang G. Clinical Association between Gout and Parkinson’s Disease: A Nationwide Population-Based Cohort Study in Korea. Medicina (Kaunas). 2021;57(12):1292.CrossRef Kim JH, Choi IA, Kim A, Kang G. Clinical Association between Gout and Parkinson’s Disease: A Nationwide Population-Based Cohort Study in Korea. Medicina (Kaunas). 2021;57(12):1292.CrossRef
45.
go back to reference Pou MA, Orfila F, Pagonabarraga J, Ferrer-Moret S, Corominas H, Diaz-Torne C. Risk of Parkinson’s disease in a gout Mediterranean population: A case-control study. Joint Bone Spine. 2022;89(6):105402.PubMedCrossRef Pou MA, Orfila F, Pagonabarraga J, Ferrer-Moret S, Corominas H, Diaz-Torne C. Risk of Parkinson’s disease in a gout Mediterranean population: A case-control study. Joint Bone Spine. 2022;89(6):105402.PubMedCrossRef
46.
go back to reference Ungprasert P, Srivali N, Thongprayoon C. Gout is not associated with a lower risk of Parkinson’s disease: a systematic review and meta-analysis. Parkinsonism Relat Disord. 2015;21(10):1238–42.PubMedCrossRef Ungprasert P, Srivali N, Thongprayoon C. Gout is not associated with a lower risk of Parkinson’s disease: a systematic review and meta-analysis. Parkinsonism Relat Disord. 2015;21(10):1238–42.PubMedCrossRef
47.
go back to reference Wen M, Zhou B, Chen Y-H, Ma Z-L, Gou Y, Zhang C-L, et al. Serum uric acid levels in patients with Parkinson’s disease: A meta-analysis. PLoS ONE. 2017;12(3):e0173731.PubMedPubMedCentralCrossRef Wen M, Zhou B, Chen Y-H, Ma Z-L, Gou Y, Zhang C-L, et al. Serum uric acid levels in patients with Parkinson’s disease: A meta-analysis. PLoS ONE. 2017;12(3):e0173731.PubMedPubMedCentralCrossRef
48.
go back to reference Chen H, Mosley TH, Alonso A, Huang X. Plasma urate and Parkinson’s disease in the Atherosclerosis Risk in Communities (ARIC) study. Am J Epidemiol. 2009;169(9):1064–9.PubMedPubMedCentralCrossRef Chen H, Mosley TH, Alonso A, Huang X. Plasma urate and Parkinson’s disease in the Atherosclerosis Risk in Communities (ARIC) study. Am J Epidemiol. 2009;169(9):1064–9.PubMedPubMedCentralCrossRef
49.
go back to reference Floor E, Wetzel MG. Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem. 1998;70(1):268–75.PubMedCrossRef Floor E, Wetzel MG. Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem. 1998;70(1):268–75.PubMedCrossRef
50.
go back to reference Yu Z, Zhang S, Wang D, Fan M, Gao F, Sun W, et al. The significance of uric acid in the diagnosis and treatment of Parkinson disease: An updated systemic review. Medicine (Baltimore). 2017;96(45):e8502-e.CrossRef Yu Z, Zhang S, Wang D, Fan M, Gao F, Sun W, et al. The significance of uric acid in the diagnosis and treatment of Parkinson disease: An updated systemic review. Medicine (Baltimore). 2017;96(45):e8502-e.CrossRef
52.
go back to reference Bi M, Jiao Q, Du X, Jiang H. Glut9-mediated urate uptake is responsible for its protective effects on dopaminergic neurons in Parkinson’s disease models. Front Mol Neurosci. 2018;11:21.PubMedPubMedCentralCrossRef Bi M, Jiao Q, Du X, Jiang H. Glut9-mediated urate uptake is responsible for its protective effects on dopaminergic neurons in Parkinson’s disease models. Front Mol Neurosci. 2018;11:21.PubMedPubMedCentralCrossRef
54.
go back to reference Chen X, Burdett TC, Desjardins CA, Logan R, Cipriani S, Xu Y, et al. Disrupted and transgenic urate oxidase alter urate and dopaminergic neurodegeneration. Proc Natl Acad Sci. 2013;110(1):300–5.PubMedCrossRef Chen X, Burdett TC, Desjardins CA, Logan R, Cipriani S, Xu Y, et al. Disrupted and transgenic urate oxidase alter urate and dopaminergic neurodegeneration. Proc Natl Acad Sci. 2013;110(1):300–5.PubMedCrossRef
55.
go back to reference Huang T-T, Hao D-L, Wu B-N, Mao L-L, Zhang J. Uric acid demonstrates neuroprotective effect on Parkinson’s disease mice through Nrf2-ARE signaling pathway. Biochem Biophys Res Commun. 2017;493(4):1443–9.PubMedCrossRef Huang T-T, Hao D-L, Wu B-N, Mao L-L, Zhang J. Uric acid demonstrates neuroprotective effect on Parkinson’s disease mice through Nrf2-ARE signaling pathway. Biochem Biophys Res Commun. 2017;493(4):1443–9.PubMedCrossRef
56.
go back to reference Khalfina T, Maksudova A. AB0849 Oxidative Stress, Anti-Oxidant Activity in Patients with Gout. Ann Rheum Dis. 2014;73(Suppl 2):1083.CrossRef Khalfina T, Maksudova A. AB0849 Oxidative Stress, Anti-Oxidant Activity in Patients with Gout. Ann Rheum Dis. 2014;73(Suppl 2):1083.CrossRef
57.
go back to reference Stamp LK, Chapman PT. Gout and its comorbidities: implications for therapy. Rheumatology (Oxford). 2013;52(1):34–44.CrossRef Stamp LK, Chapman PT. Gout and its comorbidities: implications for therapy. Rheumatology (Oxford). 2013;52(1):34–44.CrossRef
58.
go back to reference Kang D-H, Ha S-K. Uric acid puzzle: dual role as anti-oxidantand pro-oxidant. Electrolytes & Blood Pressure. 2014;12(1):1–6.CrossRef Kang D-H, Ha S-K. Uric acid puzzle: dual role as anti-oxidantand pro-oxidant. Electrolytes & Blood Pressure. 2014;12(1):1–6.CrossRef
59.
go back to reference Glantzounis G, Tsimoyiannis E, Kappas A, Galaris D. Uric acid and oxidative stress. Curr Pharm Des. 2005;11(32):4145–51.PubMedCrossRef Glantzounis G, Tsimoyiannis E, Kappas A, Galaris D. Uric acid and oxidative stress. Curr Pharm Des. 2005;11(32):4145–51.PubMedCrossRef
60.
61.
go back to reference Reavis ZW, Mirjankar N, Sarangi S, Boyle SH, Kuhn CM, Matson WR, et al. Sex and race differences of cerebrospinal fluid metabolites in healthy individuals. Metabolomics. 2021;17(2):1–13.CrossRef Reavis ZW, Mirjankar N, Sarangi S, Boyle SH, Kuhn CM, Matson WR, et al. Sex and race differences of cerebrospinal fluid metabolites in healthy individuals. Metabolomics. 2021;17(2):1–13.CrossRef
62.
go back to reference Kurajoh M, Fukumoto S, Yoshida S, Akari S, Murase T, Nakamura T, et al. Uric acid shown to contribute to increased oxidative stress level independent of xanthine oxidoreductase activity in MedCity21 health examination registry. Sci Rep. 2021;11(1):1–9.CrossRef Kurajoh M, Fukumoto S, Yoshida S, Akari S, Murase T, Nakamura T, et al. Uric acid shown to contribute to increased oxidative stress level independent of xanthine oxidoreductase activity in MedCity21 health examination registry. Sci Rep. 2021;11(1):1–9.CrossRef
63.
go back to reference Sterne JA, Gavaghan D, Egger M. Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol. 2000;53(11):1119–29.PubMedCrossRef Sterne JA, Gavaghan D, Egger M. Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol. 2000;53(11):1119–29.PubMedCrossRef
Metadata
Title
Association between gout and the development of Parkinson’s disease: a systematic review and meta-analysis
Authors
Asra Fazlollahi
Mahdi Zahmatyar
Hossein Alizadeh
Maryam Noori
Nasrin Jafari
Seyed Aria Nejadghaderi
Mark J. M. Sullman
Koroush Gharagozli
Ali-Asghar Kolahi
Saeid Safiri
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2022
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-022-02874-0

Other articles of this Issue 1/2022

BMC Neurology 1/2022 Go to the issue