Skip to main content
Top
Published in: Arthritis Research & Therapy 1/2019

Open Access 01-12-2019 | Gout | Research article

Interactions between serum urate-associated genetic variants and sex on gout risk: analysis of the UK Biobank

Authors: Ravi K. Narang, Ruth Topless, Murray Cadzow, Greg Gamble, Lisa K. Stamp, Tony R. Merriman, Nicola Dalbeth

Published in: Arthritis Research & Therapy | Issue 1/2019

Login to get access

Abstract

Background

Sex-specific differences in the effect of genetic variants on serum urate levels have been described. The aim of this study was to systematically examine whether serum urate-associated genetic variants differ in their influence on gout risk in men and women.

Methods

This research was conducted using the UK Biobank Resource. Thirty single nucleotide polymorphisms (SNPs) associated with serum urate were tested for their association with gout in men and women of European ancestry, aged 40–69 years. Gene-sex interactions for gout risk were analysed using an interaction analysis in logistic regression models.

Results

Gout was present in 6768 (4.1%) men and 574 (0.3%) women, with an odds ratio (95% confidence interval) for men 13.42 (12.32–14.62) compared with women. In men, experiment-wide association with gout was observed for 21 of the 30 serum urate-associated SNPs tested, and in women for three of the 30 SNPs. Evidence for gene-sex interaction was observed for ABCG2 (rs2231142) and PDZK1 (rs1471633), with the interaction in ABCG2 driven by an amplified effect in men and in PDZK1 by an absence of effect in women. Similar findings were observed in a sensitivity analysis which excluded pre-menopausal women. For the other SNPs tested, no significant gene-sex interactions were observed.

Conclusions

In a large population of European ancestry, ABCG2 and PDZK1 gene-sex interactions exist for gout risk, with the serum urate-raising alleles exerting a greater influence on gout risk in men than in women. In contrast, other serum urate-associated genetic variants do not demonstrate significant gene-sex interactions for gout risk.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011;63(10):3136–41.CrossRef Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011;63(10):3136–41.CrossRef
2.
go back to reference Harrold LR, Yood RA, Mikuls TR, et al. Sex differences in gout epidemiology: evaluation and treatment. Ann Rheum Dis. 2006;65(10):1368–72.CrossRef Harrold LR, Yood RA, Mikuls TR, et al. Sex differences in gout epidemiology: evaluation and treatment. Ann Rheum Dis. 2006;65(10):1368–72.CrossRef
3.
go back to reference Harrold LR, Etzel CJ, Gibofsky A, et al. Sex differences in gout characteristics: tailoring care for women and men. BMC Musculoskelet Disord. 2017;18(1):108.CrossRef Harrold LR, Etzel CJ, Gibofsky A, et al. Sex differences in gout characteristics: tailoring care for women and men. BMC Musculoskelet Disord. 2017;18(1):108.CrossRef
4.
go back to reference Akizuki S. A population study of hyperuricaemia and gout in Japan—analysis of sex, age and occupational differences in thirty-four thousand people living in Nagano Prefecture. Ryumachi. 1982;22(3):201–8.PubMed Akizuki S. A population study of hyperuricaemia and gout in Japan—analysis of sex, age and occupational differences in thirty-four thousand people living in Nagano Prefecture. Ryumachi. 1982;22(3):201–8.PubMed
5.
go back to reference Annemans L, Spaepen E, Gaskin M, et al. Gout in the UK and Germany: prevalence, comorbidities and management in general practice 2000–2005. Ann Rheum Dis. 2008;67(7):960–6.CrossRef Annemans L, Spaepen E, Gaskin M, et al. Gout in the UK and Germany: prevalence, comorbidities and management in general practice 2000–2005. Ann Rheum Dis. 2008;67(7):960–6.CrossRef
6.
go back to reference Wu EQ, Patel PA, Mody RR, et al. Frequency, risk, and cost of gout-related episodes among the elderly: does serum uric acid level matter? J Rheumatol. 2009;36(5):1032–40.CrossRef Wu EQ, Patel PA, Mody RR, et al. Frequency, risk, and cost of gout-related episodes among the elderly: does serum uric acid level matter? J Rheumatol. 2009;36(5):1032–40.CrossRef
7.
go back to reference Nath SD, Voruganti S, Arar NH, et al. Genome scan for determinants of serum uric acid variability. J Am Soc Nephrol. 2007;18(12):3156–63.CrossRef Nath SD, Voruganti S, Arar NH, et al. Genome scan for determinants of serum uric acid variability. J Am Soc Nephrol. 2007;18(12):3156–63.CrossRef
8.
go back to reference Wilk JB, Djousse L, Borecki I, et al. Segregation analysis of serum uric acid in the NHLBI family heart study. Hum Genet. 2000;106(3):355–9.CrossRef Wilk JB, Djousse L, Borecki I, et al. Segregation analysis of serum uric acid in the NHLBI family heart study. Hum Genet. 2000;106(3):355–9.CrossRef
9.
go back to reference Yang Q, Guo CY, Cupples LA, et al. Genome-wide search for genes affecting serum uric acid levels: the Framingham Heart Study. Metabolism. 2005;54(11):1435–41.CrossRef Yang Q, Guo CY, Cupples LA, et al. Genome-wide search for genes affecting serum uric acid levels: the Framingham Heart Study. Metabolism. 2005;54(11):1435–41.CrossRef
10.
go back to reference Kottgen A, Albrecht E, Teumer A, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet. 2013;45(2):145–54.CrossRef Kottgen A, Albrecht E, Teumer A, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet. 2013;45(2):145–54.CrossRef
11.
go back to reference Doring A, Gieger C, Mehta D, et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet. 2008;40(4):430–6.CrossRef Doring A, Gieger C, Mehta D, et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet. 2008;40(4):430–6.CrossRef
12.
go back to reference Vitart V, Rudan I, Hayward C, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008;40(4):437–42.CrossRef Vitart V, Rudan I, Hayward C, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008;40(4):437–42.CrossRef
13.
go back to reference Kolz M, Johnson T, Sanna S, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009;5(6):e1000504.CrossRef Kolz M, Johnson T, Sanna S, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009;5(6):e1000504.CrossRef
14.
go back to reference Yang QO, Kottgen A, Dehghan A, et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Gene. 2010;3(6):523–30.CrossRef Yang QO, Kottgen A, Dehghan A, et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Gene. 2010;3(6):523–30.CrossRef
15.
go back to reference Phipps-Green AJ, Merriman ME, Topless R, et al. Twenty-eight loci that influence serum urate levels: analysis of association with gout. Ann Rheum Dis. 2016;75(1):124–30.CrossRef Phipps-Green AJ, Merriman ME, Topless R, et al. Twenty-eight loci that influence serum urate levels: analysis of association with gout. Ann Rheum Dis. 2016;75(1):124–30.CrossRef
16.
go back to reference Dehghan A, Kottgen A, Yang Q, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet. 2008;372(9654):1953–61.CrossRef Dehghan A, Kottgen A, Yang Q, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet. 2008;372(9654):1953–61.CrossRef
17.
go back to reference Topless RK, Flynn TJ, Cadzow M, et al. Association of SLC2A9 genotype with phenotypic variability of serum urate in pre-menopausal women. Front Genet. 2015;6:313.CrossRef Topless RK, Flynn TJ, Cadzow M, et al. Association of SLC2A9 genotype with phenotypic variability of serum urate in pre-menopausal women. Front Genet. 2015;6:313.CrossRef
18.
go back to reference Cadzow M, Merriman TR, Dalbeth N. Performance of gout definitions for genetic epidemiological studies: analysis of UK Biobank. Arthritis Res Ther. 2017;19(1):181.CrossRef Cadzow M, Merriman TR, Dalbeth N. Performance of gout definitions for genetic epidemiological studies: analysis of UK Biobank. Arthritis Res Ther. 2017;19(1):181.CrossRef
19.
go back to reference Zhang L, Spencer KL, Voruganti VS, et al. Association of functional polymorphism rs2231142 (Q141K) in the ABCG2 gene with serum uric acid and gout in 4 US populations: the PAGE Study. Am J Epidemiol. 2013;177(9):923–32.CrossRef Zhang L, Spencer KL, Voruganti VS, et al. Association of functional polymorphism rs2231142 (Q141K) in the ABCG2 gene with serum uric acid and gout in 4 US populations: the PAGE Study. Am J Epidemiol. 2013;177(9):923–32.CrossRef
20.
go back to reference Phipps-Green AJ, Hollis-Moffatt JE, Dalbeth N, et al. A strong role for the ABCG2 gene in susceptibility to gout in New Zealand Pacific Island and Caucasian, but not Maori, case and control sample sets. Hum Mol Genet. 2010;19(24):4813–9.CrossRef Phipps-Green AJ, Hollis-Moffatt JE, Dalbeth N, et al. A strong role for the ABCG2 gene in susceptibility to gout in New Zealand Pacific Island and Caucasian, but not Maori, case and control sample sets. Hum Mol Genet. 2010;19(24):4813–9.CrossRef
21.
go back to reference Nicholls A, Snaith ML, Scott JT. Effect of oestrogen therapy on plasma and urinary levels of uric acid. Br Med J. 1973;1(5851):449–51.CrossRef Nicholls A, Snaith ML, Scott JT. Effect of oestrogen therapy on plasma and urinary levels of uric acid. Br Med J. 1973;1(5851):449–51.CrossRef
22.
go back to reference Adamopoulos D, Vlassopoulos C, Seitanides B, et al. The relationship of sex steroids to uric acid levels in plasma and urine. Acta Endocrinol. 1977;85(1):198–208.CrossRef Adamopoulos D, Vlassopoulos C, Seitanides B, et al. The relationship of sex steroids to uric acid levels in plasma and urine. Acta Endocrinol. 1977;85(1):198–208.CrossRef
23.
go back to reference Atallah AN, Guimaraes JA, Gebara M, et al. Progesterone increases glomerular filtration rate, urinary kallikrein excretion and uric acid clearance in normal women. Braz J Med Biol Res. 1988;21(1):71–4.PubMed Atallah AN, Guimaraes JA, Gebara M, et al. Progesterone increases glomerular filtration rate, urinary kallikrein excretion and uric acid clearance in normal women. Braz J Med Biol Res. 1988;21(1):71–4.PubMed
24.
go back to reference Sumino H, Ichikawa S, Kanda T, et al. Reduction of serum uric acid by hormone replacement therapy in postmenopausal women with hyperuricaemia. Lancet. 1999;354(9179):650.CrossRef Sumino H, Ichikawa S, Kanda T, et al. Reduction of serum uric acid by hormone replacement therapy in postmenopausal women with hyperuricaemia. Lancet. 1999;354(9179):650.CrossRef
25.
go back to reference Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A. 1998;95(26):15665–70.CrossRef Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A. 1998;95(26):15665–70.CrossRef
26.
go back to reference Imai Y, Ishikawa E, Asada S, et al. Estrogen-mediated post transcriptional down-regulation of breast cancer resistance protein/ABCG2. Cancer Res. 2005;65(2):596–604.PubMed Imai Y, Ishikawa E, Asada S, et al. Estrogen-mediated post transcriptional down-regulation of breast cancer resistance protein/ABCG2. Cancer Res. 2005;65(2):596–604.PubMed
27.
go back to reference Hartz AM, Mahringer A, Miller DS, et al. 17-beta-estradiol: a powerful modulator of blood-brain barrier BCRP activity. J Cereb Blood Flow Metab. 2010;30(10):1742–55.CrossRef Hartz AM, Mahringer A, Miller DS, et al. 17-beta-estradiol: a powerful modulator of blood-brain barrier BCRP activity. J Cereb Blood Flow Metab. 2010;30(10):1742–55.CrossRef
28.
go back to reference Merino G, van Herwaarden AE, Wagenaar E, et al. Sex-dependent expression and activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP/ABCG2) in liver. Mol Pharmacol. 2005;67(5):1765–71.CrossRef Merino G, van Herwaarden AE, Wagenaar E, et al. Sex-dependent expression and activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP/ABCG2) in liver. Mol Pharmacol. 2005;67(5):1765–71.CrossRef
29.
go back to reference Anzai N, Miyazaki H, Noshiro R, et al. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus. J Biol Chem. 2004;279(44):45942–50.CrossRef Anzai N, Miyazaki H, Noshiro R, et al. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus. J Biol Chem. 2004;279(44):45942–50.CrossRef
30.
go back to reference Miyazaki H, Anzai N, Ekaratanawong S, et al. Modulation of renal apical organic anion transporter 4 function by two PDZ domain-containing proteins. J Am Soc Nephrol. 2005;16(12):3498–506.CrossRef Miyazaki H, Anzai N, Ekaratanawong S, et al. Modulation of renal apical organic anion transporter 4 function by two PDZ domain-containing proteins. J Am Soc Nephrol. 2005;16(12):3498–506.CrossRef
31.
go back to reference Kocher O, Comella N, Tognazzi K, et al. Identification and partial characterization of PDZK1: a novel protein containing PDZ interaction domains. Lab Investig. 1998;78(1):117–25.PubMed Kocher O, Comella N, Tognazzi K, et al. Identification and partial characterization of PDZK1: a novel protein containing PDZ interaction domains. Lab Investig. 1998;78(1):117–25.PubMed
32.
go back to reference Ketharnathan S, Leask M, Boocock J, et al. A non-coding genetic variant maximally associated with serum urate levels is functionally linked to HNF4A-dependent PDZK1 expression. Hum Mol Genet. 2018;27(22):3964–73. Ketharnathan S, Leask M, Boocock J, et al. A non-coding genetic variant maximally associated with serum urate levels is functionally linked to HNF4A-dependent PDZK1 expression. Hum Mol Genet. 2018;27(22):3964–73.
33.
go back to reference Higashino T, Matsuo H, Sakiyama M, et al. Common variant of PDZ domain containing 1 (PDZK1) gene is associated with gout susceptibility: a replication study and meta-analysis in Japanese population. Drug Metab Pharmacok. 2016;31(6):464–6.CrossRef Higashino T, Matsuo H, Sakiyama M, et al. Common variant of PDZ domain containing 1 (PDZK1) gene is associated with gout susceptibility: a replication study and meta-analysis in Japanese population. Drug Metab Pharmacok. 2016;31(6):464–6.CrossRef
34.
go back to reference Li M, Li Q, Li CG, et al. Genetic polymorphisms in the PDZK1 gene and susceptibility to gout in male Han Chinese: a case-control study. Int J Clin Exp Med. 2015;8(8):13911–8.PubMedPubMedCentral Li M, Li Q, Li CG, et al. Genetic polymorphisms in the PDZK1 gene and susceptibility to gout in male Han Chinese: a case-control study. Int J Clin Exp Med. 2015;8(8):13911–8.PubMedPubMedCentral
35.
go back to reference Zhou ZW, Cui LL, Han L, et al. Polymorphisms in GCKR, SLC17A1 and SLC22A12 were associated with phenotype gout in Han Chinese males: a case-control study. BMC Med Genet. 2015;16:66.CrossRef Zhou ZW, Cui LL, Han L, et al. Polymorphisms in GCKR, SLC17A1 and SLC22A12 were associated with phenotype gout in Han Chinese males: a case-control study. BMC Med Genet. 2015;16:66.CrossRef
Metadata
Title
Interactions between serum urate-associated genetic variants and sex on gout risk: analysis of the UK Biobank
Authors
Ravi K. Narang
Ruth Topless
Murray Cadzow
Greg Gamble
Lisa K. Stamp
Tony R. Merriman
Nicola Dalbeth
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Gout
Published in
Arthritis Research & Therapy / Issue 1/2019
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-018-1787-5

Other articles of this Issue 1/2019

Arthritis Research & Therapy 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.