Skip to main content
Top
Published in: Cardiovascular Toxicology 1/2011

Open Access 01-03-2011

Glutathione-Related Antioxidant Defense System in Elderly Patients Treated for Hypertension

Authors: J. Rybka, D. Kupczyk, K. Kędziora-Kornatowska, J. Motyl, J. Czuczejko, K. Szewczyk-Golec, M. Kozakiewicz, H. Pawluk, L. A. Carvalho, J. Kędziora

Published in: Cardiovascular Toxicology | Issue 1/2011

Login to get access

Abstract

The purpose of this study was to analyze glutathione antioxidant defense system in elderly patients treated for hypertension. Studies were carried out in the blood collected from 18 hypertensive and 15 age- and sex-matched controls, all subjects age over 60. Hypertensives were on their usual antihypertensive treatment at the time of blood collection. The concentration of glutathione (GSH) in whole blood and activities of glutathione peroxidase (GPx-1), glutathione transferase (GST), and glutathione reductase (GR) in erythrocytes were measured. The data from patients and controls were compared using independent-samples t test. P value of 0.05 and less was considered statistically significant. We observed increased glutathione-related antioxidant defense in treated hypertensive elderly patients (HT) when compared with healthy controls (C). Mean GSH concentration was significantly higher in HT when compared with C: 3.1 ± 0.29 and 2.6 ± 0.25 mmol/L, respectively, P < 0.001. Mean activity of GR was significantly higher in HT group if compared with C: 83.4 ± 15.25 U/g Hb versus 64.2 ± 8.26 U/g Hb, respectively, P < 0.001. Mean activity of GST was significantly higher in HT group compared with C: 3.0 ± 0.60 mmol CDNB-GSH/mgHb/min and 2.6 ± 0.36 mmol CDNB-GSH/mgHb/min, respectively, P < 0.05. No difference in GPx activity was observed between two groups. These results show that glutathione-related antioxidant defense system was enhanced in elderly hypertensive patients treated for their conditions. This suggests important role of glutathione system in blood pressure regulation. Alterations in concentration and activity of antioxidants observed during antihypertensive medication are likely to be related to the effect of the treatment on NO bioavailability.
Literature
1.
go back to reference McDonald, M., Hertz, R. P., Unger, A. N., & Lustik, M. B. (2009). Prevalence, awareness, and management of hypertension, dyslipidemia, and diabetes among United States adults aged 65 and older. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 64, 256–263.CrossRef McDonald, M., Hertz, R. P., Unger, A. N., & Lustik, M. B. (2009). Prevalence, awareness, and management of hypertension, dyslipidemia, and diabetes among United States adults aged 65 and older. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 64, 256–263.CrossRef
2.
go back to reference Escobales, N., & Crespo, M. J. (2005). Oxidative-nitrosative stress in hypertension. Curr Vasc Pharmacol, 3, 231–246.CrossRefPubMed Escobales, N., & Crespo, M. J. (2005). Oxidative-nitrosative stress in hypertension. Curr Vasc Pharmacol, 3, 231–246.CrossRefPubMed
3.
go back to reference Dominiczak, A. F., Graham, D., McBride, M. W., Brain, N. J., Lee, W. K., Charchar, F. J., et al. (2005). Corcoran lecture. Cardiovascular genomics and oxidative stress. Hypertension, 45, 636–642.CrossRefPubMed Dominiczak, A. F., Graham, D., McBride, M. W., Brain, N. J., Lee, W. K., Charchar, F. J., et al. (2005). Corcoran lecture. Cardiovascular genomics and oxidative stress. Hypertension, 45, 636–642.CrossRefPubMed
4.
go back to reference Dominguez, L. J., Galioto, A., Pineo, A., Ferlisi, A., Ciaccio, M., Putignano, E., et al. (2010). Age, homocysteine, and oxidative stress: Relation to hypertension and type 2 diabetes mellitus. Journal of the American College of Nutrition, 29, 1–6.PubMed Dominguez, L. J., Galioto, A., Pineo, A., Ferlisi, A., Ciaccio, M., Putignano, E., et al. (2010). Age, homocysteine, and oxidative stress: Relation to hypertension and type 2 diabetes mellitus. Journal of the American College of Nutrition, 29, 1–6.PubMed
5.
go back to reference Higashi, Y., Noma, K., Yoshizumi, M., & Kihara, Y. (2009). Endothelial function and oxidative stress in cardiovascular diseases. Circulation Journal, 73, 411–418.CrossRefPubMed Higashi, Y., Noma, K., Yoshizumi, M., & Kihara, Y. (2009). Endothelial function and oxidative stress in cardiovascular diseases. Circulation Journal, 73, 411–418.CrossRefPubMed
6.
go back to reference Touyz, R. M. (2000). Oxidative stress and vascular damage in hypertension. Current Hypertension Reports, 2, 98–105.CrossRefPubMed Touyz, R. M. (2000). Oxidative stress and vascular damage in hypertension. Current Hypertension Reports, 2, 98–105.CrossRefPubMed
7.
go back to reference Rodrigo, R., Prat, H., Passalacqua, W., Araya, J., Guichard, C., & Bachler, J. P. (2007). Relationship between oxidative stress and essential hypertension. Hypertension Research, 30, 1159–1167.CrossRefPubMed Rodrigo, R., Prat, H., Passalacqua, W., Araya, J., Guichard, C., & Bachler, J. P. (2007). Relationship between oxidative stress and essential hypertension. Hypertension Research, 30, 1159–1167.CrossRefPubMed
8.
go back to reference Ceriello, A. (2008). Possible role of oxidative stress in the pathogenesis of hypertension. Diabetes Care, 31(Suppl 2), S181–S184.CrossRefPubMed Ceriello, A. (2008). Possible role of oxidative stress in the pathogenesis of hypertension. Diabetes Care, 31(Suppl 2), S181–S184.CrossRefPubMed
9.
go back to reference Grossman, E. (2008). Does increased oxidative stress cause hypertension? Diabetes Care, 31(Suppl 2), S185–S189.CrossRefPubMed Grossman, E. (2008). Does increased oxidative stress cause hypertension? Diabetes Care, 31(Suppl 2), S185–S189.CrossRefPubMed
10.
go back to reference Kopf, P. G., Huwe, J. K., & Walker, M. K. (2008). Hypertension, cardiac hypertrophy, and impaired vascular relaxation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin are associated with increased superoxide. Cardiovascular Toxicology, 8, 181–193.CrossRefPubMed Kopf, P. G., Huwe, J. K., & Walker, M. K. (2008). Hypertension, cardiac hypertrophy, and impaired vascular relaxation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin are associated with increased superoxide. Cardiovascular Toxicology, 8, 181–193.CrossRefPubMed
11.
go back to reference Csanyi, G., Taylor, W. R., & Pagano, P. J. (2009). NOX and inflammation in the vascular adventitia. Free Radical Biology and Medicine, 47, 1254–1266.CrossRefPubMed Csanyi, G., Taylor, W. R., & Pagano, P. J. (2009). NOX and inflammation in the vascular adventitia. Free Radical Biology and Medicine, 47, 1254–1266.CrossRefPubMed
12.
go back to reference Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R., & Turner, N. D. (2004). Glutathione metabolism and its implications for health. Journal of Nutrition, 134, 489–492.PubMed Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R., & Turner, N. D. (2004). Glutathione metabolism and its implications for health. Journal of Nutrition, 134, 489–492.PubMed
13.
go back to reference Bessa, S. S., Ali, E. M., & Hamdy, S. M. (2009). The role of glutathione S-transferase M1 and T1 gene polymorphisms and oxidative stress-related parameters in Egyptian patients with essential hypertension. European Journal of Internal Medicine, 20, 625–630.CrossRefPubMed Bessa, S. S., Ali, E. M., & Hamdy, S. M. (2009). The role of glutathione S-transferase M1 and T1 gene polymorphisms and oxidative stress-related parameters in Egyptian patients with essential hypertension. European Journal of Internal Medicine, 20, 625–630.CrossRefPubMed
14.
go back to reference Redon, J., Oliva, M. R., Tormos, C., Giner, V., Chaves, J., Iradi, A., et al. (2003). Antioxidant activities and oxidative stress byproducts in human hypertension. Hypertension, 41, 1096–1101.CrossRefPubMed Redon, J., Oliva, M. R., Tormos, C., Giner, V., Chaves, J., Iradi, A., et al. (2003). Antioxidant activities and oxidative stress byproducts in human hypertension. Hypertension, 41, 1096–1101.CrossRefPubMed
15.
go back to reference Heverly-Coulson, G. S., & Boyd, R. J. (2010). Reduction of hydrogen peroxide by glutathione peroxidase mimics: Reaction mechanism and energetics. The Journal of Physical Chemistry A, 114, 1996–2000.CrossRefPubMed Heverly-Coulson, G. S., & Boyd, R. J. (2010). Reduction of hydrogen peroxide by glutathione peroxidase mimics: Reaction mechanism and energetics. The Journal of Physical Chemistry A, 114, 1996–2000.CrossRefPubMed
16.
go back to reference Dourado, D. F., Fernandes, P. A., Mannervik, B., & Ramos, M. J. (2008). Glutathione transferase: New model for glutathione activation. Chemistry, 14, 9591–9598.CrossRefPubMed Dourado, D. F., Fernandes, P. A., Mannervik, B., & Ramos, M. J. (2008). Glutathione transferase: New model for glutathione activation. Chemistry, 14, 9591–9598.CrossRefPubMed
17.
go back to reference Becker, K., Gui, M., & Schirmer, R. H. (1995). Inhibition of human glutathione-reductase by S-nitrosoglutathione. European Journal of Biochemistry, 234, 472–478.CrossRefPubMed Becker, K., Gui, M., & Schirmer, R. H. (1995). Inhibition of human glutathione-reductase by S-nitrosoglutathione. European Journal of Biochemistry, 234, 472–478.CrossRefPubMed
18.
go back to reference Prasad, A., Andrews, N. P., Padder, F. A., Husain, M., & Quyyumi, A. A. (1999). Glutathione reverses endothelial dysfunction and improves nitric oxide bioavailability. Journal of the American College of Cardiology, 34, 507–514.CrossRefPubMed Prasad, A., Andrews, N. P., Padder, F. A., Husain, M., & Quyyumi, A. A. (1999). Glutathione reverses endothelial dysfunction and improves nitric oxide bioavailability. Journal of the American College of Cardiology, 34, 507–514.CrossRefPubMed
19.
go back to reference Chaves, F. J., Mansego, M. L., Blesa, S., Gonzalez-Albert, V., Jimenez, J., Tormos, M. C., et al. (2007). Inadequate cytoplasmic antioxidant enzymes response contributes to the oxidative stress in human hypertension. American Journal of Hypertension, 20, 62–69.CrossRefPubMed Chaves, F. J., Mansego, M. L., Blesa, S., Gonzalez-Albert, V., Jimenez, J., Tormos, M. C., et al. (2007). Inadequate cytoplasmic antioxidant enzymes response contributes to the oxidative stress in human hypertension. American Journal of Hypertension, 20, 62–69.CrossRefPubMed
20.
go back to reference Da Silva, A. P., Marinho, C., Goncalves, M. C., Monteiro, C., Laires, M. J., Falcao, L. M., et al. (2010). Decreased erythrocyte activity of methemoglobin and glutathione reductases may explain age-related high blood pressure. Revista Portuguesa de Cardiologia, 29, 403–412.PubMed Da Silva, A. P., Marinho, C., Goncalves, M. C., Monteiro, C., Laires, M. J., Falcao, L. M., et al. (2010). Decreased erythrocyte activity of methemoglobin and glutathione reductases may explain age-related high blood pressure. Revista Portuguesa de Cardiologia, 29, 403–412.PubMed
21.
go back to reference Apelt, J., Bigl, M., Wunderlich, P., & Schliebs, R. (2004). Aging-related increase in oxidative stress correlates with developmental pattern of beta-secretase activity and beta-amyloid plaque formation in transgenic Tg2576 mice with Alzheimer-like pathology. International Journal of Developmental Neuroscience, 22, 475–484.CrossRefPubMed Apelt, J., Bigl, M., Wunderlich, P., & Schliebs, R. (2004). Aging-related increase in oxidative stress correlates with developmental pattern of beta-secretase activity and beta-amyloid plaque formation in transgenic Tg2576 mice with Alzheimer-like pathology. International Journal of Developmental Neuroscience, 22, 475–484.CrossRefPubMed
22.
go back to reference Wassmann, S., Wassmann, K., & Nickenig, G. (2004). Modulation of oxidant and antioxidant enzyme expression and function in vascular cells. Hypertension, 44, 381–386.CrossRefPubMed Wassmann, S., Wassmann, K., & Nickenig, G. (2004). Modulation of oxidant and antioxidant enzyme expression and function in vascular cells. Hypertension, 44, 381–386.CrossRefPubMed
23.
go back to reference Rebrin, I., & Sohal, R. S. (2008). Pro-oxidant shift in glutathione redox state during aging. Advanced Drug Delivery Reviews, 60, 1545–1552.CrossRefPubMed Rebrin, I., & Sohal, R. S. (2008). Pro-oxidant shift in glutathione redox state during aging. Advanced Drug Delivery Reviews, 60, 1545–1552.CrossRefPubMed
24.
go back to reference Liu, H., Wang, H., Shenvi, S., Hagen, T. M., & Liu, R. M. (2004). Glutathione metabolism during aging and in Alzheimer disease. Annals of the New York Academy of Sciences, 1019, 346–349.CrossRefPubMed Liu, H., Wang, H., Shenvi, S., Hagen, T. M., & Liu, R. M. (2004). Glutathione metabolism during aging and in Alzheimer disease. Annals of the New York Academy of Sciences, 1019, 346–349.CrossRefPubMed
25.
go back to reference Gil, L., Siems, W., Mazurek, B., Gross, J., Schroeder, P., Voss, P., et al. (2006). Age-associated analysis of oxidative stress parameters in human plasma and erythrocytes. Free Radical Research, 40, 495–505.CrossRefPubMed Gil, L., Siems, W., Mazurek, B., Gross, J., Schroeder, P., Voss, P., et al. (2006). Age-associated analysis of oxidative stress parameters in human plasma and erythrocytes. Free Radical Research, 40, 495–505.CrossRefPubMed
26.
go back to reference Hernanz, A., Fernandez-Vivancos, E., Montiel, C., Vazquez, J. J., & Arnalich, F. (2000). Changes in the intracellular homocysteine and glutathione content associated with aging. Life Science, 67, 1317–1324.CrossRef Hernanz, A., Fernandez-Vivancos, E., Montiel, C., Vazquez, J. J., & Arnalich, F. (2000). Changes in the intracellular homocysteine and glutathione content associated with aging. Life Science, 67, 1317–1324.CrossRef
27.
go back to reference Kasapoglu, M., & Ozben, T. (2001). Alterations of antioxidant enzymes and oxidative stress markers in aging. Experimental Gerontology, 36, 209–220.CrossRefPubMed Kasapoglu, M., & Ozben, T. (2001). Alterations of antioxidant enzymes and oxidative stress markers in aging. Experimental Gerontology, 36, 209–220.CrossRefPubMed
28.
go back to reference Erden-Inal, M., Sunal, E., & Kanbak, G. (2002). Age-related changes in the glutathione redox system. Cell Biochemistry and Function, 20, 61–66.CrossRefPubMed Erden-Inal, M., Sunal, E., & Kanbak, G. (2002). Age-related changes in the glutathione redox system. Cell Biochemistry and Function, 20, 61–66.CrossRefPubMed
29.
go back to reference Goncharova, N. D., Marenin, V. Y., & Bogatyrenko, T. N. (2008). Stress, aging and reliability of antioxidant enzyme defense. Current aging science, 1, 22–29.CrossRefPubMed Goncharova, N. D., Marenin, V. Y., & Bogatyrenko, T. N. (2008). Stress, aging and reliability of antioxidant enzyme defense. Current aging science, 1, 22–29.CrossRefPubMed
30.
go back to reference Taioli, E., Mari, D., Franceschi, C., Bonafe, M., Monti, D., Bertolini, S., et al. (2001). Polymorphisms of drug-metabolizing enzymes in healthy nonagenarians and centenarians: Difference at GSTT1 locus. Biochemical and Biophysical Research Communications, 280, 1389–1392.CrossRefPubMed Taioli, E., Mari, D., Franceschi, C., Bonafe, M., Monti, D., Bertolini, S., et al. (2001). Polymorphisms of drug-metabolizing enzymes in healthy nonagenarians and centenarians: Difference at GSTT1 locus. Biochemical and Biophysical Research Communications, 280, 1389–1392.CrossRefPubMed
31.
go back to reference Corona, G., Lee, D. M., Forti, G., O’Connor, D. B., Maggi, M., O’Neill, T. W., et al. (2010). Age-related changes in general and sexual health in middle-aged and older men: Results from the European male ageing study (EMAS). The Journal of Sexual Medicine, 7, 1362–1380.CrossRefPubMed Corona, G., Lee, D. M., Forti, G., O’Connor, D. B., Maggi, M., O’Neill, T. W., et al. (2010). Age-related changes in general and sexual health in middle-aged and older men: Results from the European male ageing study (EMAS). The Journal of Sexual Medicine, 7, 1362–1380.CrossRefPubMed
32.
go back to reference Shi, G., Gu, C. C., Kraja, A. T., Arnett, D. K., Myers, R. H., Pankow, J. S., et al. (2009). Genetic effect on blood pressure is modulated by age: The hypertension genetic epidemiology network study. Hypertension, 53, 35–41.CrossRefPubMed Shi, G., Gu, C. C., Kraja, A. T., Arnett, D. K., Myers, R. H., Pankow, J. S., et al. (2009). Genetic effect on blood pressure is modulated by age: The hypertension genetic epidemiology network study. Hypertension, 53, 35–41.CrossRefPubMed
33.
go back to reference Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70, 158–169.PubMed Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70, 158–169.PubMed
34.
go back to reference Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. The Journal of biological chemistry, 249, 7130–7139.PubMed Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. The Journal of biological chemistry, 249, 7130–7139.PubMed
35.
go back to reference Flohe, L., & Gunzler, W. A. (1984). Assays of glutathione peroxidase. Methods in Enzymology, 105, 114–121.CrossRefPubMed Flohe, L., & Gunzler, W. A. (1984). Assays of glutathione peroxidase. Methods in Enzymology, 105, 114–121.CrossRefPubMed
36.
go back to reference Ghiadoni, L., Magagna, A., Versari, D., Kardasz, I., Huang, Y., Taddei, S., et al. (2003). Different effect of antihypertensive drugs on conduit artery endothelial function. Hypertension, 41, 1281–1286.CrossRefPubMed Ghiadoni, L., Magagna, A., Versari, D., Kardasz, I., Huang, Y., Taddei, S., et al. (2003). Different effect of antihypertensive drugs on conduit artery endothelial function. Hypertension, 41, 1281–1286.CrossRefPubMed
37.
go back to reference Ward, N. C., Hodgson, J. M., Puddey, I. B., Mori, T. A., Beilin, L. J., & Croft, K. D. (2004). Oxidative stress in human hypertension: Association with antihypertensive treatment, gender, nutrition, and lifestyle. Free Radical Biology and Medicine, 36, 226–232.CrossRefPubMed Ward, N. C., Hodgson, J. M., Puddey, I. B., Mori, T. A., Beilin, L. J., & Croft, K. D. (2004). Oxidative stress in human hypertension: Association with antihypertensive treatment, gender, nutrition, and lifestyle. Free Radical Biology and Medicine, 36, 226–232.CrossRefPubMed
38.
go back to reference Blum, J., & Fridovich, I. (1985). Inactivation of glutathione peroxidase by superoxide radical. Archives of Biochemistry and Biophysics, 240, 500–508.CrossRefPubMed Blum, J., & Fridovich, I. (1985). Inactivation of glutathione peroxidase by superoxide radical. Archives of Biochemistry and Biophysics, 240, 500–508.CrossRefPubMed
39.
go back to reference Lei, X. G., Cheng, W.-H., & McClung, J. P. (2007). Metabolic regulation and function of glutathione peroxidase-1. Annual Review of Nutrition, 27, 41–61.CrossRefPubMed Lei, X. G., Cheng, W.-H., & McClung, J. P. (2007). Metabolic regulation and function of glutathione peroxidase-1. Annual Review of Nutrition, 27, 41–61.CrossRefPubMed
40.
go back to reference Sedeek, M., Hebert, R. L., Kennedy, C. R., Burns, K. D., & Touyz, R. M. (2009). Molecular mechanisms of hypertension: Role of Nox family NADPH oxidases. Current Opinion in Nephrology and Hypertension, 18, 122–127.CrossRefPubMed Sedeek, M., Hebert, R. L., Kennedy, C. R., Burns, K. D., & Touyz, R. M. (2009). Molecular mechanisms of hypertension: Role of Nox family NADPH oxidases. Current Opinion in Nephrology and Hypertension, 18, 122–127.CrossRefPubMed
41.
go back to reference Siems, W. G., Capuozzo, E., Verginelli, D., Salerno, C., Crifo, C., & Grune, T. (1997). Inhibition of NADPH oxidase-mediated superoxide radical formation in PMA-stimulated human neutrophils by 4-hydroxynonenal–binding to -SH and -NH2 groups. Free Radical Research, 27, 353–358.CrossRefPubMed Siems, W. G., Capuozzo, E., Verginelli, D., Salerno, C., Crifo, C., & Grune, T. (1997). Inhibition of NADPH oxidase-mediated superoxide radical formation in PMA-stimulated human neutrophils by 4-hydroxynonenal–binding to -SH and -NH2 groups. Free Radical Research, 27, 353–358.CrossRefPubMed
42.
go back to reference Wu, M., Pritchard, K. A., Jr, Kaminski, P. M., Fayngersh, R. P., Hintze, T. H., & Wolin, M. S. (1994). Involvement of nitric oxide and nitrosothiols in relaxation of pulmonary arteries to peroxynitrite. American Journal of Physiology, 266, H2108–H2113.PubMed Wu, M., Pritchard, K. A., Jr, Kaminski, P. M., Fayngersh, R. P., Hintze, T. H., & Wolin, M. S. (1994). Involvement of nitric oxide and nitrosothiols in relaxation of pulmonary arteries to peroxynitrite. American Journal of Physiology, 266, H2108–H2113.PubMed
43.
go back to reference Ng, E. S., & Kubes, P. (2003). The physiology of S-nitrosothiols: Carrier molecules for nitric oxide. Canadian Journal of Physiology and Pharmacology, 81, 759–764.CrossRefPubMed Ng, E. S., & Kubes, P. (2003). The physiology of S-nitrosothiols: Carrier molecules for nitric oxide. Canadian Journal of Physiology and Pharmacology, 81, 759–764.CrossRefPubMed
44.
go back to reference Uppu, R. M., Nossaman, B. D., Greco, A. J., Fokin, A., Murthy, S. N., Fonseca, V. A., et al. (2007). Cardiovascular effects of peroxynitrite. Clinical and Experimental Pharmacology and Physiology, 34, 933–937.CrossRefPubMed Uppu, R. M., Nossaman, B. D., Greco, A. J., Fokin, A., Murthy, S. N., Fonseca, V. A., et al. (2007). Cardiovascular effects of peroxynitrite. Clinical and Experimental Pharmacology and Physiology, 34, 933–937.CrossRefPubMed
45.
go back to reference Murakami, E., Ishii, J., Hiwada, K., & Kokubu, T. (1988). The role of hypothalamic glutathione in hypertensive animals. Clinical and Experimental Hypertension, 10(Suppl 1), 347–352.CrossRef Murakami, E., Ishii, J., Hiwada, K., & Kokubu, T. (1988). The role of hypothalamic glutathione in hypertensive animals. Clinical and Experimental Hypertension, 10(Suppl 1), 347–352.CrossRef
46.
go back to reference Freedman, J. E., Frei, B., Welch, G. N., & Loscalzo, J. (1995). Glutathione peroxidase potentiates the inhibition of platelet function by S-nitrosothiols. Journal of Clinical Investigation, 96, 394–400.CrossRefPubMed Freedman, J. E., Frei, B., Welch, G. N., & Loscalzo, J. (1995). Glutathione peroxidase potentiates the inhibition of platelet function by S-nitrosothiols. Journal of Clinical Investigation, 96, 394–400.CrossRefPubMed
47.
go back to reference Hou, Y., Guo, Z., Li, J., & Wang, P. G. (1996). Seleno compounds and glutathione peroxidase catalyzed decomposition of S-nitrosothiols. Biochemical and Biophysical Research Communications, 228, 88–93.CrossRefPubMed Hou, Y., Guo, Z., Li, J., & Wang, P. G. (1996). Seleno compounds and glutathione peroxidase catalyzed decomposition of S-nitrosothiols. Biochemical and Biophysical Research Communications, 228, 88–93.CrossRefPubMed
48.
go back to reference Sanghani, P. C., Davis, W. I., Fears, S. L., Green, S. L., Zhai, L., Tang, Y., et al. (2009). Kinetic and cellular characterization of novel inhibitors of S-nitrosoglutathione reductase. The Journal of Biological Chemistry, 284, 24354–24362.CrossRefPubMed Sanghani, P. C., Davis, W. I., Fears, S. L., Green, S. L., Zhai, L., Tang, Y., et al. (2009). Kinetic and cellular characterization of novel inhibitors of S-nitrosoglutathione reductase. The Journal of Biological Chemistry, 284, 24354–24362.CrossRefPubMed
49.
go back to reference Nikitovic, D., & Holmgren, A. (1996). S-nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide. The Journal of biological chemistry, 271, 19180–19185.CrossRefPubMed Nikitovic, D., & Holmgren, A. (1996). S-nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide. The Journal of biological chemistry, 271, 19180–19185.CrossRefPubMed
50.
go back to reference Hogg, N., Singh, R. J., Konorev, E., Joseph, J., & Kalyanaraman, B. (1997). S-Nitrosoglutathione as a substrate for gamma-glutamyl transpeptidase. Biochemical Journal, 323(Pt 2), 477–481.PubMed Hogg, N., Singh, R. J., Konorev, E., Joseph, J., & Kalyanaraman, B. (1997). S-Nitrosoglutathione as a substrate for gamma-glutamyl transpeptidase. Biochemical Journal, 323(Pt 2), 477–481.PubMed
51.
go back to reference Jourd’heuil, D., Laroux, F. S., Miles, A. M., Wink, D. A., & Grisham, M. B. (1999). Effect of superoxide dismutase on the stability of S-nitrosothiols. Archives of Biochemistry and Biophysics, 361, 323–330.CrossRefPubMed Jourd’heuil, D., Laroux, F. S., Miles, A. M., Wink, D. A., & Grisham, M. B. (1999). Effect of superoxide dismutase on the stability of S-nitrosothiols. Archives of Biochemistry and Biophysics, 361, 323–330.CrossRefPubMed
52.
go back to reference Onaran, I., Ozaydin, A., Gultepe, M., & Sultuybek, G. (1998). Transport of glutathione conjugate in erythrocytes from aged subjects and susceptibility to oxidative stress following inhibition of the glutathione S-conjugate pump. Mechanisms of Ageing and Development, 103, 195–207.CrossRefPubMed Onaran, I., Ozaydin, A., Gultepe, M., & Sultuybek, G. (1998). Transport of glutathione conjugate in erythrocytes from aged subjects and susceptibility to oxidative stress following inhibition of the glutathione S-conjugate pump. Mechanisms of Ageing and Development, 103, 195–207.CrossRefPubMed
53.
go back to reference Rebbeck, T. R., Walker, A. H., Jaffe, J. M., White, D. L., Wein, A. J., & Malkowicz, S. B. (1999). Glutathione S-transferase-mu (GSTM1) and -theta (GSTT1) genotypes in the etiology of prostate cancer. Cancer Epidemiology of Biomarkers, 8, 283–287. Rebbeck, T. R., Walker, A. H., Jaffe, J. M., White, D. L., Wein, A. J., & Malkowicz, S. B. (1999). Glutathione S-transferase-mu (GSTM1) and -theta (GSTT1) genotypes in the etiology of prostate cancer. Cancer Epidemiology of Biomarkers, 8, 283–287.
54.
go back to reference Marinho, C. R., Alho, I., Correia, M., Falcao, L. M., Bras-Nogueira, J., & Bicho, M. P. (2005). Genetic distribution of GSTT1 in hypertensive Portuguese subjects: Association with total plasma glutathione as a marker for oxidative stress. American Journal of Hypertension, 18, 83a–83a.CrossRef Marinho, C. R., Alho, I., Correia, M., Falcao, L. M., Bras-Nogueira, J., & Bicho, M. P. (2005). Genetic distribution of GSTT1 in hypertensive Portuguese subjects: Association with total plasma glutathione as a marker for oxidative stress. American Journal of Hypertension, 18, 83a–83a.CrossRef
55.
go back to reference Tew, K. D., & Ronai, Z. (1999). GST function in drug and stress response. Drug Resistance Updates, 2, 143–147.CrossRefPubMed Tew, K. D., & Ronai, Z. (1999). GST function in drug and stress response. Drug Resistance Updates, 2, 143–147.CrossRefPubMed
56.
go back to reference Bessa, S. S., Ali, E. M. M., & Hamdy, S. M. (2009). The role of glutathione S- transferase M1 and T1 gene polymorphisms and oxidative stress-related parameters in Egyptian patients with essential hypertension. European Journal of Internal Medicine, 20, 625–630.CrossRefPubMed Bessa, S. S., Ali, E. M. M., & Hamdy, S. M. (2009). The role of glutathione S- transferase M1 and T1 gene polymorphisms and oxidative stress-related parameters in Egyptian patients with essential hypertension. European Journal of Internal Medicine, 20, 625–630.CrossRefPubMed
57.
go back to reference Chiang, W. L., Hsieh, Y. S., Yang, S. F., Lu, T. A., & Chu, S. C. (2007). Differential expression of glutathione-S-transferase isoenzymes in various types of anemia in Taiwan. Clinica Chimica Acta, 375, 110–114.CrossRef Chiang, W. L., Hsieh, Y. S., Yang, S. F., Lu, T. A., & Chu, S. C. (2007). Differential expression of glutathione-S-transferase isoenzymes in various types of anemia in Taiwan. Clinica Chimica Acta, 375, 110–114.CrossRef
58.
go back to reference Bruhn, C., Brockmoller, J., Kerb, R., Roots, I., & Borchert, H. H. (1998). Concordance between enzyme activity and genotype of glutathione S-transferase theta (GSTT1). Biochemical Pharmacology, 56, 1189–1193.CrossRefPubMed Bruhn, C., Brockmoller, J., Kerb, R., Roots, I., & Borchert, H. H. (1998). Concordance between enzyme activity and genotype of glutathione S-transferase theta (GSTT1). Biochemical Pharmacology, 56, 1189–1193.CrossRefPubMed
59.
go back to reference Cornelis, M. C., El-Sohemy, A., & Campos, H. (2007). GSTT1 genotype modifies the association between cruciferous vegetable intake and the risk of myocardial infarction. The American journal of clinical nutrition, 86, 752–758.PubMed Cornelis, M. C., El-Sohemy, A., & Campos, H. (2007). GSTT1 genotype modifies the association between cruciferous vegetable intake and the risk of myocardial infarction. The American journal of clinical nutrition, 86, 752–758.PubMed
60.
go back to reference Marinho, C., Alho, I., Arduino, D., Falcao, L. M., Bras-Nogueira, J., & Bicho, M. (2007). GST M1/T1 and MTHFR polymorphisms as risk factors for hypertension. Biochemical and Biophysical Research Communications, 353, 344–350.CrossRefPubMed Marinho, C., Alho, I., Arduino, D., Falcao, L. M., Bras-Nogueira, J., & Bicho, M. (2007). GST M1/T1 and MTHFR polymorphisms as risk factors for hypertension. Biochemical and Biophysical Research Communications, 353, 344–350.CrossRefPubMed
61.
go back to reference Oniki, K., Hori, M., Takata, K., Yokoyama, T., Mihara, S., Marubayashi, T., et al. (2008). Association between glutathione S-transferase A1, M1 and T1 polymorphisms and hypertension. Pharmacogenetics and genomics, 18, 275–277.CrossRefPubMed Oniki, K., Hori, M., Takata, K., Yokoyama, T., Mihara, S., Marubayashi, T., et al. (2008). Association between glutathione S-transferase A1, M1 and T1 polymorphisms and hypertension. Pharmacogenetics and genomics, 18, 275–277.CrossRefPubMed
62.
go back to reference Wang, J., Zou, L., Huang, S., Lu, F., Lang, X., Han, L., et al. (2010). Genetic polymorphisms of glutathione S-transferase genes GSTM1, GSTT1 and risk of coronary heart disease. Mutagenesis, 25, 365–369.CrossRefPubMed Wang, J., Zou, L., Huang, S., Lu, F., Lang, X., Han, L., et al. (2010). Genetic polymorphisms of glutathione S-transferase genes GSTM1, GSTT1 and risk of coronary heart disease. Mutagenesis, 25, 365–369.CrossRefPubMed
Metadata
Title
Glutathione-Related Antioxidant Defense System in Elderly Patients Treated for Hypertension
Authors
J. Rybka
D. Kupczyk
K. Kędziora-Kornatowska
J. Motyl
J. Czuczejko
K. Szewczyk-Golec
M. Kozakiewicz
H. Pawluk
L. A. Carvalho
J. Kędziora
Publication date
01-03-2011
Publisher
Humana Press Inc
Published in
Cardiovascular Toxicology / Issue 1/2011
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-010-9096-5

Other articles of this Issue 1/2011

Cardiovascular Toxicology 1/2011 Go to the issue